JEE(Advanced) 2019/Paper-1

FINAL JEE (Advanced) EXAMINATION - 2019

(Held On Monday 27th MAY, 2019)

PAPER-1

TEST PAPER WITH ANSWER & SOLUTION

PART-3 : MATHEMATICS

SECTION-1 : (Maximum Marks : 12)

- This section contains **FOUR** (04) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct option is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered)

Negative Marks : -1 In all other cases

1. Let
$$\mathbf{M} = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha \mathbf{I} + \beta \mathbf{M}^{-1}$$
,

where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real number, and I is the 2 × 2 identity matrix. If

 α^* is the minimum of the set $\{\alpha(\theta) : \theta \in [0, 2\pi)\}$ and

***Saral** हैं, तो सब सरल है।

 β^* is the minimum of the set { $\beta(\theta) : \theta \in [0, 2\pi)$ },

then the value of $\alpha^* + \beta^*$ is

(1) $-\frac{37}{16}$ (2) $-\frac{29}{16}$ (3) $-\frac{31}{16}$ (4) $-\frac{17}{16}$

Ans. (2)

Sara

Sol. Given $M = \alpha I + \beta M^{-1}$

 $\Rightarrow M^2 - \alpha M - \beta I = O$

By putting values of M and M², we get

$$\begin{aligned} \alpha(\theta) &= 1 - 2\sin^2\theta \,\cos^2\theta \,= 1 - \frac{\sin^2 2\theta}{2} \ge \frac{1}{2} \\ \text{Also, } \beta(\theta) &= -(\sin^4\theta\cos^4\theta + (1 + \cos^2\theta)(1 + \sin^2\theta)) \\ &= -(\sin^4\theta\cos^4\theta + 1 + \cos^2\theta + \sin^2\theta + \sin^2\theta\cos^2\theta) \\ &= -(t^2 + t + 2), \ t = \frac{\sin^2 2\theta}{4} \in \left[0, \frac{1}{4}\right] \end{aligned}$$

$$\Rightarrow \quad \beta(\theta) \ge -\frac{37}{16}$$

2. A line y = mx + 1 intersects the circle $(x - 3)^2 + (y + 2)^2 = 25$ at the points P and Q. If the midpoint

of the line segment PQ has x-coordinate $-\frac{3}{5}$, then which one of the following options is correct ?

 $(1) \ 6 \le m < 8 \qquad (2) \ 2 \le m < 4 \qquad (3) \ 4 \le m < 6 \qquad (4) \ -3 \le m < -1$

Ans. (2)

3. Let S be the set of all complex numbers z satisfying $|z-2+i| \ge \sqrt{5}$. If the complex number z_0 is such that

$$\frac{1}{|z_0 - 1|} \text{ is the maximum of the set}\left\{\frac{1}{|z - 1|} : z \in S\right\}, \text{ then the principal argument of } \frac{4 - z_0 - \overline{z}_0}{z_0 - \overline{z}_0 + 2i} \text{ is }$$

ॐSaral हैं, तो सब सरल है।

(1)
$$\frac{\pi}{4}$$
 (2) $-\frac{\pi}{2}$ (3) $\frac{3\pi}{4}$ (4) $\frac{\pi}{2}$
Ans. (2)
Sol. $\arg\left(\frac{4-(z_0-\overline{z}_0)}{(z_0-\overline{z}_0)+zi}\right)$
 $=\arg\left(\frac{4-2\operatorname{Re} z_0}{2i\operatorname{Im} z_0+2i}\right) = \arg\left(\frac{2-\operatorname{Re} z_0}{(1+\operatorname{Im} z_0)i}\right)$
 $=\arg\left(-\left(\frac{2-\operatorname{Re} z_0}{1+\operatorname{Im} z_0}\right)i\right)$
 $=\arg(-ki)$; k > 0 (as $\operatorname{Re} z_0 < 2$ & $\operatorname{Im} z_0 > 0$)
 $=-\frac{\pi}{2}$

4. The area of the region $\{(x, y) : xy \le 8, 1 \le y \le x^2\}$ is

(1)
$$8\log_e 2 - \frac{14}{3}$$
 (2) $16\log_e 2 - \frac{14}{3}$ (3) $16\log_e 2 - 6$ (4) $8\log_e 2 - \frac{7}{3}$

Ans. (2)

For intersection, $\frac{8}{y} = \sqrt{y} \Rightarrow y = 4$

Hence, required area =
$$\int_{1}^{4} \left(\frac{8}{y} - \sqrt{y}\right) dy$$

$$= \left[8\ell ny - \frac{2}{3}y^{3/2} \right]_{1}^{4} = 16\ell n2 - \frac{14}{3}$$

Remark : The question should contain the phrase "area of the bounded region in the first quadrant". Because, in the 2^{nd} quadrant, the region above the line y = 1 and below $y = x^2$, satisfies the region, which is unbounded. **SECTION-2 : (Maximum Marks: 32)**

- SECTION-2 : (Maximum Mar
- This section contains **EIGHT** (08) questions.

=

- Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s)
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4	If only (all) the correct of	option(s) is (are) chosen.
-----------------	------------------------------	----------------------------

- *Partial Marks* : +3 If all the four options are correct but ONLY three options are chosen.
- *Partial Marks* : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.
- *Partial Marks* : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

***Saral** हैं, तो सब सरल

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
 - choosing ONLY (A), (B) and (D) will get +4 marks;
 - choosing ONLY (A) and (B) will get +2 marks;
 - choosing ONLY (A) and (D) will get +2 marks;
 - choosing ONLY (B) and (D) will get +2 marks;
 - choosing ONLY (A) will get +1 marks;
 - choosing ONLY (B) will get +1 marks;
 - choosing ONLY (D) will get +1 marks;
 - choosing no option (i.e. the question is unanswered) will get 0 marks, and
 - choosing any other combination of options will get -1 mark.

 There are three bags B₁, B₂ and B₃. The bag B₁ contains 5 red and 5 green balls, B₂ contains 3 red and 5 green balls, and B₃ contains 5 red and 3 green balls, Bags B₁, B₂ and B₃ have probabilities ³/₁₀, ³/₁₀ and ⁴/₁₀ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct ?
 (1) Probability that the selected bag is B₃ and the chosen ball is green equals ³/₁₀
 (2) Probability that the chosen ball is green equals ³⁹/₈₀
 (3) Probability that the chosen ball is green, given that the selected bag is B₃, equals ³/₈

(4) Probability that the selected bag is B_3 , given that the chosen balls is green, equals $\frac{5}{13}$ Ans. (2,3)

Sal	Ball Balls composition		$P(B_i)$
501.	B ₁	5R + 5G	$\frac{3}{10}$
	B ₂	3R + 5G	$\frac{3}{10}$
	B ₃	5R + 3G	$\frac{4}{10}$

(1)
$$P(B_3 \cap G) = P\left(\frac{G_1}{B_3}\right)P(B_3)$$

= $\frac{3}{8} \times \frac{4}{10} = \frac{3}{20}$
(2) $P(G) = P\left(\frac{G_1}{B_1}\right)P(B_1) + P\left(\frac{G}{B_2}\right)P(B_2) + P\left(\frac{G}{B_3}\right)$

$$=\frac{3}{20}+\frac{3}{16}+\frac{3}{20}=\frac{39}{80}$$

- $(3) \qquad P\left(\frac{G}{B_3}\right) = \frac{3}{8}$
- (4) $P\left(\frac{B_3}{G}\right) = \frac{P(G \cap B_3)}{P(G)} = \frac{3/20}{39/80} = \frac{4}{13}$

ॐSaral हैं, तो सब सरल हैं।

 $P(B_3)$

2. Define the collections $\{E_1, E_2, E_3, \dots\}$ of ellipses and $\{R_1, R_2, R_3, \dots\}$ of rectangles as follows :

$$E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1;$$

 \mathbf{R}_1 : rectangle of largest area, with sides parallel to the axes, inscribed in \mathbf{E}_1 ;

$$E_n$$
: ellipse $\frac{x^2}{a_n^2} + \frac{y^2}{b_n^2} = 1$ of largest area inscribed in R_{n-1} , $n > 1$;

 R_n : rectangle of largest area, with sides parallel to the axes, inscribed in E_n , n > 1.

- (1) The eccentricities of E_{18} and E_{19} are NOT equal
- (2) The distance of a focus from the centre in E_9 is $\frac{\sqrt{5}}{32}$
- (3) The length of latus rectum of E_9 is $\frac{1}{6}$
- (4) $\sum_{n=1}^{N} (\text{area of } R_n) < 24$, for each positive integer N

Area of $R_1 = 3\sin 2\theta$; for this to be maximum

$$\Rightarrow \theta = \frac{\pi}{4} \Rightarrow \left(\frac{3}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$$

Hence for subsequent areas of rectangles R_n to be maximum the coordinates will be in GP with common

***Saral** हैं, तो सब सरल है।

ratio
$$r = \frac{1}{\sqrt{2}} \implies a_n = \frac{3}{(\sqrt{2})^{n-1}}; b_n = \frac{3}{(\sqrt{2})^{n-1}}$$

Eccentricity of all the ellipses will be same

Distance of a focus from the centre in $E_9 = a_9 e_9 = \sqrt{a_9^2 - b_9^2} = \frac{\sqrt{5}}{16}$

Length of latus rectum of $E_9 = \frac{2b_9^2}{a_9} = \frac{1}{6}$

::
$$\sum_{n=1}^{\infty}$$
 Area of $R_n = 12 + \frac{12}{2} + \frac{12}{4} + \dots \infty = 24$

 $\Rightarrow \sum_{n=1}^{N} (area \text{ of } R_n) < 24$, for each positive integer N

JEE(Advanced) 2019/Paper-1

4. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

Sara

$$f(\mathbf{x}) = \begin{cases} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0; \\ x^2 - x + 1, & 0 \le x < 1; \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3}, & 1 \le x < 3; \\ (x - 2)\log_e(x - 2) - x + \frac{10}{3}, & x \ge 3 \end{cases}$$

Then which of the following options is/are correct?

(1) f' has a local maximum at x = 1 (2) f is onto

(3) f is increasing on $(-\infty, 0)$ (4) f' is NOT differentiable at x = 1

Ans. (1,2,4)

Sol.
$$f(x) = \begin{cases} (x+1)^5 - 2x, & x < 0; \\ x^2 - x + 1, & 0 \le x < 1; \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3}, & 1 \le x < 3; \\ (x-2)\log_e(x-2) - x + \frac{10}{3}, & x \ge 3 \end{cases}$$

for x < 0, f(x) is continuous

& $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to 0^-} f(x) = 1$

Hence, $(-\infty, 1) \subset$ Range of f(x) in $(-\infty, 0)$

- $f'(x) = 5(x + 1)^4 2$, which changes sign in $(-\infty, 0)$
- \Rightarrow f(x) is non-monotonic in $(-\infty, 0)$

For $x \ge 3$, f(x) is again continuous and $\lim_{x\to\infty} f(x) = \infty$ and $f(3) = \frac{1}{3}$

$$\Rightarrow \left\lfloor \frac{1}{3}, \infty \right) \subset \text{Range of } f(x) \text{ in } [3, \infty)$$
Hence, range of $f(x)$ is \mathbb{R}

$$f'(x) = \begin{cases} 2x - 1, & 0 \le x < 1 \\ 2x^2 - 8x + 7, & 1 \le x < 3 \end{cases}$$

$$(-1,0)$$

$$(1,1)$$

$$(3,1)$$

$$(-1,0)$$

$$(2,-1)$$

Hence f' has a local maximum at x = 1 and f' is NOT differentiable at x = 1.

***Saral** हैं, तो सब सरल है।

***Saral** हैं, तो सब सरल है।

5. Let
$$\alpha$$
 and β be the roots of $x^{2} - x - 1 = 0$, with $\alpha > \beta$. For all positive integers n, define
 $a_{n} = \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta}$, $n \ge 1$
 $b_{1} = 1$ and $b_{n} = a_{n,1} + a_{n+1}$, $n \ge 2$.
Then which of the following options is/are correct?
(1) $a_{1} + a_{2} + a_{3} + + a_{n} = a_{n,2} - 1$ for all $n \ge 1$
(2) $\sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}} = \frac{10}{89}$
(3) $\sum_{n=1}^{\infty} \frac{b_{n}}{10^{n}} = \frac{8}{89}$
(4) $b_{n} = \alpha^{n} + \beta^{n}$ for all $n \ge 1$
Ans. (12,4)
Sol. α , β are roots of $x^{2} - x - 1$
 $a_{n+2} - a_{n} = \frac{(\alpha^{t+2} - \beta^{t-2}) - (\alpha^{t} - \beta^{t})}{\alpha - \beta} = \frac{(\alpha^{t+2} - \alpha^{t}) - (\beta^{t+2} - \beta^{t})}{\alpha - \beta}$
 $= \frac{\alpha^{t}(\alpha^{2} - 1) - \beta^{t}(\beta^{2} - 1)}{\alpha - \beta} = \frac{\alpha^{t} \alpha - \beta^{t} \beta}{\alpha - \beta} = \frac{\alpha^{t-1} - \beta^{t+1}}{\alpha - \beta} = a_{t+1}$
 $\Rightarrow a_{t-2} - a_{n+1} = a_{t}$
 $\Rightarrow \sum_{n=1}^{\infty} a_{n} - a_{n+2} - a_{2} = a_{n+2} - \frac{\alpha^{2} - \beta^{2}}{\alpha - \beta} = a_{n+2} - (\alpha + \beta) = a_{n+2} - 1$
Now $\sum_{n=1}^{\infty} \frac{a_{n}}{1 - \frac{10}{10}} = \frac{\sum_{n=1}^{\infty} \left(\frac{\alpha}{10}\right)^{n} - \sum_{n=1}^{\infty} \left(\frac{\beta}{10-\beta}\right)}{\alpha - \beta}$
 $= \frac{\frac{a_{n}}{1 - \frac{\alpha}{10}} - \frac{1}{1 - \frac{\beta}{10}}}{1 - \frac{\alpha}{\alpha}} = \frac{\frac{\beta}{10-\alpha}}{1 - \frac{\beta}{10-\beta}} = \frac{10}{10 - (10 - (10 - \beta))} = \frac{10}{89}$
Further, $b_{n} = a_{n-1} + a_{n-1}$
 $= \frac{(\alpha^{n-1} - \beta^{n-1})}{\alpha - \beta}$
(as $\alpha\beta = -1 \Rightarrow \alpha^{n-1} = -\alpha^{n}\beta \ \& \beta^{n-1} = -\alpha\beta^{n})$
 $= \frac{\alpha^{n}(\alpha - \beta) + (\alpha - \beta)\beta^{n}}{\alpha - \beta} = \alpha^{n} + \beta^{n}$

<u>*Saral</u>

5.

6. Let Γ denote a curve y = y(x) which is in the first quadrant and let the point (1, 0) lie on it. Let the tangent to Γ at a point P intersect the y-axis at Y_p . If PY_p has length 1 for each point P on Γ , then which of the following options is/are correct ?

(1)
$$y = \log_e \left(\frac{1 + \sqrt{1 - x^2}}{x}\right) - \sqrt{1 - x^2}$$

(2) $xy' - \sqrt{1 - x^2} = 0$
(3) $y = -\log_e \left(\frac{1 + \sqrt{1 - x^2}}{x}\right) + \sqrt{1 - x^2}$
(4) $xy' + \sqrt{1 - x^2} = 0$

Ans. (1,4)

<u>&Saral</u></u>

7. In a non-right-angled triangle $\triangle PQR$, let p, q, r denote the lengths of the sides opposite to the angles at P, Q, R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side QR at E, and RS and PE intersect at O. If $p = \sqrt{3}$, q = 1, and the radius of the circumcircle of the $\triangle PQR$ equals 1, then which of the following options is/are correct ?

(1) Area of
$$\Delta SOE = \frac{\sqrt{3}}{12}$$

(2) Radius of incircle of $\Delta PQR = \frac{\sqrt{3}}{2}(2-\sqrt{3})$
(3) Length of $RS = \frac{\sqrt{7}}{2}$
(4) Length of $OE = \frac{1}{6}$
Ans. (2,3,4)
Sol. $\frac{\sin P}{\sqrt{3}} = \frac{\sin Q}{1} = \frac{1}{2R} = \frac{1}{2}$
 $\Rightarrow P = \frac{\pi}{3} \text{ or } \frac{2\pi}{3} \text{ and } Q = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$
Since $p > q \Rightarrow P > Q$
So, if $P = \frac{\pi}{3}$ and $Q = \frac{\pi}{6} \Rightarrow R = \frac{\pi}{2}$ (not possible)
Hence, $P = \frac{2\pi}{3}$ and $Q = R = \frac{\pi}{6}$
 $r = \frac{A}{s} = \frac{1}{2}(U(\sqrt{3})(\frac{1}{2})) = \frac{\sqrt{3}}{2}(2-\sqrt{3})$
Now, area of $\Delta SEF = \frac{1}{4}$ area of ΔPQR
 \Rightarrow area of $\Delta SOE = \frac{1}{3}$ area of $\Delta SEF = \frac{1}{12}$ area of $\Delta PQR = \frac{1}{12} \cdot \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{48}$
 $RS = \frac{1}{2}\sqrt{2(3)+2(1)-1} = \frac{\sqrt{7}}{2}$
 $OE = \frac{1}{3}PE = \frac{1}{3} \cdot \frac{1}{2}\sqrt{2(1)^{2}+2(1)^{2}-3} = \frac{1}{6}$

8. Let L_1 and L_2 denotes the lines

Saral

$$\vec{\mathbf{r}} = \hat{\mathbf{i}} + \lambda(-\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}), \lambda \in \mathbb{R}$$
 and
 $\vec{\mathbf{r}} = \mu(2\hat{\mathbf{i}} - \hat{\mathbf{i}} + 2\hat{\mathbf{k}}), \mu \in \mathbb{R}$

respectively. If L_3 is a line which is perpendicular to both L_1 and L_2 and cuts both of them, then which of the following options describe(s) L_3 ?

(1)
$$\vec{\mathbf{r}} = \frac{1}{3}(2\hat{\mathbf{i}} + \hat{\mathbf{k}}) + t(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}), t \in \mathbb{R}$$

(2)
$$\vec{r} = \frac{2}{9}(2\hat{i} - \hat{j} + 2\hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

(3)
$$\vec{r} = t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

(4)
$$\vec{\mathbf{r}} = \frac{2}{9}(4\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) + t(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}), t \in \mathbb{R}$$

Ans. (1,2,4)

Sol. Points on L₁ and L₂ are respectively A(1 – λ , 2 λ , 2 λ) and B(2 μ , – μ , 2 μ)

So,
$$\overrightarrow{AB} = (2\mu + \lambda - 1)\hat{i} + (-\mu - 2\lambda)\hat{j} + (2\mu - 2\lambda)\hat{k}$$

and vector along their shortest distance $= 2\hat{i} + 2\hat{j} - \hat{k}$.

Hence,
$$\frac{2\mu + \lambda - 1}{2} = \frac{-\mu - 2\lambda}{2} = \frac{2\mu - 2\lambda}{-1}$$

 $\Rightarrow \lambda = \frac{1}{9} \& \mu = \frac{2}{9}$
Hence, $A = \left(\frac{8}{9}, \frac{2}{9}, \frac{2}{9}\right)$ and $B = \left(\frac{4}{9}, -\frac{2}{9}, \frac{4}{9}\right)$
 $\Rightarrow \text{ Mid point of AB} = \left(\frac{2}{3}, 0, \frac{1}{3}\right)$

SECTION-3 : (Maximum Marks: 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **Two** decimal places.

***Saral** हैं, तो सब सरल है।

- Answer to each question will be evaluated according to the following marking scheme:
 - *Full Marks* : +3 If ONLY the correct numerical value is entered.

Zero Marks : 0 In all other cases.

$$I = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \frac{dx}{(1 + e^{\sin x})(2 - \cos 2x)}$$

then 27I² equals _____

Ans. (4.00)

Sol.
$$2I = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \left[\frac{1}{(1 + e^{\sin x})(2 - \cos 2x)} + \frac{1}{(1 + e^{-\sin x})(2 - \cos 2x)} \right] dx$$
 (using King's Rule)

- $\Rightarrow I = \frac{1}{\pi} \int_{-\pi/4}^{\pi/4} \frac{dx}{2 \cos 2x}$ $\Rightarrow I = \frac{2}{\pi} \int_{0}^{\pi/4} \frac{dx}{2 \cos 2x} = \frac{2}{\pi} \int_{0}^{\pi/4} \frac{\sec^2 dx dx}{1 + 3\tan^2 x}$ $= \frac{2}{\sqrt{3\pi}} \left[\tan^{-1} \left(\sqrt{3} \tan x \right) \right]_{0}^{\pi/4} = \frac{2}{3\sqrt{3}}$ $\Rightarrow 27I^2 = 27 \times \frac{4}{27} = 4$
- 2. Let the point B be the reflection of the point A(2, 3) with respect to the line 8x 6y 23 = 0. Let Γ_A and Γ_B be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles Γ_A and Γ_B such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment AC is _____

Ans. (10.00)

- **Sol.** Distance of point A from given line $=\frac{5}{2}$
 - $\frac{CA}{CB} = \frac{2}{1}$

$$\Rightarrow \frac{AC}{AB} = \frac{2}{1}$$

 \Rightarrow AC = 2×5 = 10

3. Let AP (a; d) denote the set of all the terms of an infinite arithmetic progression with first term a and common difference d > 0. If AP(1; 3) \cap AP(2; 5) \cap AP(3; 7) = AP(a; d) then a + d equals ____

Ans. (157.00)

Sol. We equate the general terms of three respective

A.P.'s as 1 + 3a = 2 + 5b = 3 + 7c

 \Rightarrow 3 divides 1 + 2b and 5 divides 1 + 2c

 \Rightarrow 1 + 2c = 5, 15, 25 etc.

So, first such terms are possible when 1 + 2c = 15 i.e. c = 7

Hence, first term = a = 52

d = lcm (3, 5, 7) = 105

$$\Rightarrow$$
 a + d = 157

4. Let S be the sample space of all 3×3 matrices with entries from the set $\{0, 1\}$. Let the events E_1 and E_2 be given by

 $E_1 = \{A \in S : det A = 0\} and$ $E_2 = \{A \in S : sum of entries of A is 7\}.$

If a matrix is chosen at random from S, then the conditional probability $P(E_1|E_2)$ equals _____

Ans. (0.50)

Sol. $n(E_2) = {}^9C_2$ (as exactly two cyphers are there)

Now, det A = 0, when two cyphers are in the same column or same row

$$\Rightarrow n(E_1 \cap E_2) = 6 \times {}^{3}C_2.$$

Hence,
$$P\left(\frac{E_1}{E_2}\right) = \frac{n(E_1 \cap E_2)}{n(E_2)} = \frac{18}{36} = \frac{1}{2} = 0.50$$

5. Three lines are given by

$$\vec{r} = \lambda \hat{i}, \lambda \in \mathbb{R}$$

 $\vec{r} = \mu (\hat{i} + \hat{j}), \mu \in \mathbb{R}$ and
 $\vec{r} = \nu (\hat{i} + \hat{j} + \hat{k}), \nu \in \mathbb{R}$.

Let the lines cut the plane x + y + z = 1 at the points A, B and C respectively. If the area of the triangle ABC is Δ then the value of $(6\Delta)^2$ equals ____

***Saral** हैं, तो सब सरल है।

Ans. (0.75)

*<u>Saral</u>

Sol. A(1, 0, 0), B
$$\left(\frac{1}{2}, \frac{1}{2}, 0\right)$$
 & C $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
Hence, $\overrightarrow{AB} = -\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}$ & $\overrightarrow{AC} = -\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$
So, $\Delta = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2}\sqrt{\frac{1}{2} \times \frac{2}{3} - \frac{1}{4}}$
 $= \frac{1}{2 \times 2\sqrt{3}}$
 $\Rightarrow (6\Delta)^2 = \frac{3}{4} = 0.75$

6. Let $\omega \neq 1$ be a cube root of unity. Then the minimum of the set

{ $|\mathbf{a} + \mathbf{b}\omega + \mathbf{c}\omega^2|^2$: a, b, c distinct non-zero integers}

equals ____

Ans. (3.00)

Sol.
$$|a + b\omega + c\omega^2|^2 = (a + b\omega + c\omega^2) (\overline{a + b\omega + c\omega^2})$$

 $= (a + b\omega + c\omega^2) (a + b\omega^2 + c\omega)$
 $= a^2 + b^2 + c^2 - ab - bc - ca$
 $= \frac{1}{2} [(a - b)^2 + (b - c)^2 + (c - a)^2]$
 $\ge \frac{1 + 1 + 4}{2} = 3$ (when $a = 1, b = 2, c = 3$)

