FINAL JEE(Advanced) EXAMINATION - 2021
 (Held On Sunday 03rd OCTOBER, 2021)
 PAPER-1
 TEST PIPER WIIH SOLUIION

PART-3 : MATHEMATICS

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.

1. Consider a triangle Δ whose two sides lie on the x-axis and the line $x+y+1=0$. If the orthocenter of Δ is $(1,1)$, then the equation of the circle passing through the vertices of the triangle Δ is
(A) $x^{2}+y^{2}-3 x+y=0$
(B) $x^{2}+y^{2}+x+3 y=0$
(C) $x^{2}+y^{2}+2 y-1=0$
(D) $x^{2}+y^{2}+x+y=0$

Ans. (B)

Sol.

$(1,-2)=(\alpha,-\alpha-1)$

$$
\Rightarrow \alpha=1
$$

one of the vectex is intersection of x-axis and $x+y+1=0 \Rightarrow A(-1,0)$
Let vertex B be $(\alpha,-\alpha-1)$
Line $\mathrm{AC} \perp \mathrm{BH} \Rightarrow \alpha=1 \Rightarrow \mathrm{~B}(1,-2)$
Let vertex C be $(\beta, 0)$
Line $\mathrm{AH} \perp \mathrm{BC}$
$\mathrm{m}_{\mathrm{AH}} \cdot \mathrm{m}_{\mathrm{BC}}=-1$
$\frac{1}{2} \cdot \frac{2}{\beta-1}=-1 \Rightarrow \beta=0$
Centroid of $\triangle \mathrm{ABC}$ is $\left(0,-\frac{2}{3}\right)$
Now G (centroid) divides line joining circum centre (O) and ortho centre (H) in the ratio $1: 2$

éSaral

$$
\begin{aligned}
& \Rightarrow \begin{array}{c}
\\
\\
\\
\begin{array}{lllll}
\\
\mathrm{h}, \mathrm{k} & & \left(0,-\frac{2}{3}\right) & (1,1) \\
\stackrel{\mathrm{O}}{2} & 1 & \mathrm{G} & 2 & \mathrm{H}
\end{array}
\end{array} \\
& 2 \mathrm{~h}+1=0 \quad 2 \mathrm{k}+1=-\mathrm{z} \\
& \mathrm{~h}=-\frac{1}{2} \quad \mathrm{k}=-\frac{3}{2}
\end{aligned}
$$

\Rightarrow circum centre is $\left(-\frac{1}{2},-\frac{3}{2}\right)$
Equation of circum circle is (passing through $\mathrm{C}(0,0)$) is

$$
x^{2}+y^{2}+x+3 y=0
$$

2. The area of the region $\left\{(x, y): 0 \leq x \leq \frac{9}{4}, \quad 0 \leq y \leq 1, \quad x \geq 3 y, \quad x+y \geq 2\right\}$ is
(A) $\frac{11}{32}$
(B) $\frac{35}{96}$
(C) $\frac{37}{96}$
(D) $\frac{13}{32}$

Ans. (A)
Sol. $\mathrm{x}+\mathrm{y}-2=0$

$$
\mathrm{P}\left(\frac{3}{2}, \frac{1}{2}\right) ; \mathrm{Q}(2,0) ; \mathrm{R}\left(\frac{9}{4}, 0\right) ; \mathrm{S}\left(\frac{9}{4}, \frac{3}{4}\right)
$$

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}| | \begin{array}{ll}
\frac{3}{2} & \frac{1}{2} \\
2 & 0
\end{array}\left|+\left|\begin{array}{ll}
2 & 0 \\
\frac{9}{4} & 0
\end{array}\right|+\left|\begin{array}{ll}
\frac{9}{4} & 0 \\
\frac{9}{4} & \frac{3}{4}
\end{array}\right|+\left|\begin{array}{ll}
\frac{9}{4} & \frac{3}{4} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right|\right| \\
& =\frac{1}{2}\left|(0-1)+(0-0)+\left(\frac{27}{16}-0\right)+\left(\frac{9}{8}-\frac{9}{8}\right)\right|=\frac{11}{32}
\end{aligned}
$$

3. Consider three sets $\mathrm{E}_{1}=\{1,2,3\}, \mathrm{F}_{1}=\{1,3,4\}$ and $\mathrm{G}_{1}=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set E_{1}, and let S_{1} denote the set of these chosen elements.

Let $E_{2}=E_{1}-S_{1}$ and $F_{2}=F_{1} \cup S_{1}$. Now two elements are chosen at random, without replacement, from the set F_{2} and let S_{2} denote the set of these chosen elements.
Let $G_{2}=G_{1} \cup S_{2}$. Finally, two elements are chosen at random, without replacement, from the set G_{2} and let S_{3} denote the set of these chosen elements.
Let $E_{3}=E_{2} \cup S_{3}$. Given that $E_{1}=E_{3}$, let p be the conditional probability of the event $S_{1}=\{1,2\}$. Then the value of p is
(A) $\frac{1}{5}$
(B) $\frac{3}{5}$
(C) $\frac{1}{2}$
(D) $\frac{2}{5}$

Ans. (A)
Sol. $\mathrm{P}=\frac{\mathrm{P}\left(\mathrm{S}_{1} \cap\left(\mathrm{E}_{1}=\mathrm{E}_{3}\right)\right)}{\mathrm{P}\left(\mathrm{E}_{1}-\mathrm{E}_{3}\right)}=\frac{\mathrm{P}\left(\mathrm{B}_{1,2}\right)}{\mathrm{P}(\mathrm{B})}$

$$
\begin{array}{ccc}
\mathrm{P}(\mathrm{~B})= & \underset{\uparrow}{\mathrm{P}\left(\mathrm{~B}_{1,2}\right)} & +\underset{\uparrow}{\mathrm{P}\left(\mathrm{~B}_{1,3}\right)} \\
& +\underset{\uparrow}{\mathrm{P}\left(\mathrm{~B}_{2,3}\right)} \\
& \text { If 1,2 } & \text { If } 1,3
\end{array} \text { If 2,3 }
$$

$$
\frac{\mathrm{P}\left(\mathrm{~B}_{1,2}\right)}{\mathrm{P}(\mathrm{~B})}=\frac{1}{5}
$$

4. Let $\theta_{1}, \theta_{2}, \ldots, \theta_{10}$ be positive valued angles (in radian) such that $\theta_{1}+\theta_{2}+\ldots+\theta_{10}=2 \pi$. Define the complex numbers $z_{1}=e^{i \theta_{1}}, z_{k}=z_{k-1} e^{i \theta_{k}}$ for $k=2,3, \ldots, 10$, where $i=\sqrt{-1}$. Consider the statements P and Q given below :
$P:\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right|+\ldots+\left|z_{10}-z_{9}\right|+\left|z_{1}-z_{10}\right| \leq 2 \pi$
$\mathrm{Q}:\left|\mathrm{z}_{2}^{2}-\mathrm{z}_{1}^{2}\right|+\left|\mathrm{z}_{3}^{2}-\mathrm{z}_{2}^{2}\right|+\ldots .+\left|\mathrm{z}_{10}^{2}-\mathrm{z}_{9}^{2}\right|+\left|\mathrm{z}_{1}^{2}-\mathrm{z}_{10}^{2}\right| \leq 4 \pi$
Then,
(A) P is TRUE and Q is FALSE
(B) Q is TRUE and P is FALSE
(C) both P and Q are TRUE
(D) both P and Q are FALSE

Ans. (C)

Sol.

$\left|z_{1}\right|=\left|z_{2}\right|=\ldots\left|z_{10}\right|=1$
angle $=\frac{\text { arc }}{\mathrm{rad}}$
$\theta_{2}=\operatorname{arc}\left(z_{1} z_{2}\right)>\left(z_{2}>z_{1}\right)$
$\mathrm{P}:\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|+\ldots+\left|\mathrm{z}_{1}-\mathrm{z}_{10}\right| \leq \theta_{1}+\theta_{2}+\ldots+\theta_{10}$
$\Rightarrow\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|+\ldots+\left|\mathrm{z}_{1}-\mathrm{z}_{10}\right| \leq 2 \pi \mathrm{P}$ is true
$z_{1}^{2}=e^{i 2 \theta_{1}}, z_{k}^{2}=z_{k-1}^{2} \cdot e^{i 2 \theta_{k}}$
Let $2 \theta_{\mathrm{k}}=\alpha \mathrm{k}$
$\mathrm{z}_{1}^{2}=\mathrm{e}^{\mathrm{i} \alpha_{1}}, \mathrm{z}_{\mathrm{k}}^{2}=\mathrm{z}_{\mathrm{k}-1}^{2} \cdot \mathrm{e}^{\mathrm{i} \alpha_{\mathrm{k}}}$
$\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}=4 \pi$
one similar sense
$\left|z_{1}{ }^{2}-z_{2}{ }^{2}\right|+\ldots\left|z_{1}{ }^{2}-z_{10}{ }^{2}\right| \leq 4 \pi$
Q is also true

SECTION-2 : (Maximum Marks : 12)

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+2$ If ONLY the correct numerical value is entered at the designated place;
Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

Three numbers are chosen at random, one after another with replacement, from the set $\mathrm{S}=\{1,2,3, \ldots, 100\}$. Let p_{1} be the probability that the maximum of chosen numbers is at least 81 and p_{2} be the probability that the minimum of chosen numbers is at most 40 .
5. The value of $\frac{625}{4} p_{1}$ is \qquad .

Ans. (76.25)
Sol. $\mathrm{p}_{1}=$ probability that maximum of chosen numbers is at least 81
$\mathrm{p}_{1}=1-$ probability that maximum of chosen number is at most 80
$\mathrm{p}_{1}=1-\frac{80 \times 80 \times 80}{100 \times 100 \times 100}=1-\frac{64}{125}$
$\mathrm{p}_{1}=\frac{61}{125}$
$\frac{625 \mathrm{p}_{1}}{4}=\frac{625}{4} \times \frac{61}{125}=\frac{305}{4}=76.25$
the value of $\frac{625 p_{1}}{4}$ is 76.25
6. The value of $\frac{125}{4} p_{2}$ is \qquad .

Ans. (24.50)
Sol. $\mathrm{p}_{2}=$ probability that minimum of chosen numbers is at most 40
$=1-$ probability that minimum of chosen numbers is at least 41
$=1-\left(\frac{600}{100}\right)^{3}$
$=1-\frac{27}{125}=\frac{98}{125}$
$\therefore \frac{125}{4} \mathrm{p}_{2}=\frac{125}{4} \times \frac{98}{125}=24.50$

Question Stem for Question Nos. 7 and 8

Question Stem

Let α, β and γ be real numbers such that the system of linear equations

$$
\begin{gathered}
x+2 y+3 z=\alpha \\
4 x+5 y+6 z=\beta \\
7 x+8 y+9 z=\gamma-1
\end{gathered}
$$

is consistent. Let $|\mathrm{M}|$ represent the determinant of the matrix

$$
M=\left[\begin{array}{ccc}
\alpha & 2 & \gamma \\
\beta & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Let P be the plane containing all those (α, β, γ) for which the above system of linear equations is consistent, and D be the square of the distance of the point $(0,1,0)$ from the plane P .
7. The value of $|\mathrm{M}|$ is \qquad .

Ans. (1.00)
8. The value of D is \qquad .

Ans. (1.50)

Solutions 7 \& 8

Sol. $7 x+8 y+9 z-(\gamma-1)=A(4 x+5 y+6 z-\beta)+B(x+2 y+3 z-\alpha)$
$x: 7=4 A+B$
$y: 8=5 A+2 B$
$\mathrm{A}=2, \mathrm{~B}=-1$
const. term : $-(\gamma-1)=-\mathrm{A} \beta-\alpha \mathrm{B} \Rightarrow-(\gamma-1) \equiv 2 \beta+\alpha$
$\alpha-2 \beta+\gamma=1$
$M=\left(\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right)=\alpha-2 \beta+\gamma=1$
Plane P: $x-2 y+z=1$
Perpendicular distance $=\left|\frac{3}{\sqrt{6}}\right|=P \Rightarrow D=P^{2}=\frac{9}{6}=1.5$

Question Stem for Question Nos. 9 and 10

Question Stem

Consider the lines L_{1} and L_{2} defined by
$L_{1}: x \sqrt{2}+y-1=0$ and $L_{2}: x \sqrt{2}-y+1=0$
For a fixed constant λ, let C be the locus of a point P such that the product of the distance of P from L_{1} and the distance of P from L_{2} is λ^{2}. The line $y=2 x+1$ meets C at two points R and S, where the distance between R and S is $\sqrt{270}$.
Let the perpendicular bisector of RS meet C at two distinct points R^{\prime} and S^{\prime}. Let D be the square of the distance between R^{\prime} and S^{\prime}.
9. The value of λ^{2} is \qquad .

Ans. (9.00)
Sol. $P(x, y) \quad\left|\frac{\sqrt{2} x+y-1}{\sqrt{3}}\right|\left|\frac{\sqrt{2} x-y+1}{\sqrt{3}}\right|=\lambda^{2}$
$\left|\frac{2 x^{2}-(y-1)^{2}}{3}\right|=\lambda^{2}, \mathrm{C}:\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$
line $y=2 x+1, R S=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}, R\left(x_{1}, y_{1}\right)$ and $S\left(x_{2}, y_{2}\right)$
$\mathrm{y}_{1}=2 \mathrm{x}_{1}+1$ and $\mathrm{y}_{2}=2 \mathrm{x}_{2}+1 \Rightarrow\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=2\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$

$$
\mathrm{RS}=\sqrt{5\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}}=\sqrt{5}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|
$$

solve curve C and line $y=2 x+1$ we get

$$
\begin{aligned}
& \left|2 x^{2}-(2 x)^{2}\right|=3 \lambda^{2} \Rightarrow x^{2}=\frac{3 \lambda^{2}}{2} \\
& \operatorname{RS}=\sqrt{5}\left|\frac{2 \sqrt{3} \lambda}{\sqrt{2}}\right|=\sqrt{30} \lambda=\sqrt{270} \Rightarrow 30 \lambda^{2}=270 \Rightarrow \lambda^{2}=9
\end{aligned}
$$

10. The value of D is \qquad .
Ans. (77.14)
Sol.

\perp bisector of RS
$\mathrm{T} \equiv\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$
Here $\mathrm{x}_{1}+\mathrm{x}_{2}=0$
$\mathrm{T}=(0,1)$
Equation of
$R^{\prime} S^{\prime}:(y-1)=-\frac{1}{2}(x-0) \Rightarrow x+2 y=2$
$R^{\prime}\left(a_{1}, b_{1}\right) S^{\prime}\left(a_{2}, b_{2}\right)$
$D=\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=5\left(b_{1}-b_{2}\right)^{2}$
solve $x+2 y=2$ and $\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$

$$
\begin{aligned}
& \left|8(y-1)^{2}-(y-1)^{2}\right|=3 \lambda^{2} \Rightarrow(y-1)^{2}=\left(\frac{\sqrt{3} \lambda}{\sqrt{7}}\right)^{2} \\
& y-1= \pm \frac{\sqrt{3} \lambda}{\sqrt{7}} \Rightarrow b_{1}=1+\frac{\sqrt{3} \lambda}{\sqrt{7}}, b_{2}=1-\frac{\sqrt{3} \lambda}{\sqrt{17}} \\
& \text { D }=5\left(\frac{2 \sqrt{3} \lambda}{\sqrt{7}}\right)^{2}=\frac{5 \times 4 \times 3 \lambda^{2}}{7}=\frac{5 \times 4 \times 27}{7}=77.14
\end{aligned}
$$

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If only (all) the correct option(s) is(are) chosen;
Partial Marks $\quad:+3$ If all the four options are correct but ONLY three options are chosen;
Partial Marks $\quad:+2$ If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks :+1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If unanswered;
Negative Marks :-2 In all other cases.
11. For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let
$E=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18\end{array}\right], P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ and $\mathrm{F}=\left[\begin{array}{ccc}1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3\end{array}\right]$
If Q is a nonsingular matrix of order 3×3, then which of the following statements is (are) TRUE ?
(A) $\mathrm{F}=\mathrm{PEP}$ and $\mathrm{P}^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left|\mathrm{EQ}+\mathrm{PFQ}^{-1}\right|=|\mathrm{EQ}|+\left|\mathrm{PFQ}^{-1}\right|$
(C) $\left|(\mathrm{EF})^{3}\right|>|\mathrm{EF}|^{2}$
(D) Sum of the diagonal entries of $\mathrm{P}^{-1} \mathrm{EP}+\mathrm{F}$ is equal to the sum of diagonal entries of $\mathrm{E}+\mathrm{P}^{-1} \mathrm{FP}$

Ans. (A,B,D)

$$
\begin{aligned}
& \mathrm{PEP}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
8 & 13 & 18
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
&\left(\begin{array}{ccc}
1 & 2 & 3 \\
8 & 13 & 18 \\
2 & 3 & 4
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
8 & 18 & 13 \\
2 & 4 & 3
\end{array}\right) \\
& \mathrm{P}^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(B) $\left|\mathrm{EQ}+\mathrm{PFQ}^{-1}\right|=|\mathrm{EQ}|+\left|\mathrm{PFQ}^{-1}\right|$
$|E|=0$ and $|F|=0$ and $|Q| \neq 0$
$|\mathrm{EQ}|=|\mathrm{E}||\mathrm{Q}|=0,\left|\mathrm{PFQ}^{-1}\right|=\frac{|\mathrm{P}||\mathrm{F}|}{|\mathrm{Q}|}=0$
$\mathrm{T}=\mathrm{EQ}+\mathrm{PFQ}^{-1}$
$\mathrm{TQ}=\mathrm{EQ}^{2}+\mathrm{PF}=\mathrm{EQ}^{2}+\mathrm{P}^{2} \mathrm{EP}=E Q^{2}+\mathrm{EP}=\mathrm{E}\left(\mathrm{Q}^{2}+\mathrm{P}\right)$
$|\mathrm{TQ}|=\left|\mathrm{E}\left(\mathrm{Q}^{2}+\mathrm{P}\right)\right| \Rightarrow|\mathrm{T}||\mathrm{Q}|=|\mathrm{E}|\left|\mathrm{Q}^{2}+\mathrm{P}\right|=0 \Rightarrow|\mathrm{~T}|=0($ as $|\mathrm{Q}| \neq 0)$
(C) $\left|(\mathrm{EF})^{3}\right|>|\mathrm{EF}|^{2}$

Here $0>0$ (false)
(D) as $\mathrm{P}^{2}=\mathrm{I} \Rightarrow \mathrm{P}^{-1}=\mathrm{P}$ so $\mathrm{P}^{-1} \mathrm{FP}=\mathrm{PFP}=\mathrm{PPEPP}=\mathrm{E}$
so $\mathrm{E}+\mathrm{P}^{-1} \mathrm{FP}=\mathrm{E}+\mathrm{E}=2 \mathrm{E}$
$\mathrm{P}^{-1} \mathrm{EP}+\mathrm{F} \Rightarrow \mathrm{PEP}+\mathrm{F}=2 \mathrm{PEP}$
$\operatorname{Tr}(2 \mathrm{PEP})=2 \operatorname{Tr}(\mathrm{PEP})=2 \operatorname{Tr}(\mathrm{EPP})=2 \operatorname{Tr}(\mathrm{E})$
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$f(\mathrm{x})=\frac{\mathrm{x}^{2}-3 \mathrm{x}-6}{\mathrm{x}^{2}+2 \mathrm{x}+4}$.
Then which of the following statements is (are) TRUE ?
(A) f is decreasing in the interval $(-2,-1)$
(B) f is increasing in the interval $(1,2)$
(C) f is onto
(D) Range of f is $\left[-\frac{3}{2}, 2\right]$

Ans. (A,B)
Sol. $f(x)=\frac{x^{2}-3 x-6}{x^{2}+2 x+4}$
$f^{\prime}(x)=\frac{\left(x^{2}+2 x+4\right)(2 x-3)-\left(x^{2}-3 x-6\right)(2 x+2)}{\left(x^{2}+2 x+4\right)^{2}}$
$f^{\prime}(x)=\frac{5 x(x+4)}{\left(x^{2}+2 x+4\right)^{2}}$
$\mathrm{f}^{\prime}(\mathrm{x}): \frac{+{ }_{-}^{+}+}{-4} 0$
$f(-4)=\frac{11}{6}, \quad f(0)=-\frac{3}{2}, \quad \lim _{x \rightarrow \pm \infty} \mathrm{f}(\mathrm{x})=1$
Range : $\left[-\frac{3}{2}, \frac{11}{6}\right]$, clearly $f(x)$ is into
13. Let E, F and G be three events having probabilities
$\mathrm{P}(\mathrm{E})=\frac{1}{8}, \mathrm{P}(\mathrm{F})=\frac{1}{6}$ and $\mathrm{P}(\mathrm{G})=\frac{1}{4}$, and let $\mathrm{P}(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G})=\frac{1}{10}$.
For any event H , if H^{C} denotes its complement, then which of the following statements is(are) TRUE?
(A) $\mathrm{P}\left(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G}^{\mathrm{C}}\right) \leq \frac{1}{40}$
(B) $\mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F} \cap \mathrm{G}\right) \leq \frac{1}{15}$
(C) $\mathrm{P}(E \cup F \cup G) \leq \frac{13}{24}$
(D) $\mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F}^{\mathrm{C}} \cap \mathrm{G}^{\mathrm{C}}\right) \leq \frac{5}{12}$

Ans. (A,B,C)
Sol. $\mathrm{P}(\mathrm{E})=\frac{1}{8} ; \mathrm{P}(\mathrm{F})=\frac{1}{6} ; \mathrm{P}(\mathrm{G})=\frac{1}{4} ; \mathrm{P}(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G})=\frac{1}{10}$
(C) $\mathrm{P}(\mathrm{E} \cup \mathrm{F} \cup \mathrm{G})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})+\mathrm{P}(\mathrm{G})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})-\mathrm{P}(\mathrm{F} \cap \mathrm{G})-\mathrm{P}(\mathrm{G} \cap \mathrm{E})+\mathrm{P}(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G})$ $=\frac{1}{8}+\frac{1}{6}+\frac{1}{4}-\sum \mathrm{P}(\mathrm{E} \cap \mathrm{F})+\frac{1}{10}$
$=\frac{3+4+6}{24}+\frac{1}{10}-\sum \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{13}{24}+\frac{1}{10}-\sum \mathrm{P}(\mathrm{E} \cap \mathrm{F})$
$\Rightarrow \mathrm{P}(\mathrm{E} \cup \mathrm{F} \cup \mathrm{G}) \leq \frac{13}{24} \quad[(\mathrm{C})$ is Correct $]$
(D) $\mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F}^{\mathrm{C}} \cap \mathrm{G}^{\mathrm{C}}\right)=1-\mathrm{P}(\mathrm{E} \cup \mathrm{F} \cup \mathrm{G}) \geq 1-\frac{13}{24}$
$\Rightarrow \mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F}^{\mathrm{C}} \cap \mathrm{G}^{\mathrm{C}}\right) \geq \frac{11}{24} \quad[(\mathrm{D})$ is Incorrect $]$
(A) $\mathrm{P}(\mathrm{E})=\frac{1}{8} \geq \mathrm{P}\left(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G}^{\mathrm{C}}\right)+\mathrm{P}(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G})$
$\Rightarrow \frac{1}{8} \geq \mathrm{P}\left(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G}^{\mathrm{C}}\right)+\frac{1}{10} \Rightarrow \frac{1}{8}-\frac{1}{10} \geq \mathrm{P}\left(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G}^{\mathrm{C}}\right)$
$\Rightarrow \frac{1}{40} \geq \mathrm{P}\left(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G}^{\mathrm{C}}\right) \quad[(\mathrm{A})$ is Correct]
(B) $\mathrm{P}(\mathrm{F})=\frac{1}{6} \geq \mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F} \cap \mathrm{G}\right)+\mathrm{P}(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G})$
$\Rightarrow \frac{1}{6}-\frac{1}{10} \geq \mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F} \cap \mathrm{G}\right)$
$\Rightarrow \frac{4}{60} \geq \mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F} \cap \mathrm{G}\right)$
$\Rightarrow \frac{1}{15} \geq \mathrm{P}\left(\mathrm{E}^{\mathrm{C}} \cap \mathrm{F} \cap \mathrm{G}\right)$ [(B) is Correct]
14. For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let I be the 3×3 identity matrix. Let E and F be two 3×3 matrices such that $(I-E F)$ is invertible. If $G=(I-E F)^{-1}$, then which of the following statements is (are) TRUE ?
(A) $|\mathrm{FE}|=|\mathrm{I}-\mathrm{FE}||\mathrm{FGE}|$
(B) $|\mathrm{I}-\mathrm{FE}|(\mathrm{I}+\mathrm{FGE})=\mathrm{I}$
(C) $\mathrm{EFG}=\mathrm{GEF}$
(D) $(\mathrm{I}-\mathrm{FE})(\mathrm{I}-\mathrm{FGE})=\mathrm{I}$

Ans. (A,B,C)
Sol. $|\mathrm{I}-\mathrm{EF}| \neq 0 ; \mathrm{G}=(\mathrm{I}-\mathrm{EF})^{-1} \Rightarrow \mathrm{G}^{-1}=\mathrm{I}-\mathrm{EF}$
Now, G. $\mathrm{G}^{-1}=\mathrm{I}=\mathrm{G}^{-1} \mathrm{G}$
$\Rightarrow \mathrm{G}(\mathrm{I}-\mathrm{EF})=\mathrm{I}=(\mathrm{I}-\mathrm{EF}) \mathrm{G}$
$\Rightarrow \mathrm{G}-\mathrm{GEF}=\mathrm{I}=\mathrm{G}-\mathrm{EFG}$
$\Rightarrow \mathrm{GEF}=\mathrm{EFG} \quad[\mathrm{C}$ is Correct]
$(\mathrm{I}-\mathrm{FE})(\mathrm{I}+\mathrm{FGE})=\mathrm{I}+\mathrm{FGE}-\mathrm{FE}-$ FEFGE

$$
=\mathrm{I}+\mathrm{FGE}-\mathrm{FE}-\mathrm{F}(\mathrm{G}-\mathrm{I}) \mathrm{E}
$$

$$
=\mathrm{I}+\mathrm{FGE}-\mathrm{FE}-\mathrm{FGE}+\mathrm{FE}
$$

$$
=\mathrm{I} \quad[(\mathrm{~B}) \text { is Correct }]
$$

(So 'D' is Incorrect)
We have
$(\mathrm{I}-\mathrm{FE})(\mathrm{I}+\mathrm{FGE})=\mathrm{I}$
Now

FE(I + FGE)
$=\mathrm{FE}+\mathrm{FEFGE}$
$=\mathrm{FE}+\mathrm{F}(\mathrm{G}-\mathrm{I}) \mathrm{E}$
$=\mathrm{FE}+\mathrm{FGE}-\mathrm{FE}$
$=$ FGE
$\Rightarrow|\mathrm{FE}||\mathrm{I}+\mathrm{FGE}|=|\mathrm{FGE}|$
$\Rightarrow|\mathrm{FE}| \times \frac{1}{|\mathrm{I}-\mathrm{FE}|}=|\mathrm{FGE}|($ from (1))
$\Rightarrow|\mathrm{FE}|=|\mathrm{I}-\mathrm{FE}||\mathrm{FGE}|$
(option (A) is correct)
15. For any positive integer n, let $S_{n}:(0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \cot ^{-1}\left(\frac{1+\mathrm{k}(\mathrm{k}+1) \mathrm{x}^{2}}{\mathrm{x}}\right)
$$

where for any $x \in \mathbb{R}, \cot ^{-1} x \in(0, \pi)$ and $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then which of the following statements is (are) TRUE ?
(A) $\mathrm{S}_{10}(\mathrm{x})=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1+11 \mathrm{x}^{2}}{10 \mathrm{x}}\right)$, for all $\mathrm{x}>0$
(B) $\lim _{n \rightarrow \infty} \cot \left(S_{n}(x)\right)=x$, for all $x>0$
(C) The equation $\mathrm{S}_{3}(\mathrm{x})=\frac{\pi}{4}$ has a root in $(0, \infty)$
(D) $\tan \left(\mathrm{S}_{\mathrm{n}}(\mathrm{x})\right) \leq \frac{1}{2}$, for all $\mathrm{n} \geq 1$ and $\mathrm{x}>0$

Ans. (A,B)
Sol. $\quad \mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \tan ^{-1}\left(\frac{\mathrm{x}}{1+\mathrm{kx}(\mathrm{kx}+\mathrm{x})}\right)$
$=\sum_{\mathrm{k}=1}^{\mathrm{n}} \tan ^{-1}\left(\frac{(\mathrm{kx}+\mathrm{x})-(\mathrm{kx})}{1+(\mathrm{kx}+\mathrm{x})(\mathrm{kx})}\right)$
$\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\tan ^{-1}(\mathrm{nx}+\mathrm{x})-\tan ^{-1} \mathrm{x}=\tan ^{-1}\left(\frac{\mathrm{nx}}{1+(\mathrm{n}+1) \mathrm{x}^{2}}\right)$
(A) $S_{10}(x)=\tan ^{-1} \frac{10 x}{1+11 x^{2}}=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1+11 x^{2}}{10 x}\right)(x>0)$
(B) $\lim _{n \rightarrow \infty} \cot \left(S_{n}(x)\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+\left(1+\frac{1}{n}\right) x^{2}}{x}=x(x>0)$
(C) $\mathrm{S}_{3}(\mathrm{x})=\tan ^{-1} \frac{3 \mathrm{x}}{1+4 \mathrm{x}^{2}}=\frac{\pi}{4} \Rightarrow 4 \mathrm{x}^{2}-3 \mathrm{x}+1=0 \Rightarrow \mathrm{x} \notin \mathbb{R}$
(D) $\tan \left(\mathrm{S}_{\mathrm{n}}(\mathrm{x})\right)=\frac{\mathrm{nx}}{1+(\mathrm{n}+1) \mathrm{x}^{2}} ; \forall \mathrm{n} \geq 1 ; \mathrm{x}>0$

We need to check the validity of $\frac{\mathrm{nx}}{1+(\mathrm{n}+1) \mathrm{x}^{2}} \leq \frac{1}{2} \forall \mathrm{n} \geq 1 ; \mathrm{x}>0 ; \mathrm{n} \in \mathbb{N}$
$\Rightarrow 2 \mathrm{nx} \leq(\mathrm{n}+1) \mathrm{x}^{2}+1$
$\Rightarrow(\mathrm{n}+1) \mathrm{x}^{2}-2 \mathrm{nx}+1 \geq 0 \forall \mathrm{n} \geq 1 ; \mathrm{x}>0 ; \mathrm{n} \in \mathbb{N}$
Discriminant of $y=(n+1) x^{2}-2 n x+1$ is
$D=4 n^{2}-4(n+1)$ and $n \in \mathbb{N}$
$\mathrm{D}<0$ for $\mathrm{n}=1$; true for $\mathrm{x}>0$
D >0 for $\mathrm{n} \geq 2 \Rightarrow \exists$ some $\mathrm{x}>0$
for which $\mathrm{y}<0$ as both roots of
$\mathrm{y}=0$ will be positive.
$\mathrm{y}=(\mathrm{n}+1) \mathrm{x}^{2}-2 \mathrm{nx}+1, \mathrm{n} \geq 2$

So, $\mathrm{y} \geq 0 \forall \mathrm{n} \geq 1 ; \forall \mathrm{x}>0 ; \mathrm{n} \in \mathrm{N}$ is false.
16. For any complex number $w=c+$ id, let $\arg (w) \in(-\pi, \pi]$, where $i=\sqrt{-1}$. Let α and β be real numbers such that for all complex numbers $z=x+$ iy satisfying $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair (x, y) lies on the circle

$$
x^{2}+y^{2}+5 x-3 y+4=0
$$

Then which of the following statements is (are) TRUE?
(A) $\alpha=-1$
(B) $\alpha \beta=4$
(C) $\alpha \beta=-4$
(D) $\beta=4$

Ans. (B,D)
Sol. $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$ implies z is
on arc and $(-\alpha, 0) \&(-\beta, 0)$ subtend $\frac{\pi}{4}$ on z .
And z lies on $\mathrm{x}^{2}+\mathrm{y}^{2}+5 \mathrm{x}-3 \mathrm{y}+4=0$
So put $\mathrm{y}=0$;
$x^{2}+5 x+4=0 \Rightarrow x=-1 ; x=-4$

Now, $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4} \Rightarrow z+\alpha=(z+\beta)$.r. $e^{i \frac{\pi}{4}}$
So, $\mathrm{z}+\beta=\mathrm{z}+4 \Rightarrow \beta=4 \& \mathrm{z}+\alpha=\mathrm{z}+1 \Rightarrow \alpha=1$

SECTION-4 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
17. For $x \in \mathbb{R}$, then number of real roots of the equation $3 x^{2}-4\left|x^{2}-1\right|+x-1=0$ is \qquad .
Ans. (4)
Sol. $3 x^{2}+x-1=4\left|x^{2}-1\right|$
If $\mathrm{x} \in[-1,1]$,
$3 \mathrm{x}^{2}+\mathrm{x}-1=-4 \mathrm{x}^{2}+4 \Rightarrow 7 \mathrm{x}^{2}+\mathrm{x}-5=0$
say $f(\mathrm{x})=7 \mathrm{x}^{2}+\mathrm{x}-5$
$f(1)=3 ; f(-1)=1 ; f(0)=-1$
[Two Roots]
If $x \in(-\infty,-1] \cup[1, \infty)$

$3 x^{2}+x-1=4 x^{2}-4 \Rightarrow x^{2}-x-3=0$
Say $g(x)=x^{2}-x-3$
$\mathrm{g}(-1)=-1 ; \mathrm{g}(1)=-3$
[Two Roots]
So total 4 roots.

18. In a triangle ABC , let $\mathrm{AB}=\sqrt{23}, \mathrm{BC}=3$ and $\mathrm{CA}=4$. Then the value of $\frac{\cot \mathrm{A}+\cot \mathrm{C}}{\cot \mathrm{B}}$ is \qquad .
Ans. (2)
Sol.

Given $\mathrm{c}=\sqrt{23} ; \mathrm{a}=3 ; \mathrm{b}=4$
$\cot \mathrm{A}=\frac{\cos \mathrm{A}}{\sin \mathrm{A}}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc} \sin \mathrm{A}}$

$$
=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2.2 \Delta}\left\{\Delta=\frac{1}{2} \mathrm{bc} \sin \mathrm{~A}\right\}
$$

$\cot \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{4 \Delta}$

光Saral

Similarly, $\cot \mathrm{B}=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{4 \Delta} \& \cot \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{4 \Delta}$
$\therefore \frac{\cot \mathrm{A}+\cot \mathrm{C}}{\cot \mathrm{B}}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}=\frac{32}{16}=2$
19. Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ be vectors in three-dimensional space, where $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ are unit vectors which are not perpendicular to each other and $\vec{u} \cdot \vec{w}=1, \vec{v} \cdot \overrightarrow{\mathrm{w}}=1, \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}=4$
If the volume of the parallelopiped, whose adjacent sides are represented by the vectors $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$, is $\sqrt{2}$, then the value of $|3 \overrightarrow{\mathrm{u}}+5 \overrightarrow{\mathrm{v}}|$ is \qquad .
Ans. (7)
Sol. Given, $|\overrightarrow{\mathrm{u}}|=1 ;|\overrightarrow{\mathrm{v}}|=1 ; \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}} \neq 0 ; \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{w}}=1 ; \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=1$;
$\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}=|\overrightarrow{\mathrm{w}}|^{2}=4 \Rightarrow|\overrightarrow{\mathrm{w}}|=2 ;\left[\begin{array}{lll}\overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}}\end{array}\right]=\sqrt{2}$
and $\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]^{2}=\left|\begin{array}{ccc}\vec{u} \cdot \vec{u} & \vec{u} \cdot \vec{v} & \vec{u} \cdot \vec{w} \\ \vec{v} \cdot \vec{u} & \vec{v} \cdot \vec{v} & \vec{v} \cdot \vec{w} \\ \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}\end{array}\right|=2$
$\Rightarrow\left|\begin{array}{ccc}1 & \vec{u} . \overrightarrow{\mathrm{v}} & 1 \\ \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}} & 1 & 1 \\ 1 & 1 & 4\end{array}\right|=2$
$\Rightarrow \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}}=\frac{1}{2}$
So, $|3 \vec{u}+5 \vec{v}|=\sqrt{9|\overrightarrow{\mathrm{u}}|^{2}+25|\overrightarrow{\mathrm{v}}|^{2}+2.3 .5 \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}}}$
$=\sqrt{9+25+30\left(\frac{1}{2}\right)}=\sqrt{49}=7$

