FINAL JEE(Advanced) EXAMINATION – 2023

(Held On Sunday 04th June, 2023)

PAPER-2

TEST PAPER WITH SOLUTION

MATHEMATICS

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks :-1 In all other cases.

1. Let $f:[(1,\infty) \to \mathbb{R}$ be a differentiable function such that $f(1) = \frac{1}{3}$ and $3\int_{1}^{x} f(t) dt = xf(x) - \frac{x^{3}}{3}, x \in [1,\infty)$.

Let e denote the base of the natural logarithm. Then the value of f(e) is

(A) $\frac{c+1}{3}$	(B) $\frac{\log_e \cdots \log_e}{3}$
(C) $\frac{4e^2}{3}$	(D) $\frac{e^2 - 4}{3}$

Ans. (C)

Sara

Sol. Diff. wr.t 'x'

$$3f(x) = f(x) + xf'(x) - x^{2}$$

$$\frac{dy}{dx} - \left(\frac{2}{x}\right)y = x$$

$$IF = e^{-2\ell nx} = \frac{1}{x^{2}}$$

$$y\left(\frac{1}{x^{2}}\right) = \int x \cdot \frac{1}{x^{2}} dx$$

$$y = x^{2}\ell nx + cx^{2}$$

$$\therefore y(1) = \frac{1}{3} \Rightarrow c = \frac{1}{3}$$

$$y(e) = \frac{4e^{2}}{3}$$

2. Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is.

(A)
$$\frac{1}{3}$$
 (B) $\frac{5}{21}$ (C) $\frac{4}{21}$ (D) $\frac{2}{7}$

Ans. (B)

Sol. $P(H) = \frac{1}{3}; P(T) = \frac{2}{3}$

Req. prob = P(HH or HTHH or HTHTHH or) + P(THH or THTHH or THTHTHH or)

$$=\frac{\frac{1}{3}\cdot\frac{1}{3}}{1-\frac{2}{3}\cdot\frac{1}{3}}+\frac{\frac{2}{3}\cdot\frac{1}{3}\cdot\frac{1}{3}}{1-\frac{2}{3}\cdot\frac{1}{3}}=\frac{5}{21}$$

3. For any $y \in \mathbb{R}$, let $\cot^{-1}(y) \in (0, \pi)$ and $\tan^{-1}(y) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions

of the equation
$$\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \cot^{-1}\left(\frac{9-y^2}{6y}\right) = \frac{2\pi}{3}$$
 for $0 < |y| < 3$, is equal to
(A) $2\sqrt{3} - 3$ (B) $3 - 2\sqrt{3}$
(C) $4\sqrt{3} - 6$ (D) $6 - 4\sqrt{3}$

Ans. (C)

Sol. Case-I :
$$y \in (-3,0)$$

 $\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \pi + \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}$
 $2\tan^{-1}\left(\frac{6y}{9-y^2}\right) = -\frac{\pi}{3}$
 $y^2 - 6\sqrt{3}y - 9 = 0 \Rightarrow y = 3\sqrt{3} - 6 (\because y \in (-3,0))$
Case-I : $y \in (0,3)$
 $2\tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3} \Rightarrow \sqrt{3}y^2 + 6y - 9\sqrt{3} = 0$

$$y = \sqrt{3}$$
 or $y = -3\sqrt{3}$ (rejected)
sum $= \sqrt{3} + 3\sqrt{3} - 6 = 4\sqrt{3} - 6$

- 4. Let the position vectors of the points P,Q,R and S be $\vec{a} = \hat{i} + 2\hat{j} 5\hat{k}$, $\vec{b} = 3\hat{i} + 6\hat{j} + 3\hat{k}$, $\vec{c} = \frac{17}{5}\hat{i} + \frac{16}{5}\hat{j} + 7\hat{k}$ and $\vec{d} = 2\hat{i} + \hat{j} + \hat{k}$, respectively. Then which of the following statements is true? (A) The points P,Q,R and S are **NOT** coplanar
 - (B) $\frac{\ddot{b}+2\ddot{d}}{3}$ is the position vector of a point which divides PR internally in the ratio 5 : 4
 - (C) $\frac{\vec{b}+2\vec{d}}{3}$ is the position vector of a point which divides PR externally in the ratio 5 : 4
 - (D) The square of the magnitude of the vector $\vec{b} \times \vec{d}$ is 95

Ans. (B)

Sol. $P(\hat{i}+2\hat{j}-5\hat{k}) = P(\vec{a})$ $Q(3\hat{i}+6\hat{j}+3\hat{k}) = Q(\vec{b})$ $R(\frac{17}{5}\hat{i}+\frac{16}{5}\hat{j}+7\hat{k}) = R(\vec{c})$ $S(2\hat{i}+\hat{j}+\hat{k}) = S(\vec{d})$ $\frac{\vec{b}+2\vec{d}}{3} = \frac{7\hat{i}+8\hat{j}+5\hat{k}}{3}$ $\frac{5\vec{c}+4\vec{a}}{9} = \frac{21\hat{i}+24\hat{j}+15\hat{k}}{9}$ $\Rightarrow \frac{\vec{b}+2\vec{d}}{3} = \frac{5\vec{c}+4\vec{a}}{9}$ so [B] is correct. option -D $|\vec{b}\times\vec{d}|^2 = |\vec{b}||\vec{d}|^2 - (\vec{b}\cdot\vec{d})^2$ $= (9+36+9) (4+1+1) - (6+6+3)^2$ $= 54\times 6 - (15)^2$ = 324 - 225

SECTION-2 : (Maximum Marks : 12)

- This section contains **THREE (03)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 - Full Marks: +4ONLY if (all) the correct option(s) is(are) chosen;Partial Marks: +3If all the four options are correct but ONLY three options are chosen;Partial Marks: +2If three or more options are correct but ONLY two options are chosen,
both of which are correct;Partial Marks: +1If two or more options are correct but ONLY one option is chosen and it
is a correct option;

Zero Marks : 0 If unanswered;

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

4

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

Let M = (a_{ij}), i, j ∈ {1, 2, 3}, be the 3 × 3 matrix such that a_{ij} = 1 if j+1 is divisible by i, otherwise a_{ij} = 0. Then which of the following statements is (are) true ?
(A) M is invertible

(B) There exists a nonzero column matrix
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 such that $M \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} -a_1 \\ -a_2 \\ -a_3 \end{pmatrix}$
(C) The set $\{X \in \mathbb{R}^3 : MX = \mathbf{0}\} \neq \{\mathbf{0}\}$, where $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

(D) The matrix (M - 2I) is invertible, where I is the 3 × 3 identity matrix **Ans. (B,C)**

JEE(Advanced) 2023/Paper-2/Held on Sunday 04th June, 2023

Sara **Sol.** $\mathbf{M} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $|M| = -1 + 1 = 0 \Rightarrow M$ is singular so non-invertible (B) $M\begin{bmatrix} a_1\\ a_2\\ a_3 \end{bmatrix} = \begin{bmatrix} -a_1\\ -a_2\\ -a_3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_1\\ a_2\\ a_3 \end{bmatrix} = \begin{bmatrix} -a_1\\ -a_2\\ -a_3 \end{bmatrix}$ $\begin{array}{l} a_1 + a_2 + a_3 = -a_1 \\ a_1 + a_3 = -a_2 \\ a_2 = -a_3 \end{array} \end{array} \Rightarrow a_1 = 0 \text{ and } a_2 + a_3 = 0 \text{ infinite solutions exists [B] is correct.}$ Option (D) $\mathbf{M} - 2\mathbf{I} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$ $|M - 2I| = 0 \Rightarrow [D]$ is wrong Option (C) : $MX = 0 \Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ x + y + z = 0 $\mathbf{x} + \mathbf{z} = \mathbf{0}$ $\mathbf{y} = \mathbf{0}$: Infinite solution [C] is correct

6. Let $f: (0,1) \to \mathbb{R}$ be the function defined as $f(x) = [4x]\left(x - \frac{1}{4}\right)^2 \left(x - \frac{1}{2}\right)$, where [x] denotes the

greatest integer less than or equal to x . Then which of the following statements is(are) true?

- (A) The function f is discontinuous exactly at one point in (0,1)
- (B) There is exactly one point in (0,1) at which the function f is continuous but **NOT** differentiable
- (C) The function f is **NOT** differentiable at more than three points in (0,1)
- (D) The minimum value of the function f is $-\frac{1}{512}$

Ans. (A,B)

Sol.
$$f(x) = \begin{cases} 0 ; 0 < x < \frac{1}{4} \\ \left(x - \frac{1}{4}\right)^2 \left(x - \frac{1}{2}\right) ; \frac{1}{4} \le x < \frac{1}{2} \\ 2\left(x - \frac{1}{4}\right)^2 \left(x - \frac{1}{2}\right) ; \frac{1}{2} \le x < \frac{3}{4} \\ 3\left(x - \frac{1}{4}\right)^2 \left(x - \frac{1}{2}\right) ; \frac{3}{4} \le x < 1 \end{cases}$$

f(x) is discontinuous at $x = \frac{3}{4}$ only

$$f'(x) = \begin{cases} 0 & ; \quad 0 < x < \frac{1}{4} \\ 2\left(x - \frac{1}{4}\right)\left(x - \frac{1}{2}\right) + \left(x - \frac{1}{4}\right)^2 & ; \quad \frac{1}{4} < x < \frac{1}{2} \\ 4\left(x - \frac{1}{4}\right)\left(x - \frac{1}{2}\right) + 2\left(x - \frac{1}{4}\right)^2 & ; \quad \frac{1}{2} < x < \frac{3}{4} \\ 6\left(x - \frac{1}{4}\right)\left(x - \frac{1}{2}\right) + 3\left(x - \frac{1}{4}\right)^2 & ; \quad \frac{3}{4} < x < 1 \end{cases}$$

f(x) is non-differentiable at $x = \frac{1}{2}$ and $\frac{3}{4}$

minimum values of f(x) occur at $x = \frac{5}{12}$ whose value is $-\frac{1}{432}$

7. Let S be the set of all twice differentiable functions f from \mathbb{R} to \mathbb{R} such that $\frac{d^2f}{dx^2}(x) > 0$ for

all $x \in (-1,1)$. For $f \in S$, let X_f be the number of points $x \in (-1,1)$ for which f(x) = x. Then which of the following statements is(are) true?

- (A) There exists a function $f\in S$ such that $X_f\!=\!0$
- (B) For every function $f\in S$, we have $X_f\!\le\!2$
- (C) There exists a function $f\in S$ such that X_f = 2
- (D) There does **NOT** exist any function f in S such that $X_f = 1$

Ans. (A,B,C)

6

Sol. S = Set of all twice differentiable functions $f : R \rightarrow R$

$$\frac{d^2f}{dx^2} > 0$$
 in (-1, 1)

Graph 'f' is Concave upward.

Number of solutions of $f(x) = x \rightarrow x_f$

 \Rightarrow Graph of y = f(x) can intersect graph of y = x at atmost two points $\Rightarrow 0 \le x_{\rm f} \le 2$

<u>Aliter</u>

$$\frac{\mathrm{d}^2 \mathrm{f}(\mathrm{x})}{\mathrm{d}\mathrm{x}^2} > 0$$

Let $\phi(x) = f(x) - x$

 $\phi''(x) > 0$

- $\therefore \phi'(x) = 0$ has at most 1 root in $x \in (-1, 1)$
- $\therefore \phi(x) = 0$ has at most 2 roots in $x \in (-1, 1)$
- $\therefore x_f \leq 2$

SECTION-3 : (Maximum Marks : 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases

8. For $x \in \mathbb{R}$, let $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the minimum value of the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \int_{0}^{x \tan^{-1} x} \frac{e^{(t-\cos t)}}{1+t^{2023}} dt \text{ is}$$

Ans. (0)

Sol.
$$f(x) = \int_{0}^{x \tan^{-1} x} \frac{e^{t - \cos t}}{1 + t^{2023}} dt$$

 $f'(x) = \frac{e^{x \tan^{-1} x - \cos(x \tan^{-1} x)}}{1 + (x \tan^{-1} x)^{2023}} \cdot \left(\frac{x}{1 + x^{2}} + \tan^{-1} x\right)$
For $x < 0$, $\tan^{-1} x \in \left(-\frac{\pi}{2}, 0\right)$
For $x \ge 0$, $\tan^{-1} x \in \left[0, \frac{\pi}{2}\right]$
 $\Rightarrow x \tan^{-1} x \ge 0 \forall x \in \mathbb{R}$
And $\frac{x}{1 + x^{2}} + \tan^{-1} x = \begin{cases} > 0 & \text{For } x > 0 \\ < 0 & \text{For } x < 0 \\ 0 & \text{For } x = 0 \end{cases}$
 $\underbrace{- + f'}{+ point of minima}$

Hence minimum value is $f(0) = \int_0^0 = 0$

JEE(Advanced) 2023/Paper-2

9. For $x \in \mathbb{R}$, let y(x) be a solution of the differential equation

$$(x^2 - 5) \frac{dy}{dx} - 2xy = -2x(x^2 - 5)^2$$
 such that $y(2) = 7$.

Then the maximum value of the function y(x) is

Ans. (16)

Sol.
$$\frac{dy}{dx} - \frac{2x}{x^2 - 5}y = -2x(x^2 - 5)$$

IF = $e^{-\int \frac{2x}{x^2 - 5}dx} = \frac{1}{(x^2 - 5)}$
y. $\frac{1}{x^2 - 5} = \int -2x.dx + c$
 $\Rightarrow \frac{y}{x^2 - 5} = -x^2 + c$
 $x = 2, y = 7$
 $\frac{7}{-1} = -4 + c \Rightarrow c = -3$
 $y = -(x^2 - 5)(x^2 + 3)$
put $x^2 = t > 0$
 $y = -(t - 5)(t + 3)$
 $\frac{1}{-3} + \frac{1}{4} + \frac{1}{5}$
 $y_{max} = 16$ when $x^2 = 1$
 $y_{max} = 16$

10. Let X be the set of all five digit numbers formed using 1,2,2,2,4,4,0. For example, 22240 is in X while 02244 and 44422 are not in X. Suppose that each element of X has an equal chance of being chosen. Let p be the conditional probability that an element chosen at random is a multiple of 20 given that it is a multiple of 5. Then the value of 38p is equal to

Ans. (31)

Sol. No. of elements in X which are multiple of 5

$$\begin{array}{c} 0 \rightarrow \frac{|4|}{|3|} = 4 \\ \hline \\ 1,2,2,2 & \text{fixed} \end{array} \rightarrow \frac{|4|}{|2|} = 12 \\ \hline \\ 1,4,2,2 & \text{fixed} \end{array} \rightarrow \frac{|4|}{|3|} = 4 \\ \hline \\ 1,4,2,2 & \text{fixed} \end{array} \rightarrow \frac{|4|}{|3|} = 4 \\ \hline \\ 1,2,2,2 & \text{fixed} \end{array} \rightarrow \frac{|4|}{|2||2|} = 6 \\ \hline \\ 1,2,4,4 & \text{fixed} \end{array} \rightarrow \frac{|4|}{|2|} = 12 \\ \hline \end{array}$$

Among these 38 elements, let us calculate when element is not divisible by 20

$$- \begin{array}{c} 1 & 0 \rightarrow \frac{3}{\boxed{3}} = 1 \\ - \begin{array}{c} 2,2,2 & \text{fixed} \end{array} \\ - \begin{array}{c} 2,2,2 & \text{fixed} \end{array} \rightarrow \frac{3}{\boxed{2}} = 3 \\ - \begin{array}{c} 2,2,4 & \text{fixed} \end{array} \end{array} \right\} \text{Total} = 7 \\ - \begin{array}{c} 2,2,4 & \text{fixed} \end{array} \rightarrow \frac{3}{\boxed{2}} = 3 \\ - \begin{array}{c} 2,2,4 & \text{fixed} \end{array} \right\} \\ \therefore p = \begin{array}{c} 38 - 7 \\ - \begin{array}{c} 38 - 7 \\ - \end{array} \end{array} \therefore 38p = 31 \end{array}$$

11. Let $A_1, A_2, A_3, \dots, A_8$ be the vertices of a regular octagon that lie on a circle of radius 2. Let P be a point on the circle and let PA_i denote the distance between the points P and A_i for $i = 1, 2, \dots, 8$. If P varies over the circle, then the maximum value of the product $PA_1 \cdot PA_2, \dots, PA_8$, is

Ans. (512)

$$\frac{PA_1}{2} = \frac{\sin\theta}{\sin\left(90^\circ - \frac{\theta}{2}\right)} = 2\sin\frac{\theta}{2}$$

$$PA_1 = 4\sin\left(\frac{\theta}{2}\right) = x_1(\text{say})$$

$$PA_8 = 4\sin\left(\frac{\pi}{8} + \frac{\theta}{2}\right) = x_8$$

$$PA_7 = 4\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = x_7$$

$$PA_6 = 4\sin\left(\frac{3\pi}{8} + \frac{\theta}{2}\right) = x_6$$

Similarly

$$PA_{2} = 4\sin\left(\frac{\phi}{2}\right) = x_{2}$$

$$PA_{3} = 4\sin\left(\frac{\pi}{8} + \frac{\phi}{2}\right) = x_{3}$$

$$PA_{4} = 4\sin\left(\frac{\pi}{4} + \frac{\phi}{2}\right) = x_{4}$$

$$PA_{5} = 4\sin\left(\frac{3\pi}{8} + \frac{\phi}{2}\right) = x_{5}$$
Let
$$\prod_{i=1}^{8} PA_{i} = \prod_{i=1}^{8} x_{i} = E$$

$$\Rightarrow E_{1} = 4^{8}\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{3\pi}{8} + \frac{\phi}{2}\right).\sin\left(\frac{\pi}{8} + \frac{\theta}{2}\right)\sin\left(\frac{\pi}{4} + \frac{\phi}{2}\right)$$

$$\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\sin\left(\frac{\pi}{8} + \frac{\phi}{2}\right).\sin\left(\frac{3\pi}{8} + \frac{\theta}{2}\right)\sin\left(\frac{\phi}{2}\right)$$

$$= 4^{8}\left\{\sin\frac{\theta}{2}.\cos\frac{\theta}{2}.\sin\left(\frac{\pi}{8} + \frac{\theta}{2}\right)\cos\left(\frac{\pi}{8} + \frac{\theta}{2}\right).\sin\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\cos\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\sin\left(\frac{3\pi}{8} + \frac{\theta}{2}\right)\cos\left(\frac{3\pi}{8} + \frac{\theta}{2}\right)\right\}$$

$$= 4^{8} \left\{ \frac{\sin\theta\sin\left(\frac{\pi}{4} + \theta\right)\sin\left(\frac{\pi}{4} + \theta\right)\sin\left(\frac{3\pi}{4} + \theta\right)}{2^{4}} \right\}$$
$$= 4^{6} \left\{ \sin\theta\cos\theta\sin\left(\frac{\pi}{4} + \theta\right)\cos\left(\frac{\pi}{4} + \theta\right) \right\}$$
$$= 4^{6} \left\{ \frac{\sin2\theta\sin\left(\frac{\pi}{2} + 2\theta\right)}{4} \right\}$$
$$= 4^{5} \frac{\sin(4\theta)}{2} = 2^{9} \sin 4\theta$$

E is maximum when $\sin 4\theta = 1 \Rightarrow \theta = \frac{\pi}{8}$

$$E_{max} = 2^9 = 512$$

12. Let $R = \left\{ \begin{pmatrix} a & b & b \\ c & 2 & d \\ 0 & 5 & 0 \end{pmatrix} : a, b, c, d \in \{0, 3, 5, 7, 11, 13, 17, 19\} \right\}$. Then the number of invertible matrices in R is

Ans. (3780)

```
Sol. Let us calculate when |\mathbf{R}| = 0

Case-I ad = bc = 0

Now ad = 0

\Rightarrow Total – (When none of a & d is 0)

= 8^2 - 1 = 15 ways

Similarly bc = 0 \Rightarrow 15 ways

\therefore 15 \times 15 = 225 ways of ad = bc = 0

Case-II ad = bc \neq 0

either a = d = b = c OR a \neq d, b \neq d but ad = bc

^7C_1 = 7 ways ^7C_2 \times 2 \times 2 = 84 ways

Total 91 ways

\therefore |\mathbf{R}| = 0 in 225 + 91 = 316 ways

|\mathbf{R}| \neq 0 in 8^4 - 316 = 3780

12
```

JEE(Advanced) 2023/Paper-2/Held on Sunday 04th June, 2023

<u> *Saral</u>

13. Let C_1 be the circle of radius 1 with center at the origin. Let C_2 be the circle of radius r with center at the point A = (4,1), where 1 < r < 3. Two distinct common tangents PQ and ST of C_1 and C_2 are drawn. The tangent PQ touches C_1 at P and C_2 at Q. The tangent ST touches C_1 at S and C_2 at T. Mid points of the line segments PQ and ST are joined to form a line which meets the x-axis at a point B. If $AB = \sqrt{5}$, then the value of r^2 is

Ans. (2)

Let $C_2 (x-4)^2 + (y-1)^2 = r^2$

radical axis $8x + 2y - 17 = 1 - r^2$

$$8x + 2y = 18 - r^2$$

$$B\left(\frac{18-r^2}{8},0\right) A(4,1)$$

$$AB = \sqrt{5}$$

$$\sqrt{\left(\frac{18-r^2}{8}-4\right)^2+1} = \sqrt{5}$$

$$r^2 = 2$$

 \Rightarrow n = sin α + cos α

Saral

SECTION-4 : (Maximum Marks : 12)

- This section contains **TWO (02)** paragraphs.
- Based on each paragraph, there are **TWO (02)** questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;
 Zero Marks : 0 In all other cases.

PARAGRAPH "I"

Consider on obtuse angled triangle ABC in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)
14. Let a be the area of the triangle ABC. Then the value of (64a)² is

Ans. (1008.00)

Sol.

$$\Rightarrow n = 2\cos 2\alpha \qquad \dots(3)$$

$$\Rightarrow 2\cos 2\alpha = \sin \alpha + \cos \alpha$$

$$\Rightarrow 2(\cos \alpha - \sin \alpha) = 1$$

$$\Rightarrow \sin 2\alpha = \frac{3}{4}$$

Then, $a = \frac{1}{2} \cdot n \cdot (n + d) \cdot \sin \alpha = \frac{1}{2} \cdot 2\cos 2\alpha \cdot 2\cos \alpha \cdot \sin \alpha$

$$= \sin 2\alpha \cdot \cos 2\alpha$$

$$= \frac{3}{4} \times \frac{\sqrt{7}}{4} = \frac{3\sqrt{7}}{16}$$

$$(64a)^2 = \left(64 \times \frac{3\sqrt{7}}{16} \right)^2 = 16 \times 9 \times 7 = 1008$$

PARAGRAPH "I"

Consider on obtuse angled triangle ABC in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

15. Then the inradius of the triangle ABC is

Ans. (0.25)

Sol. From above equation in Ques. 14

$$r = \frac{\Delta}{s} = \frac{1}{2} \frac{n(n+d)\sin\alpha}{\left(\frac{3n}{2}\right)}$$
$$= \frac{(n+d).\sin\alpha}{3}$$
$$= \frac{2\cos\alpha.\sin\alpha}{3} \quad (\text{from (2)})$$
$$r = \frac{\sin 2\alpha}{3} = \frac{1}{4}$$

PARAGRAPH "II"

Consider the 6×6 square in the figure. Let A_1, A_2, \dots, A_{49} be the points of intersections (dots in the picture) in some order. We say that A_i and A_j are friends if they are adjacent along a row or along a column. Assume that each point A_i has an equal chance of being chosen.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

16. Let p_i be the probability that a randomly chosen point has *i* many friends, i = 0,1,2,3,4. Let *X* be a random variable such that for i = 0,1,2,3,4, the probability $P(X = i) = p_i$. Then the value of 7E(X) is

Ans. (24.00)

Sol.	\Box			
	\Box			

 P_i = Probability that randomly

selected points has friends

 $P_0 = 0$ (0 friends)

 $P_1 = 0$ (exactly 1 friends)

$$P_2 = \frac{{}^4C_1}{{}^{49}C_1} = \frac{4}{9}$$
 (exactly 2 friends)

$$P_3 = \frac{{}^{20}C_1}{{}^{49}C_1} = \frac{20}{49}$$
 (exactly 3 friends)

$$P_4 = \frac{{}^{25}C_1}{{}^{49}C_1} = \frac{25}{49}$$
 (exactly 4 friends)

x
 0
 1
 2
 3
 4

 P(x)
 0
 0

$$\frac{4}{49}$$
 $\frac{20}{49}$
 $\frac{25}{49}$

Mean = E(x) =
$$\sum x_i P_i = 0 + 0 + \frac{8}{49} + \frac{60}{49} + \frac{100}{49} = \frac{168}{49}$$

7(E(x)) = $\frac{168}{49} \times 7 = 24$

PARAGRAPH "II"

Consider the 6×6 square in the figure. Let $A_1, A_2, ..., A_{49}$ be the points of intersections (dots in the picture) in some order. We say that A_i and A_j are friends if they are adjacent along a row or along a column. Assume that each point A_i has an equal chance of being chosen.

•	$ \rightarrow $	$ \rightarrow $	-	
Ι				

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

17. Two distinct points are chosen randomly out of the points $A_1, A_2, ..., A_{49}$. Let *p* be the probability that they are friends. Then the value of 7*p* is

Ans. (0.50)

Sol. Total number of ways of selecting 2 persons = ${}^{49}C_2$

Number of ways in which 2 friends are selected = $6 \times 7 \times 2 = 84$

$$7\mathbf{P} = \frac{84 \times 2}{49 \times 48} \times 7 = \frac{1}{2}$$