SECTION-A

31. Which of the following compounds would give the following set of qualitative analysis ?
(i) Fehling's Test : Positive
(ii) Na fusion extract upon treatment with sodium nitroprusside gives a blood red colour but not
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Ans. (4)
Sol. Aromatic aldehydes do not give Fehling's test.
Both nitrogen and sulfur must be present to obtain blood red colour
Sodium nitroprusside gives blood red colour with S \& N.
32. What is the correct order of acidity of the protons marked $\mathrm{A}-\mathrm{D}$ in the given compounds ?

(1) $\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}$
(2) $\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{B}}$
(3) $\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}$
(4) $\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}$

Official Ans. by NTA (2)
Ans. (2)
Sol. acidity of an acid depends upon the stability of its conjugate base

33. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Ketoses give Seliwanoff's test faster than Aldoses.

Reason (R) : Ketoses undergo β-elimination followed by formation of furfural.

In the light of the above statements, choose the correct answer from the options given below :
(1) (A) is false but (R) is true
(2) Both (A) and (R) are true and (R) is the correct explanation of (A)
(3) (A) is true but (R) is false
(4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Official Ans. by NTA (3)
Ans. (3)
Sol. Seliwanoff 's test is a differentiating test for Ketose and aldose. This test relies on the principle that the keto hexose are more rapidly dehydrated to form 5-hydroxy methyl furfural when heated in acidic medium which on condensation with resorcinol, Cherry red or brown red coloured complex is formed rapidly indicating a positive test.
34. In the extraction of copper, its sulphide ore is heated in a reverberatory furnace after mixing with silica to :
(1) separate CuO as CuSiO_{3}
(2) remove calcium as CaSiO_{3}
(3) decrease the temperature needed for roasting of $\mathrm{Cu}_{2} \mathrm{~S}$
(4) remove FeO as FeSiO_{3}

Official Ans. by NTA (4)
Ans. (4)
Sol. The copper ore contains iron, it is mixed with silica before heating in reverberatory furnace. FeO slags off as FeSiO_{3}.

$$
\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}
$$

35. Amongst the following compounds, which one is an antacid ?
(1) Ranitidine
(2) Meprobamate
(3) Terfenadine
(4) Brompheniramine

Official Ans. by NTA (1)
Ans. (1)
Sol. 1. Ranitidine: Antacid
2. Meprobamate: Tranquilizer
3. Terfenadine: Antihistamine
4. Brompheniramine: Antihistamine
36. The major products ' A ' and ' B ', respectively, are

(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Ans. (1)

Sol.

37. Benzyl isocyanide can be obtained by :
(A)

(B)

(C)

(D)

Choose the correct answer from the options given below :
(1) A and D
(2) Only B
(3) A and B
(4) B and C

Official Ans. by NTA (3)
Ans. (3)

Sol.

Benzyl Isocyanide

38. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A) : In expensive scientific instruments, silica gel is kept in watch-glasses or in semipermeable membrane bags.

Reason (R) : Silica gel adsorbs moisture from air via adsorption, thus protects the instrument from water corrosion (rusting) and / or prevents malfunctioning. In the light of the above statements, choose the correct answer from the options given below :
(1) (A) is false but (R) is true
(2) (A) is true but (R) is false
(3) Both (A) and (R) are true and (R) is the correct explanation of (A)
(4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Official Ans. by NTA (3)
Ans. (3)
Sol. Silica gel prevents water corrosion (rusting) and instrument malfunction by adsorbing moisture from the air
39. Match List I with List II

List I		List II	
A		I	Fitting reaction
B		II	Wurtz Fitting reaction
C	$\xrightarrow{\mathrm{Cu}_{3}, \mathrm{Cl}_{3}}$	III	Finkelstein reaction
D	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{NaI} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+ \\ & \mathrm{NaCl} \end{aligned}$	IV	Sandmeyer reaction

(1) A - II, B - I, C - III, D - IV
(2) A - III, B - II, C - IV, D - I
(3) A - IV, B - II, C - III, D - I
(4) A - II, B - I, C - IV, D - III

Official Ans. by NTA (4) Ans. (4)
Sol.

LIST-I		LIST-II
A.		Wurtzfitting reaction
B.		Fitting reaction
C.		Sandmeyer reaction
D.	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{NaI} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{NaCl}$	Finkelstein reaction

40. Caprolactam when heated at high temperature in presence of water, gives
(1) Teflon
(2) Dacron
(3) Nylon 6, 6
(4) Nylon 6

Official Ans. by NTA (4)

Sol.
Ans. (4)

Caprolactam
Nylon -6
41. The alkaline earth metal sulphate(s) which are readily soluble in water is/are:
(A) BeSO_{4}
(B) MgSO_{4}
(C) CaSO_{4}
(D) SrSO_{4}
(E) BaSO_{4}

Choose the correct answer from the options given below:
(1) A only
(2) B only
(3) A and B
(4) B and C

Official Ans. by NTA (3)

Ans. (3)

Sol. Due to high hydration energy Be^{2+} and Mg^{2+}, BeSO_{4} and MgSO_{4} are readily soluble in water.
42. Which of the following is correct order of ligand field strength?
(1) $\mathrm{CO}<\mathrm{en}<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}^{2-}$
(2) $\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}$
(3) $\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}<\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(4) $\mathrm{S}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

Official Ans. by NTA (2)
Ans. (2)
Sol. The increasing order of field strength of ligands (according to spectrochemical series)
$\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}$
43. Formation of photochemical smog involves the following reaction in which A, B and C are respectively.
(i) $\mathrm{NO}_{2} \xrightarrow{\text { hu }} \mathrm{A}+\mathrm{B}$
(ii) $\mathrm{B}+\mathrm{O}_{2} \rightarrow \mathrm{C}$
(iii) $\mathrm{A}+\mathrm{C} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$

Choose the correct answer from the options given below:
(1) $\mathrm{O}, \mathrm{NO} \& \mathrm{NO}_{3}^{-}$
(2) $\mathrm{O}, \mathrm{N}_{2} \mathrm{O} \& \mathrm{NO}$
(3) $\mathrm{N}, \mathrm{O}_{2} \& \mathrm{O}_{3}$
(4) $\mathrm{NO}, \mathrm{O} \& \mathrm{O}_{3}$

Official Ans. by NTA (4)
Ans. (4)
Sol. $\quad \mathrm{NO}_{2 \mathrm{~g}} \xrightarrow{\mathrm{hv}} \underset{\text { (A) }}{\mathrm{NO}_{\mathrm{g}}}+\underset{\text { (B) }}{\mathrm{O}_{\mathrm{g}}}$
$\mathrm{O}_{\mathrm{g}}+\mathrm{O}_{2 \mathrm{~g}} \rightleftharpoons \mathrm{O}_{3 \mathrm{~g}}$
(B) (C)
$\underset{(\mathrm{A})}{\mathrm{NO}_{\mathrm{g}}}+\underset{\text { (C) }}{\mathrm{O}_{3 \mathrm{~g}}} \longrightarrow \mathrm{NO}_{2 \mathrm{~g}}+\mathrm{O}_{2 \mathrm{~g}}$
44. During the qualitative analysis of SO_{3}^{2-} using dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas is evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution (acidified with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$):
(1) Black
(2) Red
(3) Green
(4) Blue

Official Ans. by NTA (3)
Ans. (3)
Sol. $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{SO}_{3}^{2-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Cr}_{\text {Gren }}^{3+}+\mathrm{SO}_{4}^{2-}$
45. To inhibit the growth of tumours, identify the compounds used from the following:
(A) EDTA
(B) Coordination Compounds of Pt
(C) D - Penicillamine
(D) Cis - Platin

Choose the correct answer from the option given below:
(1) B and D Only
(2) C and D Only
(3) A and B Only
(4) A and C Only

Official Ans. by NTA (1)

Ans. (1)

Sol. Cis - Platin is used in chemotherapy to inhibits the growth of tumors. $\left(\operatorname{cis}\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]\right)$
46. In the wet tests for identification of various cations by precipitation, which transition element cation doesn't belong to group IV in qualitative inorganic analysis?
(1) Fe^{3+}
(2) Zn^{2+}
(3) Co^{2+}
(4) Ni^{2+}

Official Ans. by NTA (1)
Ans. (1)
Sol. $\mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}=\mathrm{IV}^{\text {th }}$ Group
$\mathrm{Fe}^{3+}=$ III $^{\text {rd }}$ Group
47. Match List I with List II

LIST-I (molecules/ions)		LIST-II (No. of lone pairs of e e^{-} on central atom)	
(A)	IF_{7}	I.	Three
(B)	ICl_{4}^{-}	II.	One
(C)	XeF_{6}	III.	Two
(D)	XeF_{2}	IV.	Zero

Choose the correct answer from the options given below:
(1) A - II, B - III, C - IV, D - I
(2) A - IV, B - III, C - II, D - I
(3) A - II, B - I, C - IV, D - III
(4) A - IV, B - I, C - II, D - III

Official Ans. by NTA (2)
Ans. (2)
Sol. IF_{7} zero lone pair
$\mathrm{ICl}_{4}^{-} \quad$ two lone pair
$\mathrm{XeF}_{6} \quad$ one lone pair
XeF_{2} three lone pair
48. For OF_{2} molecule consider the following:
(A) Number of lone pairs on oxygen is 2 .
(B) FOF angle is less than 104.5°.
(C) Oxidation state of O is -2 .
(D) Molecule is bent ' V ' shaped.
(E) Molecular geometry is linear.

Correct options are:
(1) C, D, E only
(2) B, E, A only
(3) A, C, D only
(4) A, B, D only

Official Ans. by NTA (4)
Ans. (4)

Sol.

- Two lone pair one oxygen
- Molecule is ' v ' shaped
- Bond angle is less than $104.5^{\circ}\left(102^{\circ}\right)$
- $\mathrm{O} \cdot \mathrm{S}$ • of ' O ' is +2

49. Lithium aluminium hydride can be prepared from the reaction of
(1) LiCl and $\mathrm{Al}_{2} \mathrm{H}_{6}$
(2) LiH and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
(3) $\mathrm{LiCl}, \mathrm{Al}$ and H_{2}
(4) LiH and $\mathrm{Al}(\mathrm{OH})_{3}$

Official Ans. by NTA (2)
Ans. (2)
Sol. $8 \mathrm{LiH}+\mathrm{Al}_{2} \mathrm{Cl}_{6} \longrightarrow 2 \mathrm{LiAlH}_{4}+6 \mathrm{LiCl}$
50. Match List - I with List - II

LIST-I (Atomic number)		LIST-II (Block of periodic table)	
(A)	37	I.	p-block
(B)	78	II.	d-block
(C)	52	III.	f-block
(D)	65	IV.	s-block

Choose the correct answer from the options given below:
(1) A - II, B - IV, C - I, D - III
(2) A - I, B - III, C - IV, D - II
(3) A - IV, B - III, C - II, D - I
(4) A - IV, B - II, C - I, D - III

Official Ans. by NTA (4)
Ans. (4)
Sol.

Atomic number	Block
$37(\mathrm{~K})$	s-block
$78(\mathrm{Pt})$	d-block
$52(\mathrm{Te})$	p-block
$65(\mathrm{~Tb})$	f-block

SECTION-B

51. Consider the cell
$\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M})| | \mathrm{Fe}^{3+}(\mathrm{aq}), \mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}(\mathrm{s})$
When the potential of the cell is 0.712 V at 298 K , the ratio $\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]$ is \qquad .
(Nearest integer)
Given: $\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+}, \mathrm{E}^{\circ} \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}=0.771$
$\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}$
Official Ans. by NTA (10)
Ans. (10)

Sol

$\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{Fe}^{3+}(\mathrm{aq}), \mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}(\mathrm{s})$ at anode $\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$

At cathode $\mathrm{Fe}_{\mathrm{aq}}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}_{\mathrm{aq}}^{2+}$
$\mathrm{E}^{\circ}=\mathrm{E}_{\mathrm{H}_{2} \mid \mathrm{H}^{+}}^{\circ}+\mathrm{E}_{\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}}^{\circ}=0.771 \mathrm{~V}$
$\mathrm{E}=\mathrm{E}^{\circ}-\frac{0 \cdot 06}{1} \log \frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}$
$0 \cdot 712=(0+0.771)-\frac{0 \cdot 06}{1} \log \frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}$
$\log \frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}=\frac{0 \cdot 059}{0 \cdot 06} \approx 1$
$\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}=10$
52. A 300 mL bottle of soft drink has $0.2 \mathrm{M} \mathrm{CO}_{2}$ dissolved in it. Assuming CO_{2} behaves as an ideal gas, the volume of the dissolved CO_{2} at STP is
\qquad mL . (Nearest integer)
Given: At STP, molar volume of an ideal gas is
$22.7 \mathrm{Lmol}^{-1}$

Official Ans. by NTA (1362)
Ans. (1362 ml)
Sol. Mole of $\mathrm{CO}_{2}=0.2 \mathrm{M} \times\left(300 \times 10^{-3}\right) \mathrm{L}$

$$
=0.06 \text { Mole }
$$

Volume of 0.06 mole CO_{2} at S.T.P

$$
\begin{aligned}
& =0.06 \times 22.7 \\
& =1.362 \mathrm{~L}
\end{aligned}
$$

53. A solution containing 2 g of a non-volatile solute in 20 g of water boils at 373.52 K . The molecular mass of the solute is \qquad $\mathrm{g} \mathrm{mol}^{-1}$. (Nearest integer)

Given, water boils at $373 \mathrm{~K}, \mathrm{~K}_{\mathrm{b}}$ for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$

Official Ans. by NTA (100g)
Ans. (100g)
Sol. $\Delta \mathrm{T}_{\mathrm{b}}=373.52-373$

$$
=0.52
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{Kb} \cdot \mathrm{m}$
$0.52=0.52 \times \frac{2}{\text { Molar Mass }} \times \frac{1}{20 \times 10^{-3}}$
Molar Mass $=100 \mathrm{~g} / \mathrm{mol}$
54. If compound A reacts with B following first order kinetics with rate constant $2.011 \times 10^{-3} \mathrm{~s}^{-1}$. The time taken by A (in seconds) to reduce from 7 g to 2 g will be \qquad . (Nearest Integer)
$[\log 5=0.698, \log 7=0.845, \log 2=0.301]$

Official Ans. by NTA (623)

Ans. (623)
Sol.

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}
$$

$\mathrm{t}=0 \quad 7 \mathrm{~g}$
$\mathrm{t}=\mathrm{t} \quad 2 \mathrm{~g}$
at constant volume

$$
\begin{aligned}
& \mathrm{t}=\frac{2.303}{\mathrm{~K}} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]_{\mathrm{t}}} \\
& =\frac{2 \cdot 303}{2 \cdot 011 \times 10^{-3}} \log \frac{7}{2} \\
& =\frac{2 \cdot 303 \times 0 \cdot 544}{2 \cdot 011 \times 10^{-3}} \\
& =622.989 \\
& \approx 623
\end{aligned}
$$

55. The energy of one mole of photons of radiation of frequency $2 \times 10^{12} \mathrm{~Hz}$ in $\mathrm{J} \mathrm{mol}^{-1}$ is \qquad .
(Nearest integer)
(Given: $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (798)

Ans. (798)

Sol. For one photon $\mathrm{E}=\mathrm{hv}$
For one mole photon,

$$
\begin{aligned}
\mathrm{E} & =6 \cdot 023 \times 10^{23} \times 6 \cdot 626 \times 10^{-34} \times 2 \times 10^{12} \\
& =798 \cdot 16 \mathrm{~J} \\
& \approx 798 \mathrm{~J}
\end{aligned}
$$

56. The number of electrons involved in the reduction of permanganate to manganese dioxide in acidic medium is \qquad .

Official Ans. by NTA (3)
Ans. (3)
Sol. $\stackrel{+7}{\mathrm{Mn}} \mathrm{O}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow \stackrel{+4}{\mathrm{Mn} \mathrm{O}_{2}}+2 \mathrm{H}_{2} \mathrm{O}$
57. When 2 litre of ideal gas expands isothermally into vacuum to a total volume of 6 litre, the change in internal energy is \qquad J. (Nearest integer)

Official Ans. by NTA (0)

Ans. (0)

Sol. For ideal gas $U=f(T)$
and for isothermal process, $\Delta \mathrm{U}=0$
58. 600 mL of 0.01 M HCl is mixed with 400 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The pH of the mixture is
\qquad $\times 10^{-2}$. (Nearest integer)
[Given $\log 2=0.30, \quad \log 3=0.48$
$\log 5=0.69 \quad \log 7=0.84$
$\log 11=1.04]$
Official Ans. by NTA (186)

Ans. (186)

Sol. Total milimoles of $\mathrm{H}^{+}=(600 \times 0.01)+(400 \times 0.01 \times 2)$

$$
\begin{gathered}
=14 \\
{\left[\mathrm{H}^{+}\right]=\frac{14}{1000}=14 \times 10^{-3}} \\
\mathrm{pH}=3-\log 14 \\
=1.86 \\
=186 \times 10^{-2}
\end{gathered}
$$

59. A trisubstituted compound ' A ', $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ gives neutral FeCl_{3} test positive. Treatment of compound ' A ' with NaOH and $\mathrm{CH}_{3} \mathrm{Br}$ gives $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$, with hydroiodic acid gives methyl iodide and with hot conc. NaOH gives a compound $\mathrm{B}, \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$. Compound ' A ' also decolorises alkaline KMnO_{4}. The number of π bond/s present in the compound ' A ' is \qquad .

59 Official Ans. by NTA (4)

Ans. (4)

(or)

$\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$ (Both group can be present)

$$
\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\right)
$$

60. Some amount of dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ is added to 671.141 mL of chloroform $\left(\mathrm{CHCl}_{3}\right)$ to prepare $2.6 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM})$. The concentration of DCM is \qquad ppm (by mass).

Given: Atomic mass : $\mathrm{C}=12 ; \mathrm{H}: 1 ; \mathrm{Cl}=35.5$ density of $\mathrm{CHCl}_{3}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}$

Official Ans. by NTA (221)

Ans. (148)

Sol. \quad Molarity $=\frac{\text { mole }}{\text { volume }}$

$$
\begin{aligned}
2.6 \times 10^{-3} & =\frac{x / 85}{0.67141} \\
x & =0.148 \mathrm{~g}
\end{aligned}
$$

conc. Fo DCM in ppm $=\frac{0.148}{1.49 \times 671.141} \times 10^{6}$

$$
=148 \mathrm{ppm}
$$

