FINALJEE(Advanced) EXAMINATION - 2019

(Held On Monday $27^{\text {th }}$ MAY, 2019)

PAPER-1

TEST PAPER WTH ANSWER \& SOLUIION

PART-3 : MATHEMATICS

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct option is chosen.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered)
Negative Marks : -1 In all other cases

1. Let $\mathrm{M}=\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]=\alpha \mathrm{I}+\beta \mathrm{M}^{-1}$,
where $\alpha=\alpha(\theta)$ and $\beta=\beta(\theta)$ are real number, and I is the 2×2 identity matrix. If
α^{*} is the minimum of the set $\{\alpha(\theta): \theta \in[0,2 \pi)\}$ and
β^{*} is the minimum of the set $\{\beta(\theta): \theta \in[0,2 \pi)\}$,
then the value of $\alpha^{*}+\beta^{*}$ is
(1) $-\frac{37}{16}$
(2) $-\frac{29}{16}$
(3) $-\frac{31}{16}$
(4) $-\frac{17}{16}$

Ans. (2)
Sol. Given $\mathrm{M}=\alpha \mathrm{I}+\beta \mathrm{M}^{-1}$
$\Rightarrow \mathrm{M}^{2}-\alpha \mathrm{M}-\beta \mathrm{I}=\mathrm{O}$
By putting values of M and M^{2}, we get
$\alpha(\theta)=1-2 \sin ^{2} \theta \cos ^{2} \theta=1-\frac{\sin ^{2} 2 \theta}{2} \geq \frac{1}{2}$
Also, $\beta(\theta)=-\left(\sin ^{4} \theta \cos ^{4} \theta+\left(1+\cos ^{2} \theta\right)\left(1+\sin ^{2} \theta\right)\right)$
$=-\left(\sin ^{4} \theta \cos ^{4} \theta+1+\cos ^{2} \theta+\sin ^{2} \theta+\sin ^{2} \theta \cos ^{2} \theta\right)$
$=-\left(\mathrm{t}^{2}+\mathrm{t}+2\right), \mathrm{t}=\frac{\sin ^{2} 2 \theta}{4} \in\left[0, \frac{1}{4}\right]$
$\Rightarrow \quad \beta(\theta) \geq-\frac{37}{16}$
2. A line $y=m x+1$ intersects the circle $(x-3)^{2}+(y+2)^{2}=25$ at the points P and Q. If the midpoint of the line segment PQ has x -coordinate $-\frac{3}{5}$, then which one of the following options is correct?
(1) $6 \leq m<8$
(2) $2 \leq m<4$
(3) $4 \leq m<6$
(4) $-3 \leq m<-1$

Ans. (2)

Sol.

$$
\mathrm{R} \equiv\left(-\frac{3}{5}, \frac{-3 \mathrm{~m}}{5}+1\right)
$$

So, $m\left(\frac{-\frac{3 m}{5}+3}{-\frac{3}{5}-3}\right)=-1$
$\Rightarrow \mathrm{m}^{2}-5 \mathrm{~m}+6=0$
$\Rightarrow \mathrm{m}=2,3$
3. Let S be the set of all complex numbers z satisfying $|z-2+i| \geq \sqrt{5}$. If the complex number z_{0} is such that $\frac{1}{\left|z_{0}-1\right|}$ is the maximum of the set $\left\{\frac{1}{|z-1|}: z \in S\right\}$, then the principal argument of $\frac{4-z_{0}-\bar{z}_{0}}{z_{0}-\bar{z}_{0}+2 \mathrm{i}}$ is
(1) $\frac{\pi}{4}$
(2) $-\frac{\pi}{2}$
(3) $\frac{3 \pi}{4}$
(4) $\frac{\pi}{2}$

Ans. (2)
Sol. $\quad \arg \left(\frac{4-\left(\mathrm{z}_{0}-\overline{\mathrm{z}}_{0}\right)}{\left(\mathrm{z}_{0}-\overline{\mathrm{z}}_{0}\right)+\mathrm{zi}}\right)$

$$
=\arg \left(\frac{4-2 \operatorname{Re} \mathrm{z}_{0}}{2 \mathrm{im} \mathrm{z}_{0}+2 \mathrm{i}}\right)=\arg \left(\frac{2-\operatorname{Re} \mathrm{z}_{0}}{\left(1+\operatorname{Im} \mathrm{z}_{0}\right) \mathrm{i}}\right)
$$

$$
=\arg \left(-\left(\frac{2-\operatorname{Re} z_{0}}{1+\operatorname{Im} \mathrm{z}_{0}}\right) \mathrm{i}\right)
$$

$$
=\arg (-\mathrm{ki}) ; \mathrm{k}>0 \quad\left({\text { as } \operatorname{Rez}_{0}}^{2} 2 \& \operatorname{Imz}_{0}>0\right)
$$

$$
=-\frac{\pi}{2}
$$

4. The area of the region $\left\{(x, y): x y \leq 8,1 \leq y \leq x^{2}\right\}$ is
(1) $8 \log _{\mathrm{e}} 2-\frac{14}{3}$
(2) $16 \log _{\mathrm{e}} 2-\frac{14}{3}$
(3) $16 \log _{e} 2-6$
(4) $8 \log _{e} 2-\frac{7}{3}$

Ans. (2)

Sol.

For intersection, $\frac{8}{y}=\sqrt{y} \Rightarrow y=4$
Hence, required area $=\int_{1}^{4}\left(\frac{8}{y}-\sqrt{y}\right) d y$

$$
=\left[8 \ln y-\frac{2}{3} y^{3 / 2}\right]_{1}^{4}=16 \ln 2-\frac{14}{3}
$$

Remark : The question should contain the phrase "area of the bounded region in the first quadrant". Because, in the $2^{\text {nd }}$ quadrant, the region above the line $y=1$ and below $y=x^{2}$, satisfies the region, which is unbounded.

SECTION-2 : (Maximum Marks: 32)

- This section contains EIGHT (08) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s)
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If only (all) the correct option(s) is (are) chosen.
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : -1 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks, and choosing any other combination of options will get -1 mark.

1. There are three bags B_{1}, B_{2} and B_{3}. The bag B_{1} contains 5 red and 5 green balls, B_{2} contains 3 red and 5 green balls, and B_{3} contains 5 red and 3 green balls, Bags B_{1}, B_{2} and B_{3} have probabilities $\frac{3}{10}, \frac{3}{10}$ and $\frac{4}{10}$ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct?
(1) Probability that the selected bag is B_{3} and the chosen ball is green equals $\frac{3}{10}$
(2) Probability that the chosen ball is green equals $\frac{39}{80}$
(3) Probability that the chosen ball is green, given that the selected bag is B_{3}, equals $\frac{3}{8}$
(4) Probability that the selected bag is B_{3}, given that the chosen balls is green, equals $\frac{5}{13}$

Ans. (2,3)

Sol.

Ball	Balls composition	$\mathrm{P}\left(\mathrm{B}_{\mathrm{i}}\right)$
B_{1}	$5 \mathrm{R}+5 \mathrm{G}$	$\frac{3}{10}$
$\mathrm{~B}_{2}$	$3 \mathrm{R}+5 \mathrm{G}$	$\frac{3}{10}$
$\mathrm{~B}_{3}$	$5 \mathrm{R}+3 \mathrm{G}$	$\frac{4}{10}$

(1) $\quad \mathrm{P}\left(\mathrm{B}_{3} \cap \mathrm{G}\right)=\mathrm{P}\left(\frac{\mathrm{G}_{1}}{\mathrm{~B}_{3}}\right) \mathrm{P}\left(\mathrm{B}_{3}\right)$
$=\frac{3}{8} \times \frac{4}{10}=\frac{3}{20}$
(2) $\quad \mathrm{P}(\mathrm{G})=\mathrm{P}\left(\frac{\mathrm{G}_{1}}{\mathrm{~B}_{1}}\right) \mathrm{P}\left(\mathrm{B}_{1}\right)+\mathrm{P}\left(\frac{\mathrm{G}}{\mathrm{B}_{2}}\right) \mathrm{P}\left(\mathrm{B}_{2}\right)+\mathrm{P}\left(\frac{\mathrm{G}}{\mathrm{B}_{3}}\right) \mathrm{P}\left(\mathrm{B}_{3}\right)$
$=\frac{3}{20}+\frac{3}{16}+\frac{3}{20}=\frac{39}{80}$
(3) $P\left(\frac{G}{B_{3}}\right)=\frac{3}{8}$
(4)

$$
\mathrm{P}\left(\frac{\mathrm{~B}_{3}}{\mathrm{G}}\right)=\frac{\mathrm{P}\left(\mathrm{G} \cap \mathrm{~B}_{3}\right)}{\mathrm{P}(\mathrm{G})}=\frac{3 / 20}{39 / 80}=\frac{4}{13}
$$

2. Define the collections $\left\{E_{1}, E_{2}, E_{3}, \ldots ..\right\}$ of ellipses and $\left\{R_{1}, R_{2}, R_{3}, \ldots ..\right\}$ of rectangles as follows:
$\mathrm{E}_{1}: \frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1 ;$
R_{1} : rectangle of largest area, with sides parallel to the axes, inscribed in E_{1};
E_{n} : ellipse $\frac{x^{2}}{a_{n}^{2}}+\frac{y^{2}}{b_{n}^{2}}=1$ of largest area inscribed in $R_{n-1}, n>1$;
R_{n} : rectangle of largest area, with sides parallel to the axes, inscribed in $\mathrm{E}_{\mathrm{n}}, \mathrm{n}>1$.
Then which of the following options is/are correct?
(1) The eccentricities of E_{18} and E_{19} are NOT equal
(2) The distance of a focus from the centre in E_{9} is $\frac{\sqrt{5}}{32}$
(3) The length of latus rectum of E_{9} is $\frac{1}{6}$
(4) $\sum_{n=1}^{N}\left(\right.$ area of $\left.R_{n}\right)<24$, for each positive integer N

Ans. (3,4)

Sol.

Area of $\mathrm{R}_{1}=3 \sin 2 \theta$; for this to be maximum
$\Rightarrow \theta=\frac{\pi}{4} \Rightarrow\left(\frac{3}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$
Hence for subsequent areas of rectangles R_{n} to be maximum the coordinates will be in GP with common ratio $r=\frac{1}{\sqrt{2}} \Rightarrow a_{n}=\frac{3}{(\sqrt{2})^{n-1}} ; b_{n}=\frac{3}{(\sqrt{2})^{\mathrm{n}-1}}$

Eccentricity of all the ellipses will be same
Distance of a focus from the centre in $E_{9}=a_{9} e_{9}=\sqrt{a_{9}^{2}-b_{9}^{2}}=\frac{\sqrt{5}}{16}$
Length of latus rectum of $E_{9}=\frac{2 b_{9}^{2}}{a_{9}}=\frac{1}{6}$
$\because \sum_{\mathrm{n}=1}^{\infty}$ Area of $\mathrm{R}_{\mathrm{n}}=12+\frac{12}{2}+\frac{12}{4}+\ldots . . \infty=24$
$\Rightarrow \sum_{\mathrm{n}=1}^{\mathrm{N}}\left(\right.$ area of $\left.\mathrm{R}_{\mathrm{n}}\right)<24$, for each positive integer N

e'Saral

3. Let $\mathrm{M}=\left[\begin{array}{lll}0 & 1 & \mathrm{a} \\ 1 & 2 & 3 \\ 3 & \mathrm{~b} & 1\end{array}\right]$ and $\operatorname{adjM}=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$ where a and b are real numbers. Which of the following options is/are correct ?
(1) $a+b=3$
(2) $\operatorname{det}\left(\operatorname{adjM} M^{2}\right)=81$
(3) $(\operatorname{adjM})^{-1}+\operatorname{adjM}^{-1}=-M$
(4) If $M\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $\alpha-\beta+\gamma=3$

Ans. $(1,3,4)$
Sol. $(\operatorname{adjM})_{11}=2-3 b=-1 \Rightarrow b=1$
Also, $(\operatorname{adjM})_{22}=-3 \mathrm{a}=-6 \Rightarrow \mathrm{a}=2$
Now, $\operatorname{det} \mathrm{M}=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right|=-2$
$\Rightarrow \operatorname{det}\left(\operatorname{adj} \mathrm{M}^{2}\right)=\left(\operatorname{det}^{2}\right)^{2}$
$=(\operatorname{det} \mathrm{M})^{4}=16$
Also $\mathrm{M}^{-1}=\frac{\operatorname{adjM}}{\operatorname{det} \mathrm{M}}$
$\Rightarrow \operatorname{adjM}=-2 \mathrm{M}^{-1}$
$\Rightarrow(\operatorname{adj} \mathrm{M})^{-1}=\frac{-1}{2} \mathrm{M}$
And, $\operatorname{adj}\left(\mathrm{M}^{-1}\right)=\left(\mathrm{M}^{-1}\right)^{-1} \operatorname{det}\left(\mathrm{M}^{-1}\right)$

$$
=\frac{1}{\operatorname{det} \mathrm{M}} \mathrm{M}=\frac{-\mathrm{M}}{2}
$$

Hence, $(\operatorname{adj} M)^{-1}+\operatorname{adj}\left(\mathrm{M}^{-1}\right)=-\mathrm{M}$
Further, $\quad \mathrm{MX}=\mathrm{b}$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{X}=\mathrm{M}^{-1} \mathrm{~b} & =\frac{-\operatorname{adjM}}{2} \mathrm{~b} \\
& =\frac{-1}{2}\left[\begin{array}{ccc}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& =\frac{-1}{2}\left[\begin{array}{c}
-2 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
\Rightarrow(\alpha, \beta, \gamma) & =(1,-1,1)
\end{aligned}
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{rc}
x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+3 x+1, & x<0 ; \\
x^{2}-x+1, & 0 \leq x<1 ; \\
\frac{2}{3} x^{3}-4 x^{2}+7 x-\frac{8}{3}, & 1 \leq x<3 ; \\
(x-2) \log _{e}(x-2)-x+\frac{10}{3}, & x \geq 3
\end{array}\right.
$$

Then which of the following options is/are correct?
(1) f^{\prime} has a local maximum at $x=1$
(2) f is onto
(3) f is increasing on $(-\infty, 0)$
(4) f^{\prime} is NOT differentiable at $\mathrm{x}=1$

Ans. (1,2,4)

Sol. $f(x)=\left\{\begin{array}{rr}\frac{2}{3} x^{3}-4 x^{2}+7 x-\frac{8}{3}, & 1 \leq x<3 ; \\ (x-2) \log _{e}(x-2)-x+\frac{10}{3}, & x \geq 3\end{array}\right.$
for $\mathrm{x}<0, \quad f(\mathrm{x})$ is continuous
$\& \lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow 0^{-}} f(x)=1$
Hence, $(-\infty, 1) \subset$ Range of $f(x)$ in $(-\infty, 0)$
$f^{\prime}(x)=5(x+1)^{4}-2$, which changes sign in $(-\infty, 0)$
$\Rightarrow \quad f(\mathrm{x})$ is non-monotonic in $(-\infty, 0)$
For $\mathrm{x} \geq 3, f(\mathrm{x})$ is again continuous and $\lim _{\mathrm{x} \rightarrow \infty} f(\mathrm{x})=\infty$ and $f(3)=\frac{1}{3}$
$\Rightarrow \quad\left[\frac{1}{3}, \infty\right) \subset$ Range of $f(\mathrm{x})$ in $[3, \infty)$
Hence, range of $f(\mathrm{x})$ is \mathbb{R}
$f^{\prime}(x)=\left\{\begin{array}{rr}2 x-1, & 0 \leq x<1 \\ 2 x^{2}-8 x+7, & 1 \leq x<3\end{array}\right.$

Hence f^{\prime} has a local maximum at $\mathrm{x}=1$ and f^{\prime} is NOT differentiable at $\mathrm{x}=1$.
5. Let α and β be the roots of $x^{2}-x-1=0$, with $\alpha>\beta$. For all positive integers n, define

$$
\begin{aligned}
& a_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n \geq 1 \\
& b_{1}=1 \text { and } b_{n}=a_{n-1}+a_{n+1}, n \geq 2 .
\end{aligned}
$$

Then which of the following options is/are correct?
(1) $a_{1}+a_{2}+a_{3}+\ldots . .+a_{n}=a_{n+2}-1$ for all $n \geq 1$
(2) $\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{a}_{\mathrm{n}}}{10^{\mathrm{n}}}=\frac{10}{89}$
(3) $\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{b}_{\mathrm{n}}}{10^{\mathrm{n}}}=\frac{8}{89}$
(4) $\mathrm{b}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$ for all $\mathrm{n} \geq 1$

Ans. (1,2,4)
Sol. α, β are roots of $x^{2}-x-1$
$a_{r+2}-a_{r}=\frac{\left(\alpha^{\mathrm{r}+2}-\beta^{\mathrm{r}+2}\right)-\left(\alpha^{\mathrm{r}}-\beta^{\mathrm{r}}\right)}{\alpha-\beta}=\frac{\left(\alpha^{\mathrm{r}+2}-\alpha^{\mathrm{r}}\right)-\left(\beta^{\mathrm{r}+2}-\beta^{\mathrm{r}}\right)}{\alpha-\beta}$
$=\frac{\alpha^{\mathrm{r}}\left(\alpha^{2}-1\right)-\beta^{\mathrm{r}}\left(\beta^{2}-1\right)}{\alpha-\beta}=\frac{\alpha^{\mathrm{r}} \alpha-\beta^{\mathrm{r}} \beta}{\alpha-\beta}=\frac{\alpha^{\mathrm{r}+1}-\beta^{\mathrm{r}+1}}{\alpha-\beta}=\mathrm{a}_{\mathrm{r}+1}$
$\Rightarrow \mathrm{a}_{\mathrm{r}+2}-\mathrm{a}_{\mathrm{r}+1}=\mathrm{a}_{\mathrm{r}}$
$\Rightarrow \sum_{r=1}^{n} a_{r}=a_{n+2}-a_{2}=a_{n+2}-\frac{\alpha^{2}-\beta^{2}}{\alpha-\beta}=a_{n+2}-(\alpha+\beta)=a_{n+2}-1$
Now $\sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}}=\frac{\sum_{n=1}^{\infty}\left(\frac{\alpha}{10}\right)^{n}-\sum_{n=1}^{\infty}\left(\frac{\beta}{10}\right)^{n}}{\alpha-\beta}$
$=\frac{\frac{\frac{\alpha}{10}}{1-\frac{\alpha}{10}}-\frac{\frac{\beta}{10}}{1-\frac{\beta}{10}}}{\alpha-\beta}=\frac{\frac{\alpha}{10-\alpha}-\frac{\beta}{10-\beta}}{(\alpha-\beta)}=\frac{10}{(10-\alpha)(10-\beta)}=\frac{10}{89}$
$\sum_{n=1}^{\infty} \frac{b_{n}}{10^{n}}=\sum_{n=1}^{\infty} \frac{a_{n-1}+a_{n+1}}{10^{n}}=\frac{\frac{\alpha}{10}}{1-\frac{\alpha}{10}}+\frac{\frac{\beta}{10}}{1-\frac{\beta}{10}}=\frac{12}{89}$
Further, $b_{n}=a_{n-1}+a_{n+1}$
$=\frac{\left(\alpha^{n-1}-\beta^{n-1}\right)+\left(\alpha^{n+1}-\beta^{n+1}\right)}{\alpha-\beta}$
$\left(\right.$ as $\left.\alpha \beta=-1 \Rightarrow \alpha^{\mathrm{n}-1}=-\alpha^{\mathrm{n}} \beta \& \beta^{\mathrm{n}-1}=-\alpha \beta^{\mathrm{n}}\right)$
$=\frac{\alpha^{n}(\alpha-\beta)+(\alpha-\beta) \beta^{n}}{\alpha-\beta}=\alpha^{n}+\beta^{n}$
6. Let Γ denote a curve $y=y(x)$ which is in the first quadrant and let the point $(1,0)$ lie on it. Let the tangent to Γ at a point P intersect the y-axis at Y_{P}. If $P Y_{P}$ has length 1 for each point P on Γ, then which of the following options is/are correct?
(1) $y=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)-\sqrt{1-x^{2}}$
(2) $x y^{\prime}-\sqrt{1-x^{2}}=0$
(3) $y=-\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\sqrt{1-x^{2}}$
(4) $x y^{\prime}+\sqrt{1-x^{2}}=0$

Ans. (1,4)

Sol.

$$
Y-y=y^{\prime}(X-x)
$$

So, $\quad Y_{P}=\left(0, y-x y^{\prime}\right)$
So, $\quad x^{2}+\left(x y^{\prime}\right)^{2}=1 \Rightarrow \frac{d y}{d x}=-\sqrt{\frac{1-x^{2}}{x^{2}}}$
[$\frac{\mathrm{dy}}{\mathrm{dx}}$ can not be positive i.e. $f(\mathrm{x})$ can not be increasing in first quadrant, for $\mathrm{x} \in(0,1)$]
Hence, $\int d y=-\int \frac{\sqrt{1-x^{2}}}{x} d x$
$\Rightarrow y=-\int \frac{\cos ^{2} \theta d \theta}{\sin \theta} ;$ put $x=\sin \theta$
$\Rightarrow \mathrm{y}=-\int \operatorname{cosec} \theta \mathrm{d} \theta+\int \sin \theta \mathrm{d} \theta$
$\Rightarrow \mathrm{y}=\ln (\operatorname{cosec} \theta+\cot \theta)-\cos \theta+\mathrm{C}$
$\Rightarrow y=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)-\sqrt{1-x^{2}}+C$
$\Rightarrow y=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)-\sqrt{1-x^{2}} \quad($ as $y(1)=0)$

光Saral

7．In a non－right－angled triangle $\triangle P Q R$ ，let p, q ，r denote the lengths of the sides opposite to the angles at P, Q, R respectively．The median from R meets the side $P Q$ at S ，the perpendicular from P meets the side $Q R$ at E ，and $R S$ and $P E$ intersect at O ．If $p=\sqrt{3}, q=1$ ，and the radius of the circumcircle of the $\triangle P Q R$ equals 1 ，then which of the following options is／are correct？
（1）Area of $\Delta \mathrm{SOE}=\frac{\sqrt{3}}{12}$
（2）Radius of incircle of $\triangle \mathrm{PQR}=\frac{\sqrt{3}}{2}(2-\sqrt{3})$
（3）Length of RS $=\frac{\sqrt{7}}{2}$
（4）Length of $\mathrm{OE}=\frac{1}{6}$

Ans．（2，3，4）
Sol．$\quad \frac{\sin \mathrm{P}}{\sqrt{3}}=\frac{\sin \mathrm{Q}}{1}=\frac{1}{2 \mathrm{R}}=\frac{1}{2}$
$\Rightarrow \mathrm{P}=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$ and $\mathrm{Q}=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
Since $p>q \Rightarrow P>Q$

So，if $\mathrm{P}=\frac{\pi}{3}$ and $\mathrm{Q}=\frac{\pi}{6} \quad \Rightarrow \mathrm{R}=\frac{\pi}{2}$（not possible）

Hence， $\mathrm{P}=\frac{2 \pi}{3}$ and $\mathrm{Q}=\mathrm{R}=\frac{\pi}{6}$
$\mathrm{r}=\frac{\Delta}{\mathrm{s}}=\frac{\frac{1}{2}(1)(\sqrt{3})\left(\frac{1}{2}\right)}{\left(\frac{\sqrt{3}+2}{2}\right)}=\frac{\sqrt{3}}{2}(2-\sqrt{3})$
Now，area of $\Delta \mathrm{SEF}=\frac{1}{4}$ area of $\triangle \mathrm{PQR}$
\Rightarrow area of $\Delta \mathrm{SOE}=\frac{1}{3}$ area of $\Delta \mathrm{SEF}=\frac{1}{12}$ area of $\triangle \mathrm{PQR}=\frac{1}{12} \cdot \frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{48}$
$\operatorname{RS}=\frac{1}{2} \sqrt{2(3)+2(1)-1}=\frac{\sqrt{7}}{2}$
$\mathrm{OE}=\frac{1}{3} \mathrm{PE}=\frac{1}{3} \cdot \frac{1}{2} \sqrt{2(1)^{2}+2(1)^{2}-3}=\frac{1}{6}$

光Saral

8. Let L_{1} and L_{2} denotes the lines

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+\lambda(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}), \lambda \in \mathbb{R} \text { and } \\
& \overrightarrow{\mathrm{r}}=\mu(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}), \mu \in \mathbb{R}
\end{aligned}
$$

respectively. If L_{3} is a line which is perpendicular to both L_{1} and L_{2} and cuts both of them, then which of the following options describe(s) L_{3} ?
(1) $\overrightarrow{\mathrm{r}}=\frac{1}{3}(2 \hat{\mathrm{i}}+\hat{\mathrm{k}})+\mathrm{t}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}), \mathrm{t} \in \mathbb{R}$
(2) $\overrightarrow{\mathrm{r}}=\frac{2}{9}(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\mathrm{t}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}), \mathrm{t} \in \mathbb{R}$
(3) $\overrightarrow{\mathrm{r}}=\mathrm{t}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}), \mathrm{t} \in \mathbb{R}$
(4) $\overrightarrow{\mathrm{r}}=\frac{2}{9}(4 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mathrm{t}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}), \mathrm{t} \in \mathbb{R}$

Ans. (1,2,4)
Sol. Points on L_{1} and L_{2} are respectively $A(1-\lambda, 2 \lambda, 2 \lambda)$ and $B(2 \mu,-\mu, 2 \mu)$
So, $\overrightarrow{\mathrm{AB}}=(2 \mu+\lambda-1) \hat{\mathrm{i}}+(-\mu-2 \lambda) \hat{\mathrm{j}}+(2 \mu-2 \lambda) \hat{\mathrm{k}}$
and vector along their shortest distance $=2 \hat{i}+2 \hat{j}-\hat{k}$.
Hence, $\frac{2 \mu+\lambda-1}{2}=\frac{-\mu-2 \lambda}{2}=\frac{2 \mu-2 \lambda}{-1}$
$\Rightarrow \lambda=\frac{1}{9} \& \mu=\frac{2}{9}$
Hence, $\mathrm{A} \equiv\left(\frac{8}{9}, \frac{2}{9}, \frac{2}{9}\right)$ and $\mathrm{B} \equiv\left(\frac{4}{9},-\frac{2}{9}, \frac{4}{9}\right)$
$\Rightarrow \quad$ Mid point of $\mathrm{AB} \equiv\left(\frac{2}{3}, 0, \frac{1}{3}\right)$

SECTION-3 : (Maximum Marks: 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to Two decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered.
Zero Marks : 0 In all other cases.

1．If

$$
\mathrm{I}=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4} \frac{\mathrm{dx}}{\left(1+\mathrm{e}^{\sin \mathrm{x}}\right)(2-\cos 2 \mathrm{x})}
$$

then $27 \mathrm{I}^{2}$ equals \qquad
Ans．（4．00）
Sol．$\quad 2 \mathrm{I}=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4}\left[\frac{1}{\left(1+\mathrm{e}^{\sin \mathrm{x}}\right)(2-\cos 2 \mathrm{x})}+\frac{1}{\left(1+\mathrm{e}^{-\sin \mathrm{x}}\right)(2-\cos 2 \mathrm{x})}\right] \mathrm{dx}$（using King＇s Rule）

$$
\Rightarrow \quad \mathrm{I}=\frac{1}{\pi} \int_{-\pi / 4}^{\pi / 4} \frac{\mathrm{dx}}{2-\cos 2 \mathrm{x}}
$$

$$
\Rightarrow \quad \mathrm{I}=\frac{2}{\pi} \int_{0}^{\pi / 4} \frac{\mathrm{dx}}{2-\cos 2 \mathrm{x}}=\frac{2}{\pi} \int_{0}^{\pi / 4} \frac{\sec ^{2} \mathrm{dxdx}}{1+3 \tan ^{2} \mathrm{x}}
$$

$$
=\frac{2}{\sqrt{3} \pi}\left[\tan ^{-1}(\sqrt{3} \tan x)\right]_{0}^{\pi / 4}=\frac{2}{3 \sqrt{3}}
$$

$$
\Rightarrow \quad 27 \mathrm{I}^{2}=27 \times \frac{4}{27}=4
$$

2．Let the point B be the reflection of the point $A(2,3)$ with respect to the line $8 x-6 y-23=0$ ．Let Γ_{A} and Γ_{B} be circles of radii 2 and 1 with centres A and B respectively．Let T be a common tangent to the circles Γ_{A} and Γ_{B} such that both the circles are on the same side of T ．If C is the point of intersection of T and the line passing through A and B ，then the length of the line segment AC is \qquad
Ans．（10．00）
Sol．Distance of point A from given line $=\frac{5}{2}$
$\frac{\mathrm{CA}}{\mathrm{CB}}=\frac{2}{1}$
$\Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{2}{1}$
$\Rightarrow \quad \mathrm{AC}=2 \times 5=10$

3. Let $\mathrm{AP}(\mathrm{a} ; \mathrm{d})$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $\mathrm{d}>0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\mathrm{AP}(\mathrm{a} ; \mathrm{d})$ then $\mathrm{a}+\mathrm{d}$ equals \qquad
Ans. (157.00)
Sol. We equate the general terms of three respective
A.P.'s as $1+3 \mathrm{a}=2+5 \mathrm{~b}=3+7 \mathrm{c}$
$\Rightarrow 3$ divides $1+2 \mathrm{~b}$ and 5 divides $1+2 \mathrm{c}$
$\Rightarrow \quad 1+2 \mathrm{c}=5,15,25$ etc.
So, first such terms are possible when $1+2 \mathrm{c}=15$ i.e. $\mathrm{c}=7$
Hence, first term $=\mathrm{a}=52$
$\mathrm{d}=\operatorname{lcm}(3,5,7)=105$
$\Rightarrow \mathrm{a}+\mathrm{d}=157$
4. Let S be the sample space of all 3×3 matrices with entries from the set $\{0,1\}$. Let the events E_{1} and E_{2} be given by

$$
\begin{aligned}
& E_{1}=\{A \in S: \operatorname{det} A=0\} \text { and } \\
& E_{2}=\{A \in S: \text { sum of entries of } A \text { is } 7\} .
\end{aligned}
$$

If a matrix is chosen at random from S, then the conditional probability $P\left(E_{1} \mid E_{2}\right)$ equals \qquad
Ans. (0.50)
Sol. $\mathrm{n}\left(\mathrm{E}_{2}\right)={ }^{9} \mathrm{C}_{2}$ (as exactly two cyphers are there)
Now, $\operatorname{det} \mathrm{A}=0$, when two cyphers are in the same column or same row
$\Rightarrow \mathrm{n}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=6 \times{ }^{3} \mathrm{C}_{2}$.
Hence, $\mathrm{P}\left(\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}\right)=\frac{\mathrm{n}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)}{\mathrm{n}\left(\mathrm{E}_{2}\right)}=\frac{18}{36}=\frac{1}{2}=0.50$
5. Three lines are given by

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=\lambda \hat{\mathrm{i}}, \lambda \in \mathbb{R} \\
& \overrightarrow{\mathrm{r}}=\mu(\hat{\mathrm{i}}+\hat{\mathrm{j}}), \mu \in \mathbb{R} \text { and } \\
& \overrightarrow{\mathrm{r}}=v(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}), v \in \mathbb{R} .
\end{aligned}
$$

Let the lines cut the plane $x+y+z=1$ at the points A, B and C respectively. If the area of the triangle ABC is Δ then the value of $(6 \Delta)^{2}$ equals \qquad
Ans. (0.75)

éSaral

Sol. $\mathrm{A}(1,0,0), \mathrm{B}\left(\frac{1}{2}, \frac{1}{2}, 0\right) \& \mathrm{C}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Hence, $\overrightarrow{\mathrm{AB}}=-\frac{1}{2} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}} \& \overrightarrow{\mathrm{AC}}=-\frac{2}{3} \hat{\mathrm{i}}+\frac{1}{3} \hat{\mathrm{j}}+\frac{1}{3} \hat{\mathrm{k}}$

So, $\Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\frac{1}{2} \sqrt{\frac{1}{2} \times \frac{2}{3}-\frac{1}{4}}$

$$
\begin{aligned}
& =\frac{1}{2 \times 2 \sqrt{3}} \\
\Rightarrow \quad & (6 \Delta)^{2}=\frac{3}{4}=0.75
\end{aligned}
$$

6. Let $\omega \neq 1$ be a cube root of unity. Then the minimum of the set

$$
\left\{\left|a+b \omega+c \omega^{2}\right|^{2}: a, b, c \text { distinct non-zero integers }\right\}
$$

equals \qquad
Ans. (3.00)
Sol. $\left|a+b \omega+c \omega^{2}\right|^{2}=\left(a+b \omega+c \omega^{2}\right)\left(\overline{a+b \omega+c \omega^{2}}\right)$

$$
\begin{aligned}
& =\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right) \\
& =a^{2}+b^{2}+c^{2}-a b-b c-c a \\
& =\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \\
& \geq \frac{1+1+4}{2}=3(\text { when } a=1, b=2, c=3)
\end{aligned}
$$

