

FINAL JEE-MAIN EXAMINATION – JANUARY, 2023 Held On Tuesday 31th January, 2023

TIME: 09:00 AM to 12:00 PM

SECTION-A

- 61. If the maximum distance of normal to the ellipse $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$, b < 2, from the origin is 1, then the eccentricity of the ellipse is:
 - (1) $\frac{1}{\sqrt{2}}$
- (2) $\frac{\sqrt{3}}{2}$
- (3) $\frac{1}{2}$
- (4) $\frac{\sqrt{3}}{4}$

Official Ans. by NTA (2) Ans. (2)

Sol. Equation of normal is

 $2x \sec \theta - by \csc \theta = 4 - b^2$

Distance from $(0, 0) = \frac{4 - b^2}{\sqrt{4\sec^2\theta + b^2\csc^2\theta}}$

Distance is maximum if

 $4\sec^2\theta + b^2\csc^2\theta$ is minimum

$$\Rightarrow \tan^2 \theta = \frac{b}{2}$$

$$\Rightarrow \frac{4-b^2}{\sqrt{4 \cdot \frac{b+2}{2} + b^2 \cdot \frac{b+2}{b}}} = 1$$

$$\Rightarrow 4 - b^2 = b + 2 \Rightarrow b = 1 \Rightarrow e = \frac{\sqrt{3}}{2}$$

- **62.** For all $z \in C$ on the curve $C_1 : |z| = 4$, let the locus of the point $z + \frac{1}{z}$ be the curve C_2 . Then
 - (1) the curves C_1 and C_2 intersect at 4 points
 - (2) the curves C_1 lies inside C_2
 - (3) the curves C_1 and C_2 intersect at 2 points
 - (4) the curves C_2 lies inside C_1

Official Ans. by NTA (1)

Ans. (1)

Sol. Let
$$w = z + \frac{1}{z} = 4e^{i\theta} + \frac{1}{4}e^{-i\theta}$$

$$\Rightarrow w = \frac{17}{4}\cos\theta + i\frac{15}{4}\sin\theta$$

So locus of w is ellipse $\frac{x^2}{\left(\frac{17}{4}\right)^2} + \frac{y^2}{\left(\frac{15}{4}\right)^2} = 1$

Locus of z is circle $x^2 + y^2 = 16$

So intersect at 4 points

- 63. A wire of length 20 m is to be cut into two pieces.
 A piece of length ℓ₁ is bent to make a square of area A₁ and the other piece of length ℓ₂ is made into a circle of area A₂. If 2A₁ + 3A₂ is minimum then (πℓ₁): ℓ₂ is equal to:
 - (1) 6:1
 - (2) 3:1
 - (3)1:6
 - (4) 4:1

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\ell_1 + \ell_2 = 20 \Rightarrow \frac{d\ell_2}{d\ell_1} = -1$$

$$A_1 = \left(\frac{\ell_1}{4}\right)^2$$
 and $A_2 = \pi \left(\frac{\ell_2}{2\pi}\right)^2$

Let
$$S = 2A_1 + 3A_2 = \frac{\ell_1^2}{8} + \frac{3\ell_2^2}{4\pi}$$

$$\frac{ds}{d\ell} = 0 \Longrightarrow \frac{2\ell_1}{8} + \frac{6\ell_2}{4\pi} \cdot \frac{d\ell_2}{d\ell_1} = 0$$

$$\Rightarrow \frac{\ell_1}{4} = \frac{6\ell_2}{4\pi} \Rightarrow \frac{\pi\ell_1}{\ell_2} = 6$$

For the system of linear equations 64.

$$x + y + z = 6$$

∜Saral

$$\alpha x + \beta y + 7z = 3$$

$$x + 2y + 3z = 14$$

which of the following is NOT true?

- (1) If $\alpha = \beta = 7$, then the system has no solution
- (2) If $\alpha = \beta$ and $\alpha \neq 7$ then the system has a unique solution.
- (3) There is a unique point (α, β) on the line x + 2y + 18 = 0 for which the system has infinitely many solutions
- (4) For every point $(\alpha, \beta) \neq (7, 7)$ on the line x - 2y + 7 = 0, the system has infinitely many solutions.

Official Ans. by NTA (4)

Ans. (4)

Sol. By equation 1 and 3

$$y + 2z = 8$$

$$y = 8 - 2z$$

And

$$x = -2 + z$$

Now putting in equation 2

$$\alpha(z-2) + \beta(-2z+8) + 7z = 3$$

$$\Rightarrow$$
 $(\alpha - 2\beta + 7)z = 2\alpha - 8\beta + 3$

So equations have unique solution if

$$\alpha - 2\beta + 7 \neq 0$$

And equations have no solution if

$$\alpha - 2\beta + 7 = 0$$
 and $2\alpha - 8\beta + 3 \neq 0$

And equations have infinite solution if

$$\alpha - 2\beta + 7 = 0$$
 and $2\alpha - 8\beta + 3 = 0$

Let the shortest distance between the lines **65.**

L:
$$\frac{x-5}{-2} = \frac{y-\lambda}{0} = \frac{z+\lambda}{1}$$
, $\lambda \ge 0$ and L₁: $x + 1 = y - 1$

1 = 4 - z be $2\sqrt{6}$. If (α, β, γ) lies on L, then which of the following is NOT possible?

(1)
$$\alpha + 2\gamma = 24$$

$$(2) 2\alpha + \gamma = 7$$

(3)
$$2\alpha - \gamma = 9$$

$$(4) \alpha - 2\gamma = 19$$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & 1 \\ 1 & 1 & -1 \end{vmatrix} = -\hat{i} - \hat{j} - 2\hat{k}$$

$$\overrightarrow{a_2} - \overrightarrow{a_1} = 6\hat{i} + (\lambda - 1)\hat{j} + (-\lambda - 4)\hat{k}$$

$$2\sqrt{6} = \left| \frac{-6 - \lambda + 1 + 2\lambda + 8}{\sqrt{1 + 1 + 4}} \right|$$

$$|\lambda + 3| = 12 \Rightarrow \lambda = 9, -15$$

$$\alpha = -2k + 5\,, \ \gamma = k - \lambda \ where \ k \in \! R$$

$$\Rightarrow \alpha + 2\gamma = 5 - 2\lambda = -13,35$$

Let y = f(x) represent a parabola with focus 66.

$$\left(-\frac{1}{2},0\right)$$
 and directrix $y=-\frac{1}{2}$.

$$S = \left\{ x \in \mathbb{R} : \tan^{-1} \left(\sqrt{f(x)} + \sin^{-1} \left(\sqrt{f(x) + 1} \right) \right) = \frac{\pi}{2} \right\} :$$

- (1) contains exactly two elements
- (2) contains exactly one element
- (3) is an infinite set
- (4) is an empty set

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\left(x + \frac{1}{2}\right)^2 = \left(y + \frac{1}{4}\right)$$

$$y = (x^2 + x)$$

$$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{2}$$

$$0 \le x^2 + x + 1 \le 1$$

$$x^2 + x \le 0$$

Also
$$x^2 + x \ge 0$$

$$\therefore x^2 + x = 0 \Rightarrow x = 0, -1$$

S contains 2 element.

Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{pmatrix}$. Then the sum of the

diagonal elements of the matrix $(A + I)^{11}$ is equal

- (1)6144
- (2)4094
- (3)4097
- (4) 2050

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{bmatrix} = A$$

$$\Rightarrow$$
 A³ = A⁴ = = A

$$(A+I)^{11} = {}^{11}C_0A^{11} + {}^{11}C_1A^{10} + \dots {}^{11}C_{10}A + {}^{11}C_{11}I$$

$$= ({}^{11}C_0 + {}^{11}C_1 + \dots {}^{11}C_{10})A + I$$

$$= (2{}^{11}-1)A + I = 2047A + I$$

:. Sum of diagonal elements =
$$2047(1 + 4 - 3) + 3$$

= $4094 + 3 = 4097$

- **68.** Let R be a relation on $N \times N$ defined by (a, b) R
 - (c, d) if and only if ad(b-c) = bc(a-d). Then R is
 - (1) symmetric but neither reflexive nor transitive
 - (2) transitive but neither reflexive nor symmetric
 - (3) reflexive and symmetric but not transitive
 - (4) symmetric and transitive but not reflexive

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$(a, b) R (c, d) \Rightarrow ad(b-c) = bc(a-d)$$

Symmetric:

$$(c, d) R (a, b) \Rightarrow cb(d-a) = da(c-b) \Rightarrow$$

Symmetric

Reflexive:

$$(a, b) R (a, b) \Rightarrow ab(b-a) \neq ba(a-b) \Rightarrow$$

Not reflexive

Transitive: (2,3) R (3,2) and (3,2) R (5,30) but

$$((2,3),(5,30)) \notin \mathbb{R} \implies \text{Not transitive}$$

$$y = f(x) = \sin^3\left(\frac{\pi}{3}\left(\cos\left(\frac{\pi}{3\sqrt{2}}\left(-4x^3 + 5x^2 + 1\right)^{\frac{3}{2}}\right)\right)\right)$$

. Then, at x = 1

(1)
$$2y' + \sqrt{3}\pi^2 y = 0$$

(2)
$$2y' + 3\pi^2 y = 0$$

(3)
$$\sqrt{2}y' - 3\pi^2y = 0$$

(4)
$$y' + 3\pi^2 y = 0$$

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$y = \sin^3(\pi/3\cos g(x))$$

$$g(x) = \frac{\pi}{3\sqrt{2}} \left(-4x^3 + 5x^2 + 1 \right)^{3/2}$$

$$g(1) = 2\pi/3$$

$$y' = 3\sin^2\left(\frac{\pi}{3}\cos g(x)\right) \times \cos\left(\frac{\pi}{3}\cos g(x)\right)$$

$$\times \frac{\pi}{3} \left(-\sin g(x) \right) g'(x)$$

$$y'(1) = 3\sin^2\left(-\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{6}\right) \cdot \frac{\pi}{3}\left(-\sin\frac{2\pi}{3}\right)g'(1)$$

$$g'(x) = \frac{\pi}{3\sqrt{2}} \left(-4x^3 + 5x^2 + 1 \right)^{1/2} \left(-12x^2 + 10x \right)$$

$$g'(1) = \frac{\pi}{2\sqrt{2}}(\sqrt{2})(-2) = -\pi$$

$$y'(1) = \frac{\cancel{3}}{4} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{\cancel{3}} \left(\frac{-\sqrt{3}}{2} \right) (-\pi) = \frac{3\pi^2}{16}$$

$$y(1) = \sin^3(\pi/3\cos 2\pi/3) = -\frac{1}{8}$$

$$2y'(1) + 3\pi^2y(1) = 0$$

70. If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is

(2)
$$\frac{9}{2}$$

Official Ans. by NTA (1)

Ans. (1)

Sol. a, ar,
$$ar^2$$
, ar^3 (a, $r > 0$)

$$a^4r^6 = 1296$$

$$a^2r^3 = 36$$

&Saral

$$a = \frac{6}{r^{3/2}}$$

$$a + ar + ar^2 + ar^3 = 126$$

$$\frac{1}{r^{3/2}} + \frac{r}{r^{3/2}} + \frac{r^2}{r^{3/2}} + \frac{r^3}{r^{3/2}} = \frac{126}{6} = 21$$

$$(r^{-3/2} + r^{3/2}) + (r^{1/2} + r^{-1/2}) = 21$$

$$r^{1/2} + r^{-1/2} = A$$

$$r^{-3/2} + r^{3/2} + 3A = A^3$$

$$A^3 - 3A + A = 21$$

$$A^3 - 2A = 21$$

$$A = 3$$

$$\sqrt{r} + \frac{1}{\sqrt{r}} = 3$$

$$r+1=3\sqrt{r}$$

$$r^2 + 2r + 1 = 9r$$

$$r^2 - 7r + 1 = 0$$

71. The number of real roots of the equation $\sqrt{x^2 - 4x + 3} + \sqrt{x^2 - 9} = \sqrt{4x^2 - 14x + 6}$ is:

- (1) 0
- (2) 1
- (3)3
- (4)2

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\sqrt{(x-1)(x-3)} + \sqrt{(x-3)(x+3)}$$

= $\sqrt{4(x-\frac{12}{4})(x-\frac{2}{4})}$

$$\Rightarrow \sqrt{x-3} = 0 \Rightarrow x = 3$$
 which is in domain

$$\sqrt{x-1} + \sqrt{x+3} = \sqrt{4x-2}$$

$$2\sqrt{(x-1)(x+3)} = 2x-4$$

$$x^2 + 2x - 3 = x^2 - 4x + 4$$

$$6x = 7$$

$$x = 7/6$$
 (rejected)

$$f(x) + \int_{3}^{x} \frac{f(t)}{t} dt = \sqrt{x+1}, x \ge 3$$
. Then $12f(8)$ is

equal to:

- (1)34
- (2) 19
- (3) 17
- (4) 1

Official Ans. by NTA (3)

Ans. (3)

Sol. Differentiate w.r.t. x

$$f'(x) + \frac{f(x)}{x} = \frac{1}{2\sqrt{x+1}}$$

$$I.F. = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$

$$xf(x) = \int \frac{x}{2\sqrt{x+1}} dx$$

$$x + 1 = t^2$$

$$=\int \frac{t^2-1}{2t} 2t dt$$

$$xf(x) = \frac{t^3}{3} - t + c$$

$$xf(x) = \frac{(x+1)^{3/2}}{3} - \sqrt{x+1} + c$$

Also putting x = 3 in given equation $f(3) + 0 = \sqrt{4}$

$$f(3) = 2$$

$$\Rightarrow$$
 C = $8 - \frac{8}{3} = \frac{16}{3}$

$$f(x) = \frac{(x+1)^{3/2}}{3} - \sqrt{x+1} + \frac{16}{3}$$

$$f(8) = \frac{9-3+\frac{16}{3}}{8} = \frac{34}{24}$$

$$\Rightarrow$$
 12 f(8) = 17

- 73. If the domain of the function $f(x) = \frac{[x]}{1+x^2}$, where
 - [x] is greatest integer \leq x, is [2, 6), then its range is

$$(1)\left(\frac{5}{26},\frac{2}{5}\right] - \left\{\frac{9}{29},\frac{27}{109},\frac{18}{89},\frac{9}{53}\right\}$$

$$(2)\left(\frac{5}{26},\frac{2}{5}\right]$$

∜Saral

$$(3)\left(\frac{5}{37}, \frac{2}{5}\right] - \left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$$

$$(4)\left(\frac{5}{37},\frac{2}{5}\right]$$

Official Ans. by NTA (4)

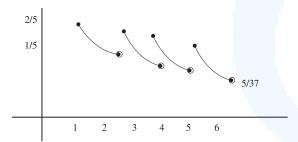
Ans. (4)

Sol.
$$f(x) = \frac{2}{1+x^2}$$
 $x \in [2,3)$

$$f(x) = \frac{3}{1+x^2} \qquad x \in [3,4)$$

$$f(x) = \frac{4}{1+x^2}$$
 $x \in [4,5)$

$$f(x) = \frac{5}{1+x^2}$$
 $x \in [5,6)$



$$\left(\frac{5}{37},\frac{2}{5}\right]$$

- 74. Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, and \vec{b} and \vec{c} be two nonzero vectors such that $|\vec{a} + \vec{b} + \vec{c}| = |\vec{a} + \vec{b} \vec{c}|$ and $\vec{b} \cdot \vec{c} = 0$. Consider the following two statement:
 - (A) $|\vec{a} + \lambda \vec{c}| \ge |\vec{a}|$ for all $\lambda \in \mathbb{R}$.
 - (B) $\vec{a}\,$ and $\vec{c}\,$ are always parallel
 - (1) only (B) is correct
 - (2) neither (A) nor (B) is correct
 - (3) only (A) is correct
 - (4) both (A) and (B) are correct.

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a} + \vec{b} - \vec{c}|^2$$

$$2\vec{a}.\vec{b} + 2\vec{b}.\vec{c} + 2\vec{c}.\vec{a} = 2\vec{a}.\vec{b} - 2\vec{b}.\vec{c} - 2\vec{c}.\vec{a}$$

$$4\vec{a}.\vec{c}=0$$

B is incorrect

$$\left|\vec{a} + \lambda \vec{c}\right|^2 \ge \left|\vec{a}\right|^2$$

$$\lambda^2 c^2 \ge 0$$

True $\forall \lambda \in R$ (A) is correct.

75. Let
$$\alpha \in (0, 1)$$
 and $\beta = \log_e(1 - \alpha)$. Let

$$P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}, x \in (0, 1).$$

Then the integral $\int_{0}^{\alpha} \frac{t^{50}}{1-t} dt$ is equal to

$$(1)\beta - P_{50}(\alpha)$$

$$(2) - (\beta + P_{50}(\alpha))$$

(3)
$$P_{50}(\alpha) - \beta$$

(4)
$$\beta + P_{50}(\alpha)$$

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\int_{0}^{\alpha} \frac{t^{50} - 1 + 1}{1 - t} = -\int_{0}^{\alpha} \left(1 + t + \dots + t^{49}\right) + \int_{0}^{\alpha} \frac{1}{1 - t} dt$$

$$= -\left(\frac{\alpha^{50}}{50} + \frac{\alpha^{49}}{49} + \dots + \frac{\alpha^{1}}{1}\right) + \left(\frac{\ln(1-f)}{-1}\right)_{0}^{\alpha}$$

$$=-P_{50}(\alpha)-\ln(1-\alpha)$$

$$= -P_{50}(\alpha) - \beta$$

76. If
$$\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0$$
, $0 < \alpha < 13$,

then $\sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha)$ is equal to

- $(1) \pi$
- (2) 16
- (3)0
- (4) $16 5\pi$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\cos^{-1}\frac{4}{5} = \tan^{-1}\frac{3}{4}$$

$$\therefore \sin^{-1} \frac{\alpha}{17} = \tan^{-1} \frac{77}{36} - \tan^{-1} \frac{3}{4} = \tan^{-1} \left(\frac{\frac{77}{36} - \frac{3}{4}}{1 + \frac{77}{36} \cdot \frac{3}{4}} \right)$$

$$\sin^{-1}\frac{\alpha}{17} = \tan^{-1}\frac{8}{15} = \sin^{-1}\frac{8}{17}$$

$$\Rightarrow \frac{\alpha}{17} = \frac{8}{17} \Rightarrow \alpha = 8$$

$$\therefore \sin^{-1}(\sin 8) + \cos^{-1}(\cos 8)$$

$$=3\pi-8+8-2\pi$$

 $=\pi$

77. Let a circle C_1 be obtained on rolling the circle $x^2 + y^2 - 4x - 6y + 11 = 0$ upwards 4 units on the tangent T to it at the point (3, 2). Let C_2 be the image of C_1 in T. Let A and B be the centers of circles C_1 and C_2 respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the area of the trapezium AMNB is:

(1)
$$2(2+\sqrt{2})$$

(2)
$$4(1+\sqrt{2})$$

(3)
$$3+2\sqrt{2}$$

(4)
$$2(1+\sqrt{2})$$

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$C = (2, 3), r = \sqrt{2}$$

Centre of $G = A = 2 + 4 \frac{1}{\sqrt{2}}$,

$$3 + \frac{4}{\sqrt{2}} = (2 + 2\sqrt{2}, 3 + 2\sqrt{2})$$

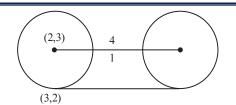
$$A\left(2+2\sqrt{2},3+2\sqrt{2}\right)$$

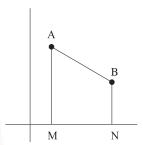
$$B(4+2\sqrt{2},1+2\sqrt{2})$$

$$\frac{x - (2 + 2\sqrt{2})}{1} = \frac{y - (3 + 2\sqrt{2})}{-1} = 2$$

: area of trapezium:

$$\frac{1}{2} \left(4 + 4\sqrt{2} \right) 2 = 4 \left(1 + \sqrt{2} \right)$$





78. $(S1)(p \Rightarrow q) \lor (p \land (\sim q))$ is a tautology

$$(S2)((\sim p) \Rightarrow (\sim q)) \land ((\sim p) \lor q)$$
 is a

Contradiction. Then

- (1) only (S2) is correct
- (2) both (S1) and (S2) are correct
- (3) both (S1) and (S2) are wrong
- (4) only (S1) is correct

Official Ans. by NTA (4)

Ans. (4)

Sol.

p	q	p⇒q	~q	p∧~q	$(p \Rightarrow q) \lor (p \land \sim q)$
Т	Т	T	F	F	T
T	F	F	T	T	T
F	T	T	F	F	T
F	F	T	T	F	T

~p	~q	~p⇒~q	~p∨q	((~p)⇒(~q))∧(~p)∨ q)
F	F	T	T	T
F	T	T	F	F
T	F	F	T	F
T	T	T	T	T

6

- 79. The value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(2+3\sin x)}{\sin x (1+\cos x)} dx$ is equal to
 - (1) $\frac{7}{2} \sqrt{3} \log_e \sqrt{3}$
 - (2) $-2 + 3\sqrt{3} + \log_e \sqrt{3}$
 - (3) $\frac{10}{3} \sqrt{3} + \log_e \sqrt{3}$
 - (4) $\frac{10}{3} \sqrt{3} \log_e \sqrt{3}$

Official Ans. by NTA (3)

Ans. (3)

- **Sol.** $\int_{\pi/3}^{\pi/2} \left(\frac{2 + 3\sin x}{\sin x \left(1 + \cos x \right)} \right) dx = 2 \int_{\pi/3}^{\pi/2} \frac{dx}{\sin x + \sin x \cos x} + 3$
 - $3\int_{\pi/3}^{\pi/2} \frac{\mathrm{dx}}{1+\cos x}$
 - $\int_{\pi/3}^{\pi/2} \frac{dx}{1 + \cos x} = \int_{\pi/3}^{\pi/2} \frac{1 \cos x}{\sin^2 x} dx$
 - $= \int_{\pi/3}^{\pi/2} \left(\cos ec^2 x \cot x \csc x\right) dx$
 - $= \left(\cos \operatorname{ecx} \cot x\right) \int_{\pi/3}^{\pi/2} = \left(1\right) \left(\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}}\right) = 1 \frac{1}{\sqrt{3}}$
 - $\int_{\pi/3}^{\pi/2} \frac{\mathrm{dx}}{\sin x \left(1 + \cos x\right)} =$
 - $\int \frac{dx}{\left(2\tan x/2\right)\left(1+1-\tan^2\frac{x}{2}\right)}$
 - $= \int \frac{\left(1 + \tan^2 \frac{x}{2}\right) \sec^2 \frac{x}{2} dx}{2 \tan \frac{x}{2} 2}$
 - $\tan \frac{x}{2} = t \qquad \qquad \sec \frac{x}{2} \frac{1}{2} dx = dt$
 - $\frac{1}{2}\int \left(\frac{1+t^2}{t}\right)dt = \frac{1}{2}\left[\ell nt + \frac{t^2}{2}\right]_{\frac{1}{\sqrt{5}}}^{1}$
 - $= \frac{1}{2} \left[\left(0 + \frac{1}{2} \right) \left(\ln \frac{1}{\sqrt{3}} + \frac{1}{6} \right) \right] = \left(\frac{1}{3} + \ln \sqrt{3} \right) \frac{1}{2}$
 - $= \left(\frac{1}{6} + \frac{1}{2} \ln \sqrt{3}\right)$
 - $2\left(\frac{1}{6} + \frac{1}{2}\ln\sqrt{3}\right) + 3\left(1 \frac{1}{\sqrt{3}}\right)$
 - $= \frac{1}{3} + \ell n \sqrt{3} + 3 \sqrt{3} = \frac{10}{3} + \ell n \sqrt{3} \sqrt{3}$

- **80.** A bag contains 6 balls. Two balls are drawn from it at random and both are found to be black. The probability that the bag contains at least 5 black balls is
 - $(1) \frac{5}{7}$
- (2) $\frac{2}{7}$
- (3) $\frac{3}{7}$

 $(4) \frac{5}{6}$

Official Ans. by NTA (1)

Ans. (1)

Sol. $\frac{{}^{5}C_{2} + {}^{6}C_{2}}{{}^{2}C_{2} + {}^{3}C_{2} + {}^{4}C_{2} + {}^{5}C_{2} + {}^{8}C_{2}} = \frac{10 + 15}{1 + 3 + 6 + 10 + 15}$ $= \frac{25}{27} = \frac{5}{7}$

SECTION-B

81. Let 5 digit numbers be constructed using the digits0, 2, 3, 4, 7, 9 with repetition allowed, and are arranged in ascending order with serial numbers.Then the serial number of the number 42923 is

Official Ans. by NTA (2997)

Ans. (2997)

- **Sol.** 2+++=1296
 - 3++++=1296
 - 40+++=216
 - 420 + + = 36
 - 422++=36
 - 423 + + = 36
 - 424 + + = 36
 - 427 + + = 36
 - $429 \ \underline{0} + = 6$
 - $429\ 2\ 0 = 1$
 - $429\ 2\ 2 = 1$
 - 429 2 3 = 1
 - = 2997

82. Let a_1 , a_2 ,, a_n be in A.P. If $a_5 = 2a_7$ and $a_{11} = 18$, then

$$12\left(\frac{1}{\sqrt{a_{10}} + \sqrt{a_{11}}} + \frac{1}{\sqrt{a_{11}} + \sqrt{a_{12}}} + \dots + \frac{1}{\sqrt{a_{17}} + \sqrt{a_{18}}}\right)$$

is equal to _____.

Official Ans. by NTA (8)

Ans. (8)

Sol. $2a_7 = a_5$ (given)

$$2(a_1 + 6d) = a_1 + 4d$$

$$a_1 + 8d = 0$$

$$a_1 + 10d = 18$$

By (1) and (2) we get $a_1 = -72$, d = 9

$$a_{18} = a_1 + 17d = -72 + 153 = 81$$

$$a_{10} = a_1 + 9d = 9$$

$$12\left(\frac{\sqrt{a_{11}}-\sqrt{a_{10}}}{d}+\frac{\sqrt{a_{12}}-\sqrt{a_{11}}}{d}+\dots,\frac{\sqrt{a_{18}}-\sqrt{a_{17}}}{d}\right)$$

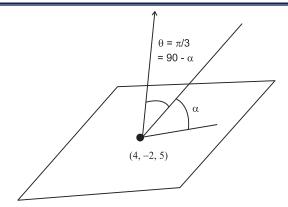
$$12\left(\frac{\sqrt{a_{18}} - \sqrt{a_{10}}}{d}\right) = \frac{12(9-3)}{9} = \frac{12 \times 6}{6} = 8$$

83. Let θ be the angle between the planes $P_1 = \vec{r}.(\hat{i} + \hat{j} + 2\hat{k}) = 9 \text{ and } P_2 = \vec{r}.(2\hat{i} - \hat{j} + \hat{k}) = 15.$

Let L be the line that meets P_2 at the point (4, -2, 5) and makes an angle θ with the normal of P_2 . If α is the angle between L and P_2 then $(\tan^2\theta)(\cot^2\alpha)$ is equal to _____.

Official Ans. by NTA (9)

Ans. (9)



$$\cos\theta = \frac{(\hat{i} + \hat{j} + 2\hat{k}) \cdot (2\hat{i} - \hat{j} + \hat{k})}{6} = \frac{2 - 1 + 2}{6} = \frac{1}{2}$$

$$\theta = \pi/3$$

$$\alpha = \pi / 6$$

$$(\tan^2\theta)(\cot^2\alpha)$$

$$(3)(3) = 9$$

84. Let $\alpha > 0$, be the smallest number such that the expansion of $\left(x^{\frac{2}{3}} + \frac{2}{x^3}\right)^{30}$ has a term $\beta x^{-\alpha}, \beta \in \mathbb{N}$.

Then α is equal to _____.

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$T_{r+1} = {}^{30}C_r \left(x^{2/3}\right)^{30-r} \left(\frac{2}{x^3}\right)^r$$

$$={}^{30}C_{r}.2^{r}.x^{\frac{60-11r}{3}}$$

$$\frac{60-11r}{3}$$
 < 0 \Rightarrow 11r > 60 \Rightarrow r > $\frac{60}{11}$ \Rightarrow r = 6

$$T_7 = {}^{30}C_6.2^6 \text{ x}^{-2}$$

We have also observed $\beta = {}^{30}C_6 (2)^6$ is a natural number.

$$\alpha = 2$$

85. Let \vec{a} and \vec{b} be two vector such that $|\vec{a}| = \sqrt{14}$, $|\vec{b}| = \sqrt{6}$ and $|\vec{a} \times \vec{b}| = \sqrt{48}$. Then $(\vec{a}.\vec{b})^2$ is equal to

Official Ans. by NTA (36)

Ans. (36)

Sol.
$$|\vec{a}| = \sqrt{14}$$
, $|\vec{b}| = \sqrt{6}$ $|\vec{a} \times \vec{b}| = \sqrt{48}$

$$|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 \times |\vec{b}|^2$$

$$\Rightarrow (\vec{a} \cdot \vec{b})^2 = 84 - 48 = 36$$

Let the line L: $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$ intersect the 86. plane 2x + y + 3z = 16 at the point P. Let the point Q be the foot of perpendicular from the point R(1, -1, -3) on the line L. If α is the area of triangle PQR. then α^2 is equal to

Official Ans. by NTA (180) Ans. (180)

Sol. Any point on
$$L((2\lambda+1),(-\lambda-1),(\lambda+3))$$

 $2(2\lambda+1)+(-\lambda-1)+3(\lambda+3)=16$
 $6\lambda+10=16 \Rightarrow \lambda=1$

DR of QR =
$$\langle 2\lambda, -\lambda, \lambda + 6 \rangle$$

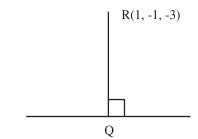
DR of L =
$$\langle 2, -1, 1 \rangle$$

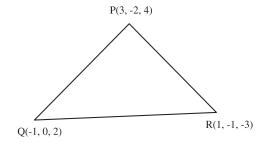
P = (3, -2, 4)

$$4\lambda + \lambda + \lambda + 6 = 0$$

$$6\lambda + 6 = 0 \Rightarrow \lambda = -1$$

$$Q = (-1, 0, 2)$$





$$\overrightarrow{QR} = 2\hat{i} - \hat{j} - 5\hat{k}$$
 $\overrightarrow{QP} = 4\hat{i} - 2\hat{j} + 2\hat{k}$

$$\overrightarrow{QR} \times \overrightarrow{QP} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & -5 \\ 4 & -2 & 2 \end{vmatrix} = -12\hat{i} - 24\hat{j}$$

$$\alpha = \frac{1}{2} \times \sqrt{144 + 576} \Rightarrow \alpha^2 = \frac{720}{4} = 180$$

The remainder on dividing 5⁹⁹ by 11 is **87.**

Official Ans. by NTA (9)

Sol.
$$5^{99} = 5^4.5^{95}$$

 $= 625[5^5]^{19}$
 $= 625[3125]^{19}$
 $= 625[3124+1]^{19}$
 $= 625[11k \times 19 + 1]$
 $= 625 \times 11k \times 19 + 625$
 $= 11 k_1 + 616 + 9$

$$-11 \text{ K}_1 + 010 +$$

$$=11(k_2)+9$$

Remainder = 9

88. If the variance of the frequency distribution

$\mathbf{x_i}$	2	3	4	5	6	7	8
Frequency f _i	3	6	16	α	9	5	6

Official Ans. by NTA (5)

Sol.

		.1		
	c	$d_i = x_i - 5$	c .12	c a
$\mathbf{X_{i}}$	$\mathbf{f_i}$	X _i - 3	$f_i d_i^2$	f _i d _i
2	3	-3	27	-9
3	6	-2	24	-12
4	16	-1	16	-16
5	α	0	0	0
6	9	1	9	9
7	5	2	20	10
8	6	3	54	18

$$\sigma_{x}^{2} = \sigma_{d}^{2} = \frac{\sum f_{i} d_{i}^{2}}{\sum f_{i}} - \left(\frac{\sum f_{i} d_{i}}{\sum f_{i}}\right)^{2}$$
$$= \frac{150}{45 + \alpha} - 0 = 3$$

$$\Rightarrow$$
 150 = 135 + 3 α

$$\Rightarrow$$
 3 α = 15 \Rightarrow α = 5

89. Let for $x \in R$

$$f(x) = \frac{x + |x|}{2} \text{ and } g(x) = \begin{cases} x, & x < 0 \\ x^2 & x \ge 0 \end{cases}.$$

Then area bounded by the curve y = (fog)(x) and the lines y = 0, 2y - x = 15 is equal to _____.

Official Ans. by NTA (72)

Ans. (72)

Sol.
$$f(x) = \frac{x + |x|}{2} = \begin{bmatrix} x & x \ge 0 \\ 0 & x < 0 \end{bmatrix}$$

$$g(x) = \begin{bmatrix} x^2 & x \ge 0 \\ x & x < 0 \end{bmatrix}$$

$$fog(x) = f[g(x)] = \begin{bmatrix} g(x) & g(x) \ge 0 \\ 0 & g(x) < 0 \end{bmatrix}$$

$$fog(x) = \begin{bmatrix} x^2 & x \ge 0 \\ 0 & x < 0 \end{bmatrix}$$

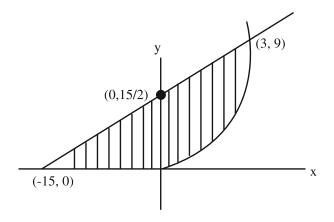
$$2y - x = 15$$

$$A = \int_{0}^{3} \left(\frac{x+15}{2} - x^{2} \right) dx + \frac{1}{2} \times \frac{15}{2} \times 15$$

$$\frac{x^2}{4} + \frac{15x}{2} - \frac{x^3}{3} \Big|_{0}^{3} + \frac{225}{4}$$

$$=\frac{9}{4}+\frac{45}{2}-9+\frac{225}{4}=\frac{99-36+225}{4}$$

$$=\frac{288}{4}=72$$



90. Number of 4-digit numbers that are less than or equal to 2800 and either divisible by 3 or by 11, is equal to _____.

Official Ans. by NTA (710)

Ans. (710)

Sol. 1000 – 2799

Divisible by 3

$$1002 + (n-1)3 = 2799$$

$$n = 600$$

Divisible by 11

$$1 - 2799 \rightarrow \left\lceil \frac{2799}{11} \right\rceil = \left[254 \right] = 254$$

$$1 - 999 = \left\lceil \frac{999}{11} \right\rceil = 90$$

$$1000 - 2799 = 254 - 90 = 164$$

Divisible by 33

$$1 - 2799 \rightarrow \left[\frac{2799}{33}\right] = 84$$

$$1 - 999 \rightarrow \left\lceil \frac{999}{33} \right\rceil = 30$$

$$1000 - 2799 \rightarrow 54$$

$$n(3) + n(11) - n(33)$$

$$600 + 164 - 54 = 710$$