FINAL JEE-MAIN EXAMINATION - JANUARY, 2023
Held On Monday 30th January, 2023
TIME : 03:00 PM to 06:00 PM

SECTION-A

61. Consider the following statements:

P : I have fever
Q : I will not take medicine
R : I will take rest
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:
(1) $((\sim P) \vee \sim Q) \wedge((\sim P) \vee R)$
(2) $((\sim \mathrm{P}) \vee \sim \mathrm{Q}) \wedge((\sim \mathrm{P}) \vee \sim \mathrm{R})$
(3) $(\mathrm{P} \vee \mathrm{Q}) \wedge((\sim \mathrm{P}) \vee \mathrm{R})$
(4) $(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\mathrm{P} \vee \sim \mathrm{R})$

Official Ans. by NTA (1)
Ans. (1)
Sol. $\quad P \rightarrow(\sim Q \wedge R)$
$\sim P \vee(\sim Q \wedge R)$
$(\sim \mathrm{P} \vee \sim \mathrm{Q}) \wedge(\sim \mathrm{P} \vee \mathrm{R})$
62. Let A be a point on the x -axis. Common tangents are drawn from A to the curves $x^{2}+y^{2}=8$ and $y^{2}=$ 16x. If one of these tangents touches the two curves at Q and R , then $(\mathrm{QR})^{2}$ is equal to
(1) 64
(2) 76
(3) 81
(4) 72

Official Ans. by NTA (4)

Ans. (4)
Sol. $\quad \mathrm{y}=\mathrm{mx}+\frac{4}{\mathrm{~m}}$
$\frac{\left|\frac{4}{\mathrm{~m}}\right|}{\sqrt{1+\mathrm{m}^{2}}}=2 \sqrt{2} \therefore \mathrm{~m}= \pm 1$
$y= \pm x \pm 4$. Point of contact on parabola
Let $\mathrm{m}=1,\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
R(4, 8)
Point of contact on circle $\mathrm{Q}(-2,2)$
$\therefore(\mathrm{QR})^{2}=36+36=72$
63. Let q be the maximum integral value of p in $[0,10]$ for which the roots of the equation $x^{2}-p x+\frac{5}{4} p=0$ are rational. Then the area of the region $\{(\mathrm{x}, \mathrm{y}): 0 \leq \mathrm{y}$ $\left.\leq(\mathrm{x}-\mathrm{q})^{2}, 0 \leq \mathrm{x} \leq \mathrm{q}\right\}$ is
(1) 243
(2) 25
(3) $\frac{125}{3}$
(4) 164

Official Ans. by NTA (1)
Ans. (1)
Sol. $\quad x^{2}-p x+\frac{5 p}{4}=0$
$\mathrm{D}=\mathrm{p}^{2}-5 \mathrm{p}=\mathrm{p}(\mathrm{p}-5)$
$\therefore \mathrm{q}=9$
$0 \leq y \leq(x-9)^{2}$

Area $=\int_{0}^{9}(x-9)^{2} d x=243$
64. If the functions $f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}$ and $g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b$ have a common extreme point, then $\mathrm{a}+2 \mathrm{~b}+7$ is equal to
(1) 4
(2) $\frac{3}{2}$
(3) 3
(4) 6

Official Ans. by NTA (4)
Ans. (4)

Sol. $f^{\prime}(x)=x^{2}+2 b+a x$
$g^{\prime}(x)=x^{2}+a+2 b x$
$(2 b-a)-x(2 b-a)=0$
$\therefore \mathrm{x}=1$ is the common root
Put $\mathrm{x}=1$ in $\mathrm{f}^{\prime}(\mathrm{x})=0$ or $\mathrm{g}^{\prime}(\mathrm{x})=0$
$1+2 b+a=0$
$7+2 b+a=6$
65. The range of the function $\mathrm{f}(\mathrm{x})=\sqrt{3-\mathrm{x}}+\sqrt{2+\mathrm{x}}$ is
(1) $[\sqrt{5}, \sqrt{10}]$
(2) $[2 \sqrt{2}, \sqrt{11}]$
(3) $[\sqrt{5}, \sqrt{13}]$
(4) $[\sqrt{2}, \sqrt{7}]$

Official Ans. by NTA (1)

Ans. (1)
Sol. $y^{2}=3-x+2+x+2 \sqrt{(3-x)(2+x)}$
$=5+2 \sqrt{6+x-x^{2}}$
$\mathrm{y}^{2}=5+2 \sqrt{\frac{25}{4}-\left(\mathrm{x}-\frac{1}{2}\right)^{2}}$
$\mathrm{y}_{\text {max }}=\sqrt{5+5}=\sqrt{10}$
$\mathrm{y}_{\text {min }}=\sqrt{5}$
66. The solution of the differential equation
$\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0$ is
(1) $\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0$
(2) $\log _{\mathrm{e}}|x+y|+\frac{x y}{(x+y)^{2}}=0$
(3) $\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0$
(4) $\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0$

Official Ans. by NTA (3)

Ans. (3)

Sol. Put $\mathrm{y}=\mathrm{vx}$
$v+x \frac{d v}{d x}=-\left(\frac{1+3 v^{2}}{3+v^{2}}\right)$
$x \frac{d v}{d x}=-\frac{(v+1)^{3}}{3+v^{2}}$
$\frac{\left(3+v^{2}\right) d v}{(v+1)^{3}}+\frac{d x}{x}=0$
$\int \frac{4 d v}{(v+1)^{3}}+\int \frac{d v}{v+1}-\int \frac{2 d v}{(v+1)^{2}}+\int \frac{d x}{x}=0$
$\frac{-2}{(\mathrm{v}+1)^{2}}+\ln (\mathrm{v}+1)+\frac{2}{\mathrm{v}+1}+\ln \mathrm{x}=\mathrm{c}$
$\frac{-2 x^{2}}{(x+y)^{2}}+\ln \left(\frac{x+y}{x}\right)+\frac{2 x}{x+y}+\ln x=c$
$\frac{2 x y}{(x+y)^{2}}+\ln (x+y)=c$
$\therefore \mathrm{c}=0$, as $\mathrm{x}=1, \mathrm{y}=0$
$\therefore \frac{2 \mathrm{xy}}{(\mathrm{x}+\mathrm{y})^{2}}+\ln (\mathrm{x}+\mathrm{y})=0$
67. Let $\mathrm{x}=(8 \sqrt{3}+13)^{13}$ and $\mathrm{y}=(7 \sqrt{2}+9)^{9}$. If [t] denotes the greatest integer $\leq \mathrm{t}$, then
(1) $[x]+[y]$ is even
(2) $[x]$ is odd but $[y]$ is even
(3) $[x]$ is even but $[y]$ is odd
(4) $[x]$ and $[y]$ are both odd

Official Ans. by NTA (1)
Ans. (1)
Sol. $x=(8 \sqrt{3}+13)={ }^{13} C_{0} \cdot(8 \sqrt{3})^{13}+{ }^{13} C_{1}(8 \sqrt{3})^{12}(13)^{1}+\ldots$
$x^{\prime}=(8 \sqrt{3}-13)^{13}={ }^{13} C_{0}(8 \sqrt{3})^{13}-{ }^{13} C_{1}(8 \sqrt{3})^{12}(13)^{1}+\ldots$
$x-x^{\prime}=2\left[{ }^{13} C_{1} \cdot(8 \sqrt{3})^{12}(13)^{1}+{ }^{13} C_{3}(8 \sqrt{3})^{10} \cdot(13)^{3} \ldots.\right]$
therefore, $x-x^{\prime}$ is even integer, hence $[x]$ is even
Now, $\mathrm{y}=(7 \sqrt{2}+9)^{9}={ }^{9} \mathrm{C}_{0}(7 \sqrt{2})^{9}+{ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8}(9)^{1}$

$$
+{ }^{9} \mathrm{C}_{2}(7 \sqrt{2})^{7}(9)^{2} \ldots \ldots
$$

$\mathrm{y}^{\prime}=(7 \sqrt{2}-9)^{9}={ }^{9} \mathrm{C}_{0}(7 \sqrt{2})^{9}-{ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8}(9)^{1}$
$+{ }^{9} C_{2}(7 \sqrt{2})^{7}(9)^{2} \ldots \ldots$.
$y-y^{\prime}=2\left[{ }^{9} C_{1}(7 \sqrt{2})^{8}(9)^{1}+{ }^{9} C_{3}(7 \sqrt{2})^{6}(9)^{3}+\ldots\right]$
$y-y^{\prime}=$ Even integer, hence $[y]$ is even
68. A vector v in the first octant is inclined to the x axis at 60°, to the y-axis at 45° and to the z -axis at an acute angle. If a plane passing through the points $(\sqrt{2},-1,1)$ and (a, b, c), is normal to $\overrightarrow{\mathrm{v}}$, then
(1) $\sqrt{2} a+b+c=1$
(2) $a+b+\sqrt{2} c=1$
(3) $a+\sqrt{2} b+c=1$
(4) $\sqrt{2} \mathrm{a}-\mathrm{b}+\mathrm{c}=1$

Official Ans. by NTA (3)
Ans. (3)
Sol. $\hat{\mathbf{v}}=\cos 60^{\circ} \hat{i}+\cos 45^{\circ} \hat{j}+\cos \gamma \hat{k}$
$\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^{2} \gamma=1 \quad(\gamma \rightarrow$ Acute $)$
$\Rightarrow \cos \gamma=\frac{1}{2}$
$\Rightarrow \gamma=60^{\circ}$
Equation of plane is
$\frac{1}{2}(\mathrm{x}-\sqrt{2})+\frac{1}{\sqrt{2}}(\mathrm{y}+1)+\frac{1}{2}(\mathrm{z}-1)=0$
$\Rightarrow \mathrm{x}+\sqrt{2} \mathrm{y}+\mathrm{z}=1$
(a, b, c) lies on it.
$\Rightarrow a+\sqrt{2} b+c=1$
69. Let f, g and h be the real valued functions defined
on \mathbb{R} as $f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$,
$g(x)=\left\{\begin{array}{cl}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$ and $\mathrm{h}(\mathrm{x})=2[\mathrm{x}]-\mathrm{f}(\mathrm{x})$,
where $[x]$ is the greatest integer $\leq x$. Then the value of $\lim _{x \rightarrow 1} g(h(x-1))$ is
(1) 1
(2) $\sin (1)$
(3) -1
(4) 0

Official Ans. by NTA (1)
Ans. (1)

Sol. $\quad \mathrm{LHL}=\lim _{\mathrm{k} \rightarrow 0} \mathrm{~g}(\mathrm{~h}(-\mathrm{k})), \mathrm{k}>0$
$=\lim _{\mathrm{k} \rightarrow 0} \mathrm{~g}(-2+1) \quad \because \mathrm{f}(\mathrm{x})=-1 \forall \mathrm{x}<0$
$=\mathrm{g}(-1)=1$
$R H L=\lim _{k \rightarrow 0} g(h(k)) \quad, k>0$
$=\lim _{\mathrm{k} \rightarrow 0} \mathrm{~g}(-1) \quad, \because \mathrm{f}(\mathrm{x})=1, \forall \mathrm{x}>0$
$=1$
70. The number of ways of selecting two numbers a and b, $a \in\{2,4,6, \ldots ., 100\} \quad$ and $\quad b \in\{1,3,5, \ldots ., 99\}$ such that 2 is the remainder when $\mathrm{a}+\mathrm{b}$ is divided by 23 is
(1) 186
(2) 54
(3) 108
(4) 268

Official Ans. by NTA (3)

Ans. (3)

Sol. $\mathrm{a} \in\{2,4,6,8,10, \ldots ., 100\}$
$b \in\{1,3,5,7,9, \ldots . ., 99\}$
Now, $\mathrm{a}+\mathrm{b} \in\{25,71,117,163\}$
(i) $\mathrm{a}+\mathrm{b}=25$, no. of ordered pairs (a, b) is 12
(ii) $\mathrm{a}+\mathrm{b}=71$, no. of ordered pairs (a, b) is 35
(iii) $\mathrm{a}+\mathrm{b}=117$, no. of ordered pairs (a, b) is 42
(iv) $a+b=163$, no. of ordered pairs (a, b) is 19
\therefore total $=108$ pairs
71. If P is a 3×3 real matrix such that $\mathrm{P}^{\mathrm{T}}=\mathrm{aP}+(\mathrm{a}-1) \mathrm{I}$, where $\mathrm{a}>1$, then
(1) P is a singular matrix
(2) \mid Adj $\mathrm{P} \mid>1$
(3) $|\operatorname{Adj} P|=\frac{1}{2}$
(4) \mid Adj $\mathrm{P} \mid=1$

Official Ans. by NTA (4)
Ans. (4)
Sol. $\quad \mathrm{P}^{\mathrm{T}}=\mathrm{aP}+(\mathrm{a}-1) \mathrm{I}$
$\Rightarrow \mathrm{P}=\mathrm{aP}^{\mathrm{T}}+(\mathrm{a}-1) \mathrm{I}$
$\Rightarrow \mathrm{P}^{\mathrm{T}}-\mathrm{P}=\mathrm{a}\left(\mathrm{P}-\mathrm{P}^{\mathrm{T}}\right)$
$\Rightarrow \mathrm{P}=\mathrm{P}^{\mathrm{T}}$, as $\mathrm{a} \neq-1$
Now, $\mathrm{P}=\mathrm{aP}+(\mathrm{a}-1) \mathrm{I}$
$\Rightarrow \mathrm{P}=-\mathrm{I} \Rightarrow|\mathrm{P}|=1$
$\Rightarrow|\operatorname{Adj} \mathrm{P}|=1$
72. Let $\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$.

If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$, then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^{2}$ is equal to
(1) 140
(2) 132
(3) 144
(4) 136

Official Ans. by NTA (1)
Ans. (1)
Sol. $\overrightarrow{\mathrm{a}}=\lambda \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-\lambda \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\Rightarrow(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \times((\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}))=8 \hat{\mathrm{i}}-40 \hat{\mathrm{j}}-24 \hat{\mathrm{k}}$
$\Rightarrow((\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b}))(\vec{a} \times \vec{b})=8 \hat{i}-40 j-24 \hat{k}$
$\Rightarrow 8(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=8 \hat{\mathrm{i}}-40 \hat{\mathrm{j}}-24 \hat{\mathrm{k}}$
Now, $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \lambda & 2 & -3 \\ 1 & -\lambda & 2\end{array}\right|$
$=(4-3 \lambda) \hat{\mathrm{i}}-(2 \lambda+3) \hat{\mathrm{j}}+\left(-\lambda^{2}-2\right) \hat{\mathrm{k}}$
$\Rightarrow \lambda=1$
$\therefore \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\Rightarrow \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 0 & 3 & -5\end{array}\right|=2 \hat{i}+10 \hat{j}+6 \hat{k}$
\therefore required answer $=4+100+36=140$
73. Let \vec{a} and \vec{b} be two vectors. Let $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then the value of $\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}$ is
(1) -24
(2) -48
(3) -84
(4) -60

Official Ans. by NTA (2)
Ans. (2)
Sol. $\quad \overrightarrow{\mathrm{c}}=(2 \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})-3 \overrightarrow{\mathrm{~b}}$
$\vec{b} \cdot \vec{c}=\vec{b} \cdot(2 \vec{a} \times \vec{b})-3 \vec{b} \cdot \vec{b}$
$=-3|\mathrm{~b}|^{2}$
$=-48$
74. Let $a_{1}=1, a_{2}, a_{3}, a_{4}, \ldots$. be consecutive natural numbers. Then $\tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)$ $+\ldots .+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right)$ is equal to
(1) $\frac{\pi}{4}-\cot ^{-1}(2022)$
(2) $\cot ^{-1}(2022)-\frac{\pi}{4}$
(3) $\tan ^{-1}(2022)-\frac{\pi}{4}$
(4) $\frac{\pi}{4}-\tan ^{-1}(2022)$

Official Ans. by NTA $(1,3)$
Ans. (1,3)
Sol. $\mathrm{a}_{2}-\mathrm{a}_{1}=\mathrm{a}_{3}-\mathrm{a}_{2}=\ldots . .=\mathrm{a}_{2022}-\mathrm{a}_{2021}=1$.
$\left.\begin{array}{r}\therefore \tan ^{-1}\left(\frac{a_{2}-a_{1}}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{a_{3}-a_{2}}{1+a_{2} a_{3}}\right)+\ldots . .+\tan ^{-1}\left(\frac{a_{2022}-a_{2021}}{1+a_{2021} a_{2022}}\right) \\ =\left[\left(\tan ^{-1} a_{2}\right)-\tan ^{-1} a_{1}\right]+\left[\tan ^{-1} a_{3}-\tan ^{-1} a_{2}\right]+\ldots . . \\ +\end{array}+\tan ^{-1} a_{2022}-\tan ^{-1} a_{2021}\right]$.
$=\tan ^{-1} \mathrm{a}_{2022}-\tan ^{-1} \mathrm{a}_{1}$
$=\tan ^{-1}(2022)-\tan ^{-1} 1=\tan ^{-1} 2022-\frac{\pi}{4}$ (option 3)
$=\left(\frac{\pi}{2}-\cot ^{-1}(2022)\right)-\frac{\pi}{4}$
$=\frac{\pi}{4}-\cot ^{-1}(2022)($ option 1$)$
75. The parabolas : $a x^{2}+2 b x+c y=0$ and $d x^{2}+2 e x+f y=0$ intersect on the line $y=1$. If a, b, c, d, e, f are positive real numbers and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P., then
(1) d, e, f are in A.P.
(2) $\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}$ are in G.P.
(3) $\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}$ are in A.P.
(4) d, e, f are in G.P.

Official Ans. by NTA (3)
Ans. (3)
Sol. $\quad a x^{2}+2 b x+c=0$
$\Rightarrow \mathrm{ax}^{2}+2 \sqrt{\mathrm{ac}} \mathrm{x}+\mathrm{c}=0\left(\because \mathrm{~b}^{2}=\mathrm{ac}\right)$
$\Rightarrow(\mathrm{x} \sqrt{\mathrm{a}}+\sqrt{\mathrm{c}})^{2}=0$
$x^{2}-\frac{\sqrt{c}}{\sqrt{\mathrm{a}}}$
Now, $\mathrm{dx}^{2}+2 \mathrm{ex}+\mathrm{f}=0$
$\Rightarrow d\left(\frac{\mathrm{c}}{\mathrm{a}}\right)+2 \mathrm{e}\left[-\frac{\sqrt{\mathrm{c}}}{\sqrt{\mathrm{a}}}\right]+\mathrm{f}=0$
$\Rightarrow \frac{\mathrm{dc}}{\mathrm{a}}+\mathrm{f}=2 \mathrm{e} \sqrt{\frac{\mathrm{c}}{\mathrm{a}}}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{f}}{\mathrm{c}}=2 \mathrm{e} \sqrt{\frac{1}{\mathrm{ac}}}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{f}}{\mathrm{c}}=\frac{2 \mathrm{e}}{\mathrm{b}}[$ as $\mathrm{b}=\sqrt{\mathrm{ae}}]$
$\therefore \frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}$ are in A.P.
76. If a plane passes through the points $(-1, \mathrm{k}, 0),(2, \mathrm{k},-1)$,
$(1,1,2)$ and is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}$
$=\frac{\mathrm{z}+1}{-1}$, then the value of $\frac{\mathrm{k}^{2}+1}{(\mathrm{k}-1)(\mathrm{k}-2)}$ is
(1) $\frac{17}{5}$
(2) $\frac{5}{17}$
(3) $\frac{6}{13}$
(4) $\frac{13}{6}$

Official Ans. by NTA (4)
Ans. (4)
Sol. $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$
$\frac{x-1}{1}=\frac{y+\frac{1}{2}}{1}=\frac{z+1}{-1}$
Points: $\mathrm{A}(-1, \mathrm{k}, 0), \mathrm{B}(2, \mathrm{k},-1), \mathrm{C}(1,1,2)$
$\overrightarrow{\mathrm{CA}}=-2 \hat{\mathrm{i}}+(\mathrm{k}-1) \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{CB}}=\hat{\mathrm{i}}+(\mathrm{k}-1) \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{CB}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ -2 & \mathrm{k}-1 & -2 \\ 1 & \mathrm{k}-1 & -3\end{array}\right|$
$=\hat{\mathrm{i}}(-3 \mathrm{k}+3+2 \mathrm{k}-2)-\hat{\mathrm{j}}(6+2)+\hat{\mathrm{k}}(-2 \mathrm{k}+2-\mathrm{k}+1)$
$=(1-\mathrm{k}) \hat{\mathrm{i}}-8 \hat{\mathrm{j}}+(3-3 \mathrm{k}) \hat{\mathrm{k}}$
The line $\frac{x-1}{1}=\frac{y+\frac{1}{2}}{1}=\frac{z+1}{-1}$ is perpendicular to normal vector.
$\therefore 1 \cdot(1-\mathrm{k})+1(-8)+(-1)(3-3 \mathrm{k})=0$
$\Rightarrow 1-\mathrm{k}-8-3+3 \mathrm{k}=0$
$\Rightarrow 2 \mathrm{k}=10 \Rightarrow \mathrm{k}=5$
$\therefore \frac{\mathrm{k}^{2}+1}{(\mathrm{k}-1)(\mathrm{k}-2)}=\frac{26}{4 \cdot 3}=\frac{13}{6}$
77. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}>1, \mathrm{a}^{3}, \mathrm{~b}^{3}$ and c^{3} be in A.P., and $\log _{\mathrm{a}} \mathrm{b}$, $\log _{\mathrm{c}} \mathrm{a}$ and $\log _{\mathrm{b}} \mathrm{c}$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4 b+c}{3}$ and the common difference is $\frac{a-8 b+c}{10}$ is -444 , then abc is equal to
(1) 343
(2) 216
(3) $\frac{343}{8}$
(4) $\frac{125}{8}$

Official Ans. by NTA (2)
Ans. (2)
Sol. As a^{3}, b^{3}, c^{3} be in A.P. $\rightarrow a^{3}+c^{3}=2 b^{3}$
$\log _{a}^{b}, \log _{c}^{a}, \log _{b}^{c}$ are in G.P.
$\therefore \frac{\log b}{\log a} \cdot \frac{\log c}{\log b}=\left(\frac{\log a}{\log c}\right)^{2}$
$\therefore(\log a)^{3}=(\log c)^{3} \Rightarrow a=c$
From (1) and (2)
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\mathrm{T}_{1}=\frac{\mathrm{a}+4 \mathrm{~b}+\mathrm{c}}{3}=2 \mathrm{a} ; \mathrm{d}=\frac{\mathrm{a}-8 \mathrm{~b}+\mathrm{c}}{10}=\frac{-6 \mathrm{a}}{10}=\frac{-3}{5} \mathrm{a}$
$\therefore \mathrm{S}_{20}=\frac{20}{2}\left[4 \mathrm{a}+19\left(-\frac{3}{5} \mathrm{a}\right)\right]$
$=10\left[\frac{20 \mathrm{a}-57 \mathrm{a}}{5}\right]$
$=-74 \mathrm{a}$
$\therefore-74 a=-444 \Rightarrow a=6$
$\therefore \mathrm{abc}=6^{3}=216$
78. Let S be the set of all values of a_{1} for which the mean deviation about the mean of 100 consecutive positive integers $a_{1}, a_{2}, a_{3}, \ldots, a_{100}$ is 25 . Then S is
(1) ϕ
(2) $\{99\}$
(3) \mathbb{N}
(4) $\{9\}$

Official Ans. by NTA (3)

Ans. (3)
Sol. let a_{1} be any natural number
$a_{1}, a_{1}+1, a_{1}+2, \ldots \ldots, a_{1}+99$ are values of $a_{i}{ }^{\prime} S$
$\overline{\mathrm{x}}=\frac{\mathrm{a}_{1}+\left(\mathrm{a}_{1}+1\right)+\left(\mathrm{a}_{1}+2\right)+\ldots \ldots+\mathrm{a}_{1}+99}{100}$
$=\frac{100 \mathrm{a}_{1}+(1+2+\ldots .+99)}{100}=\mathrm{a}_{1}+\frac{99 \times 100}{2 \times 100}$
$=a_{1}+\frac{99}{2}$

Mean deviation about mean $=\frac{\sum_{i=1}^{100}\left|x_{i}-\bar{x}\right|}{100}$
$=\frac{2\left(\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots .+\frac{1}{2}\right)}{100}$
$=\frac{1+3+\ldots .+99}{100}$
$=\frac{\frac{50}{2}[1+99]}{100}$
$=25$
So, it is true for every natural no. ' a_{1} '
79. $\lim _{\mathrm{n} \rightarrow \infty} \frac{3}{\mathrm{n}}\left\{4+\left(2+\frac{1}{\mathrm{n}}\right)^{2}+\left(2+\frac{2}{\mathrm{n}}\right)^{2}+\ldots+\left(3-\frac{1}{\mathrm{n}}\right)^{2}\right\}$ is equal to
(1) 12
(2) $\frac{19}{3}$
(3) 0
(4) 19

Official Ans. by NTA (4)
Ans. (4)
Sol. $\lim _{\mathrm{n} \rightarrow \infty} \frac{3}{\mathrm{n}} \sum_{\mathrm{r}=0}^{\mathrm{n}-1}\left(2+\frac{\mathrm{r}}{\mathrm{n}}\right)^{2}$
$=3 \int_{0}^{1}(2+x)^{2} d x=27-8=19$
80. For $\alpha, \beta \in \mathbb{R}$, suppose the system of linear equations
$x-y+z=5$
$2 x+2 y+\alpha z=8$
$3 x-y+4 z=\beta$
has infinitely many solutions. Then α and β are the roots of
(1) $x^{2}-10 x+16=0$
(2) $x^{2}+18 x+56=0$
(3) $x^{2}-18 x+56=0$
(4) $x^{2}+14 x+24=0$

Official Ans. by NTA (3)
Ans. (3)
Sol. $\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 2 & \alpha \\ 3 & -1 & 4\end{array}\right|=0 ; 8+\alpha-2(-4+1)+3(-\alpha-2)=0$
$8+\alpha+6-3 \alpha-6=0$
$\alpha=4$

SECTION-B

81. $50^{\text {th }}$ root of a number x is 12 and $50^{\text {th }}$ root of another number y is 18 . Then the remainder obtained on dividing ($\mathrm{x}+\mathrm{y}$) by 25 is \qquad .

Official Ans. by NTA (23)
Ans. (23)
Sol. $\mathrm{x}+\mathrm{y}=12^{50}+18^{50}=(150-6)^{25}+(325-1)^{25}$
$=25 \mathrm{~K}-\left(6^{25}+1\right)=25 \mathrm{~K}-\left((5+1)^{25}+1\right)$
$=25 \mathrm{~K}_{1}-2 \quad$ Remainder $=23$
82. Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ such that $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \cdot \mathrm{f}(\mathrm{n})$ for every $\mathrm{m}, \mathrm{n} \in \mathrm{A}$ with $\mathrm{m} \cdot \mathrm{n} \in \mathrm{A}$ is equal to \qquad .
Official Ans. by NTA (432)
Ans. (432)
Sol. $\quad f(1)=1 ; f(9)=f(3) \times f(3)$
i.e., $f(3)=1$ or 3

Total function $=1 \times 6 \times 2 \times 6 \times 6 \times 1=432$
83. Let $\mathrm{P}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$ be two distinct points on a circle with center $\mathrm{C}(\sqrt{2}, \sqrt{3})$. Let O be the origin and OC be perpendicular to both CP and CQ. If the area of the triangle OCP is $\frac{\sqrt{35}}{2}$, then $\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}$ is equal to \qquad .

Official Ans. by NTA (24)
Ans. (24)
Sol. $\quad \frac{1}{2} \times \mathrm{PC} \times \sqrt{5}=\frac{\sqrt{35}}{2} ; \mathrm{PC}=\sqrt{7}$

$\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}=\mathrm{OP}^{2}+\mathrm{OQ}^{2}$ $=2(5+7)=24$
84. The $8^{\text {th }}$ common term of the series
$S_{1}=3+7+11+15+19+\ldots .$,
$S_{2}=1+6+11+16+21+\ldots$.
is \qquad .

Official Ans. by NTA (151)

Ans. (151)

Sol. $\mathrm{T}_{8}=11+(8-1) \times 20$
$=11+140=151$
85. Let a line L pass through the point $P(2,3,1)$ and be parallel to the line $\mathrm{x}+3 \mathrm{y}-2 \mathrm{z}-2=0=\mathrm{x}-\mathrm{y}+2 \mathrm{z}$. If the distance of L from the point $(5,3,8)$ is α, then $3 \alpha^{2}$ is equal to \qquad .

Official Ans. by NTA (158)
Ans. (158)
Sol. $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -2 \\ 1 & -1 & 2\end{array}\right|=4 \hat{i}-4 \hat{j}-4 \hat{k}$
\therefore Equation of line is $\frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}-3}{-1}=\frac{\mathrm{z}-1}{-1}$
Let Q be $(5,3,8)$ and foot of \perp from Q on this line be R .

Now, $\mathrm{R} \equiv(\mathrm{k}+2,-\mathrm{k}+3,-\mathrm{k}+1)$
DR of QR are $(\mathrm{k}-3,-\mathrm{k},-\mathrm{k}-7)$
$\therefore(1)(\mathrm{k}-3)+(-1)(-\mathrm{k})+(-1)(-\mathrm{k}-7)=0$
$\Rightarrow \mathrm{k}=-\frac{4}{3}$
$\therefore \alpha^{2}=\left(\frac{13}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}+\left(\frac{17}{3}\right)^{2}=\frac{474}{9}$
$\therefore 3 \alpha^{2}=158$
86. If $\int \sqrt{\sec 2 x-1} d x=\alpha \log _{e}\left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|$

+ constant, then $\beta-\alpha$ is equal to \qquad .

Official Ans. by NTA (1)
Ans. (1)

Sol. $\int \sqrt{\sec 2 \mathrm{x}-1} \mathrm{dx}=\int \sqrt{\frac{1-\cos 2 \mathrm{x}}{\cos 2 \mathrm{x}}} \mathrm{dx}$
$=\sqrt{2} \int \frac{\sin \mathrm{x}}{\sqrt{2 \cos ^{2} \mathrm{x}-1}} \mathrm{dx}$
put $\cos x=t \quad \Rightarrow-\sin x d x=d t$
$=-\sqrt{2} \int \frac{\mathrm{dt}}{\sqrt{2 \mathrm{t}^{2}-1}}$
$=-\ln |\sqrt{2} \cos x+\sqrt{\cos 2 x}|+c$
$=-\frac{1}{2} \ln \left|2 \cos ^{2} x+\cos 2 x+2 \sqrt{\cos 2 x} \cdot \sqrt{2} \cos x\right|+c$
$=-\frac{1}{2} \ln \left|\cos 2 \mathrm{x}+\frac{1}{2}+\sqrt{\cos 2 \mathrm{x}} \cdot \sqrt{1+\cos 2 \mathrm{x}}\right|+\mathrm{c}$
$\because \beta=\frac{1}{2}, \alpha=-\frac{1}{2} \Rightarrow \beta-\alpha=1$
87. If the value of real number $\mathrm{a}>0$ for which $\mathrm{x}^{2}-5 \mathrm{ax}$ $+1=0$ and $\mathrm{x}^{2}-\mathrm{ax}-5=0$ have a common real roots is $\frac{3}{\sqrt{2 \beta}}$ then β is equal to \qquad .

Official Ans. by NTA (13)
Ans. (13)
Sol. Two equations have common root
$\therefore(4 a)(26 a)=(-6)^{2}=36$
$\Rightarrow \mathrm{a}^{2}=\frac{9}{26} \quad \therefore \mathrm{a}=\frac{3}{\sqrt{26}} \Rightarrow \beta=13$
88. The number of seven digits odd numbers, that can be formed using all the seven digits $1,2,2,2,3,3,5$ is \qquad .
Official Ans. by NTA (240)
Ans. (240)
Sol. Digits are 1, 2, 2, 2, 3, 3, 5
If unit digit 5 , then total numbers $=\frac{6!}{3!2!}$
If unit digit 3 , then total numbers $=\frac{6!}{3!}$
If unit digit 1 , then total numbers $=\frac{6!}{3!2!}$
\therefore total numbers $=60+60+120=240$
89. A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p . Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colours is q. If $p: q=m$ $: n$, where m and n are coprime, then $m+n$ is equal to \qquad .

Official Ans. by NTA (14)

Ans. (14)

Sol. $\mathrm{p}=\frac{{ }^{6} \mathrm{C}_{1}}{6 \times 6}=\frac{1}{6}$
$\mathrm{q}=\frac{{ }^{6} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times 4}{6 \times 6 \times 6 \times 6}=\frac{5}{54}$
$\therefore \mathrm{p}: \mathrm{q}=9: 5 \Rightarrow \mathrm{~m}+\mathrm{n}=14$
90. Let A be the area of the region

$$
\left\{(x, y): y \geq x^{2}, y \geq(1-x)^{2}, y \leq 2 x(1-x)\right\}
$$

Then 540 A is equal to
Official Ans. by NTA (25)
Ans. (25)
Sol.

$A=2 \int_{\frac{1}{3}}^{\frac{1}{2}}\left(2 x-2 x^{2}-(1-x)^{2}\right) d x$
$=2\left[2 x^{2}-x^{3}-x\right]_{1 / 3}^{1 / 2}$
$\therefore \mathrm{A}=\frac{5}{108} \Rightarrow 540 \mathrm{~A}=\frac{5}{108} \times 540=25$

