Held On Thursday 06th April, 2023
TIME : 09:00 AM to 12:00 PM

SECTION-A

1. The straight lines 1_{1} and 1_{2} pass through the origin and trisect the line segment of the line $L: 9 x+5 y=45$ between the axes. If m_{1} and m_{2} are the slopes of the lines 1_{1} and 1_{2}, then the point of intersection of the line y $=\left(m_{1}+m_{2}\right) x$ with L lies on.
(1) $6 x+y=10$
(2) $6 x-y=15$
(3) $y-2 x=5$
(4) $y-x=5$

Sol. (4)

$\mathrm{A}(5,0), \mathrm{B}:(0,9)$

	P	1	
A	P	Q	B
$(5,0)$			$(0,9)$

$\rightarrow \mathrm{P}_{\mathrm{x}}=\frac{2 \times 5+1 \times 0}{1+2}=\frac{10}{3}$
$P_{y}=\frac{0 \times 2+9 \times 1}{1+2}=3$
P : $\left(\frac{10}{3}, 3\right)$
Similarly $\rightarrow \mathrm{Q}_{\mathrm{x}}=\frac{1 \times 5+2 \times 0}{1+2}=\frac{5}{3}$
$\mathrm{Q}_{\mathrm{y}}=\frac{1 \times 0+2 \times 9}{1+2}=6$
$\mathrm{Q}:\left(\frac{5}{3}, 6\right)$
Now $m_{1}=\frac{3-0}{\frac{10}{3}-0}=\frac{9}{10}$
$m_{2}=\frac{6-0}{\frac{5}{3}-0}=\frac{18}{5}$
Now $L_{1}: y\left(m_{1}+m_{2}\right) x \Rightarrow y=\left(\frac{9}{2}\right) x \Rightarrow 9 x=2 y$
from (1) \& (2)

$$
\begin{align*}
& 9 x+5 y=45 \\
& 9 x-2 y=0 \\
& -\quad+\quad- \\
& 7 y=45 \quad \Rightarrow y=\frac{45}{7} \\
& \Rightarrow \mathrm{x}=\frac{10}{7}
\end{align*}
$$

which satisfy $\mathrm{y}-\mathrm{x}=5$ Ans. 4
2. Let the position vectors of the points A, B, C and D be $5 \hat{i}+5 \hat{j}+2 \lambda \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+\lambda \hat{j}+4 \hat{k}$ and $-\hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$. Let the set $\mathrm{S}=\{\lambda \in \mathbb{R}$: the points A, B, C and D are coplanar $\}$. Then $\sum_{\lambda \in S}(\lambda+2)^{2}$ is equal to :
(1) $\frac{37}{2}$
(2) 13
(3) 25
(4) 41

Sol. (4)
A, B, C, D are coplanar
$\Rightarrow[\overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{AC}} \overrightarrow{\mathrm{AD}}]=0 \quad \Rightarrow\left[\begin{array}{ccc}-4 & -3 & 3-2 \lambda \\ -7 & \lambda-5 & 4-2 \lambda \\ -6 & 0 & 6-2 \lambda\end{array}\right]=0$
$\Rightarrow-6[6 \lambda-12-(\lambda-5)(3-2 \lambda)]+0[]+(6-2 \lambda)[20-4 \lambda-21]$
$\Rightarrow-6\left[6 \lambda-12+2 \lambda^{2}+15-13 \lambda\right]+(6-2 \lambda)[-4 \lambda-1]=0$
$\Rightarrow-12 \lambda^{2}+42 \lambda-18+8 \lambda^{2}-22 \lambda-6=0$
$\Rightarrow-4 \lambda^{2}+20 \lambda-24=0 \quad \Rightarrow \lambda^{2}-5 \lambda+6=0$
$(\lambda-3)(\lambda-2)=0<\begin{aligned} & \lambda=2 \\ & \lambda=3\end{aligned}$
Now $\sum_{\lambda \in \mathrm{S}}(\lambda+2)^{2}=16+25=41$
3. Let $I(x)=\int \frac{x^{2}\left(x \sec ^{2} x+\tan x\right)}{(x \tan x+1)^{2}} d x$. If $I(0)=0$, then $I\left(\frac{\pi}{4}\right)$ is equal to :
(1) $\log _{e} \frac{(\pi+4)^{2}}{16}+\frac{\pi^{2}}{4(\pi+4)}$
(2) $\log _{\mathrm{e}} \frac{(\pi+4)^{2}}{32}-\frac{\pi^{2}}{4(\pi+4)}$
(3) $\log _{\mathrm{e}} \frac{(\pi+4)^{2}}{16}-\frac{\pi^{2}}{4(\pi+4)}$
(4) $\log _{\mathrm{e}} \frac{(\pi+4)^{2}}{32}+\frac{\pi^{2}}{4(\pi+4)}$

Sol. (2)
$I(x)=\int \frac{x^{2}\left(\sec ^{2} x+\tan x\right)}{(x \tan x+1)^{2}} d x$
Let $\mathrm{x} \tan \mathrm{x}+1=\mathrm{t}$
$I=x^{2}\left(\frac{-1}{x \tan x+1}\right)+\int \frac{2 x}{x \tan x+1} d x$
$I=x^{2}\left(\frac{-1}{x \tan x+1}\right)+2 \int \frac{2 x}{x \tan x+1} d x$
$I=x^{2}\left(\frac{-1}{x \tan x+1}\right)+2 \ln |x \sin x+\cos x|+C$
As $\mathrm{I}(0)=0 \Rightarrow \mathrm{C}=0$
$\mathrm{I}\left(\frac{\pi}{4}\right)=\ln \left(\frac{(\pi+4)^{2}}{32}\right)-\frac{\pi^{2}}{4(\pi+4)}$
4. The sum of the first 20 terms of the series $5+11+19+29+41+\ldots$. is :
(1) 3450
(2) 3420
(3) 3520
(4) 3250

Sol. (3)

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=5+11+19+29+41+\ldots .+\mathrm{T}_{\mathrm{n}} \\
& \mathrm{~S}_{\mathrm{n}}=5+11+19+29+\ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}} \\
& 0=5+\{\underbrace{6+8+10+12+\ldots}_{(\mathrm{n}-1) \text { terms }}\}-\mathrm{T}_{\mathrm{n}} \\
& \mathrm{~T}_{\mathrm{n}}=5+\frac{(\mathrm{n}-1)}{2}[2 \cdot 6+(\mathrm{n}-2) \cdot 2] \\
& \mathrm{T}_{\mathrm{n}}=5+(\mathrm{n}-1)(\mathrm{n}+4)=5+\mathrm{n}^{2}+3 \mathrm{n}-4=\mathrm{n}^{2}+3 \mathrm{n}+1 \\
& \text { Now } \mathrm{S}_{20}=\sum_{\mathrm{n}=1}^{20} \mathrm{~T}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{20} \mathrm{n}^{2}+3 \mathrm{n}+1 \\
& \mathrm{~S}_{20}=\frac{20.21 .41}{6}+\frac{3.20 .21}{2}+20 \\
& \mathrm{~S}_{20}=2870+630+20 \\
& \mathrm{~S}_{20}=3520
\end{aligned}
$$

5. A pair of dice is thrown 5 times. For each throw, a total of 5 is considered a success. If probability of at least 4 successes is $\frac{k}{3^{11}}$, then k is equal to :
(1) 164
(2) 123
(3) 82
(4) 75

Sol. (2)
$n($ total 5$)=\{1,4),(2,3),(3,2),(4,1)\}=4$
$\mathrm{P}($ success $)=\frac{4}{36}=\frac{1}{9}$
$P($ at least 4 success $)=P(4$ success $)+P(5$ success $)$
$={ }^{5} \mathrm{C}_{4} .\left(\frac{1}{9}\right)^{4} \cdot \frac{8}{9}+{ }^{5} \mathrm{C}_{5}\left(\frac{1}{9}\right)^{5}=\frac{41}{9^{5}}=\frac{41}{3^{10}}=\frac{123}{3^{11}}=\frac{\mathrm{k}}{3^{11}}$
$K=123$
6. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{2 \times 2}$, where $\mathrm{a}_{\mathrm{ij}} \neq 0$ for all i, j and $\mathrm{A}^{2}=\mathrm{I}$. Let a be the sum of all diagonal elements of A and $\mathrm{b}=|\mathrm{A}|$. Then $3 a^{2}+4 b^{2}$ is equal to :
(1) 14
(2) 4
(3) 3
(4) 7

Sol. (2)
$\mathrm{A}^{2}=\mathrm{I} \Rightarrow|\mathrm{A}|^{2}=1 \Rightarrow|\mathrm{~A}|= \pm 1=\mathrm{b}$
Let $A=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]=I$
$\left[\begin{array}{ll}\alpha^{2}+\beta \gamma & \alpha \beta+\beta \delta \\ \alpha \gamma+\gamma \delta & \gamma \beta+\delta^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \Rightarrow \alpha^{2}+\beta \gamma=1$
$(\alpha+\delta) \beta=0 \Rightarrow \alpha+\delta=0=\mathrm{a}$
$(\alpha+\delta) \gamma=0$
$\beta \gamma+\delta^{2}=0$
Now $3 \mathrm{a}^{2}+4 \mathrm{~b}^{2}=3(0)^{2}+4(1)=4$
7. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be n positive consecutive terms of an arithmetic progression. If $d>0$ is its common difference, then : $\lim _{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots .+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right)$ is
(1) $\frac{1}{\sqrt{d}}$
(2) 1
(3) \sqrt{d}
(4) 0

Sol. (2)
$\operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{a_{1}-a_{2}}+\frac{\sqrt{a_{2}}-\sqrt{a_{3}}}{a_{2}-a_{3}}+\ldots \ldots .+\frac{\sqrt{a_{n-1}}-\sqrt{a_{n}}}{a_{n-1}-a_{n}}\right)$
$=\operatorname{Lt}_{\mathrm{n} \rightarrow \infty} \sqrt{\frac{\mathrm{d}}{\mathrm{n}}}\left(\frac{\sqrt{\mathrm{a}_{1}}-\sqrt{\mathrm{a}_{2}}+\sqrt{\mathrm{a}_{2}}+\sqrt{\mathrm{a}_{3}}+\ldots \ldots+\sqrt{\mathrm{a}_{\mathrm{n}-1}}-\sqrt{\mathrm{a}_{\mathrm{n}}}}{-\mathrm{d}}\right)$
$=\operatorname{Lt}_{\mathrm{n} \rightarrow \infty} \sqrt{\frac{\mathrm{d}}{\mathrm{n}}}\left(\frac{\sqrt{\mathrm{a}_{\mathrm{n}}}-\sqrt{\mathrm{a}_{1}}}{\mathrm{~d}}\right)$
$=\operatorname{Lt}_{\mathrm{n} \rightarrow \infty} \frac{1}{\sqrt{\mathrm{n}}}\left(\frac{\sqrt{\mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}}-\sqrt{\mathrm{a}_{1}}}{\sqrt{\mathrm{~d}}}\right)$
$=\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{1}{\sqrt{d}}\left(\sqrt{\frac{a_{1}}{\mathrm{n}}+\mathrm{d}-\frac{\mathrm{d}}{\mathrm{n}}}-\frac{\sqrt{\mathrm{a}_{1}}}{\mathrm{n}}\right)$
$=1$
8. If ${ }^{2 n} C_{3}:{ }^{n} C_{3}: 10: 1$, then the ratio $\left(n^{2}+3 n\right):\left(n^{2}-3 n+4\right)$ is :
(1) $27: 11$
(2) $35: 16$
(3) $2: 1$
(4) $65: 37$

Sol. (3)
$\frac{{ }^{2 n} C_{3}}{{ }^{n} C_{3}}=10 \Rightarrow \frac{2 n!(n-3)!}{(2 n-3)!n!}=10$
$\frac{2 n(2 n-1)(2 n-2)}{n(n-1)(n-2)}=10$
$\frac{4(2 n-1)}{n-2}=10 \Rightarrow 8 n-4=10 n-20$
$2 \mathrm{n}=16$
Now $\frac{n^{2}+3 n}{n^{2}-3 n+4}$
$=\frac{64+24}{64-24+4}=\frac{88}{44}=2$
Ans. 3
9. Let $A=\{x \in \mathbb{R}:[x+3]+[x+4] \leq 3\}$,
$B=\left\{x \in \mathbb{R}: 3^{x}\left(\sum_{r=1}^{\infty} \frac{3}{10^{r}}\right)^{x-3}<3^{-3 x}\right\}$, where [t] denotes greatest integer function. Then,
(1) $\mathrm{A} \subset \mathrm{B}, \mathrm{A} \neq \mathrm{B}$
(2) $\mathrm{A} \cap \mathrm{B}=\phi$
(3) $A=B$
(4) $B \subset C, A \neq B$

Sol. (3)
$A=\{x \in \mathbb{R}:[x+3]+[x+4] \leq 3\}$,
$2[\mathrm{x}]+7 \leq 3$
$2[x] \leq-4$
$[\mathrm{x}] \leq-2 \Rightarrow \mathrm{x}<-1$
$B=\left\{x \in \mathbb{R}: 3^{x}\left(\sum_{r=1}^{\infty} \frac{3}{10^{r}}\right)^{x-3}<3^{-3 x}\right\}$
$3^{\mathrm{x}}\left(\sum_{\mathrm{r}=1}^{\infty} \frac{3}{10^{\mathrm{r}}}\right)^{\mathrm{x}-3}<3^{-3 \mathrm{x}}$
$3^{2 x-3}\left(\frac{\frac{1}{10}}{1-\frac{1}{10}}\right)^{x-3}<3^{-3 x}$
$\Rightarrow\left(\frac{1}{9}\right)^{x-3}<3^{-5 x+3}$
$\Rightarrow 3^{6-2 x}<3^{3-5 x}$
$\Rightarrow 6-2 \mathrm{x}<3-5 \mathrm{x}$
$\Rightarrow 3<-3 \mathrm{x}$
$\Rightarrow \mathrm{x}<-1$
$\mathrm{A}=\mathrm{B}$
10. One vertex of a rectangular parallelepiped is at the origin O and the lengths of its edges along x, y and z axes are 3,4 and 5 units respectively. Let P be the vertex $(3,4,5)$. Then the shortest distance between the diagonal OP and an edge parallel to z axis, not passing through O or P is :
(1) $\frac{12}{5 \sqrt{5}}$
(2) $12 \sqrt{5}$
(3) $\frac{12}{5}$
(4) $\frac{12}{\sqrt{5}}$

Sol. (3)
Equation of OP is $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$
$\mathrm{a}_{1}=(0,0,0) \quad \mathrm{a}_{2}=(3,0,5)$
$\mathrm{b}_{1}=(3,4,5) \quad \mathrm{b}_{2}=(0,0,1)$
Equation of edge parallel to z axis
$\frac{x-3}{0}=\frac{y-0}{0}=\frac{z-5}{1}$
S.D $=\frac{\left(\overrightarrow{\mathrm{a}}_{2} \cdot \overrightarrow{\mathrm{a}}_{1}\right) \cdot\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)}{\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|}$
\(\left.\frac{\left|\begin{array}{lll}3 \& 0 \& 5

3 \& 4 \& 5

0 \& 0 \& 1\end{array}\right|}{|\)| $\hat{\mathrm{i}}$ | $\hat{\mathrm{j}}$ |
| :---: | :---: |
| 3 | 4 |
| k | |
| 0 | 0 |}$=\frac{1}{\mid}| | 4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}} \right\rvert\, \quad=\frac{12}{5}$

11. If the equation of the plane passing through the line of intersection of the planes $2 x-y+z=3,4 x-3 y+5 z+$ $9=0$ and parallel to the line $\frac{x+1}{-2}=\frac{y+3}{4}=\frac{z-2}{5}$ is $a x+b y+c z+6=0$, then $a+b+c$ is equal to :
(1) 15
(2) 14
(3) 13
(4) 12

Sol. (2)
Using family of planer
$P: P_{1}+\lambda P_{2}=0 \Rightarrow P(2+4 \lambda) x-(1+3 \lambda) y+(1+5 \lambda) z=(3-9 \lambda)$
P is $\|$ to $\frac{\mathrm{x}+1}{-2}=\frac{\mathrm{y}+3}{4}=\frac{\mathrm{z}-2}{5}$
Then for $\lambda: \overrightarrow{\mathrm{n}}_{\mathrm{p}} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{L}}=0$
$-2(2+4 \lambda)-4(1+3 \lambda)+5(1+5 \lambda)=0$
$-3+5 \lambda=0 \Rightarrow \lambda=\frac{3}{5}$
Hence : $P: 22 x-14 y+20 z=-12$
$P: 11 x-7 y+10 z+6=0$
$\Rightarrow \mathrm{a}=11$
$b=-7$
$\mathrm{c}=10$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=14$
Ans. 2
12. If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$, then the third term from the beginning is :
(1) $30 \sqrt{2}$
(2) $60 \sqrt{2}$
(3) $30 \sqrt{3}$
(4) $60 \sqrt{3}$

Sol. (4)
$\frac{\mathrm{T}_{5}}{\mathrm{~T}_{5}{ }^{\prime}}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{4} \cdot\left((2)^{\frac{1}{4}}\right)^{\mathrm{n}-4}\left(\frac{1}{3^{\frac{1}{4}}}\right)^{4}}{{ }^{\mathrm{n}} \mathrm{C}_{4}\left(\frac{1}{3^{\frac{1}{4}}}\right)^{\mathrm{n}-4}\left(2^{\frac{1}{4}}\right)^{4}}=\frac{\sqrt{6}}{1}$
$2^{\frac{n-8}{4}} \cdot\left(3^{\frac{1}{4}}\right)^{-4-4+n}=\sqrt{6}$
$2^{\frac{n-8}{4}} \cdot 3^{\frac{n-8}{4}}=\sqrt{6}$
$\frac{\mathrm{n}-8}{4}=\frac{1}{2} \Rightarrow \mathrm{n}-8=2 \Rightarrow \mathrm{n}=10$
$\mathrm{T}_{3}={ }^{10} \mathrm{C}_{2}\left(2^{\frac{1}{4}}\right)^{8}\left(\frac{1}{3^{\frac{1}{4}}}\right)^{2}$
$={ }^{10} \mathrm{C}_{2} \cdot 2^{2} \cdot 3^{-\frac{1}{2}}=\frac{10.9}{2} \cdot 4 \cdot \frac{1}{\sqrt{3}}=60 \sqrt{3}$
13. The sum of all the roots of the equation $\left|x^{2}-8 x+15\right|-2 x+7=0$ is :
(1) $11-\sqrt{3}$
(2) $9-\sqrt{3}$
(3) $9+\sqrt{3}$
(4) $11+\sqrt{3}$

Sol. (3)
$\left|\mathrm{x}^{2}-8 \mathrm{x}+15\right|=2 \mathrm{x}-7$
$\begin{array}{lll}x^{2}-8 x+15=2 x-7 & \& & x^{2}-8 x+15=7-2 x\end{array}$

$\mathrm{x}_{1}=5+\sqrt{3} \quad \mathrm{x}_{2}=5-\sqrt{3}$ (reject) $\quad \mathrm{x}_{3}=4 \quad \mathrm{x}_{4}=2$ (reject)
Sum of of roots is $=5+\sqrt{3}+4=9+\sqrt{3}$
Ans. 3

14. From the top A of a vertical wall AB of height 30 m , the angles of depression of the top P and bottom Q of a vertical tower PQ are 15° and 60° respectively, B and Q are on the same horizontal level. If C is a point on AB such that $\mathrm{CB}=\mathrm{PQ}$, then the area (in m^{2}) of the quadrilateral BCPQ is equal to :
(1) $200(3-\sqrt{3})$
(2) $300(\sqrt{3}+1)$
(3) $300(\sqrt{3}-1)$
(4) $600(\sqrt{3}-1)$

Sol. (4)
$\triangle \mathrm{ABQ}$

$\frac{A B}{B Q}=\tan 60^{\circ}$
$B Q=\frac{30}{\sqrt{3}}=10 \sqrt{3}=y$
\& $\triangle \mathrm{ACP}$
$\frac{\mathrm{AC}}{\mathrm{CP}}=\tan 15^{\circ} \Rightarrow \frac{(30-\mathrm{x})}{\mathrm{y}}=(2-\sqrt{3})$
$30-x=10 \sqrt{3}(2-\sqrt{3})$
$30-\mathrm{x}=20 \sqrt{3}-30$
$x=60-20 \sqrt{3}$
Area $=x \cdot y=20(3-\sqrt{3}) \cdot 10 \sqrt{3}$
$=600(\sqrt{3}-1)$
Ans. (4)
15. Let $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, b=\hat{i}-2 \hat{j}-2 \hat{k}$ and $\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$. If \vec{d} is a vector perpendicular to both \vec{b} and \vec{c}, and $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{d}}=18$, then $[\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{d}}]^{2}$ is equal to :
(1) 760
(2) 640
(3) 720
(4) 680

Sol. (3)

$$
\overrightarrow{\mathrm{d}}=\lambda(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})
$$

For $\lambda: \vec{a} \cdot \vec{d}=18 \Rightarrow \lambda[\vec{a} \vec{b} \vec{c}]=18$

$$
\begin{aligned}
& \Rightarrow \lambda\left|\begin{array}{ccc}
2 & 3 & 4 \\
1 & -2 & -2 \\
-1 & 4 & 3
\end{array}\right|=18 \\
& \Rightarrow \lambda(4-3+8)=18 \Rightarrow \lambda=2 \\
& \Rightarrow \overrightarrow{\mathrm{~d}}=2(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})
\end{aligned}
$$

Hence $|\vec{a} \times \vec{d}|^{2}=a^{2} d^{2}-(\vec{a} \cdot \vec{d})^{2}$
$=29 \cdot 36-(18)^{2}=18(58-18)$
$=18 \cdot 40=720$
Ans. 3
16. If $2 x^{y}+3 y^{x}=20$, then $\frac{d y}{d x}$ at $(2,2)$ is equal to :
(1) $-\left(\frac{3+\log _{e} 8}{2+\log _{e} 4}\right)$
(2) $-\left(\frac{2+\log _{e} 8}{3+\log _{\mathrm{e}} 4}\right)$
(3) $-\left(\frac{3+\log _{e} 4}{2+\log _{e} 8}\right)$
(4) $-\left(\frac{3+\log _{\mathrm{e}} 16}{4+\log _{\mathrm{e}} 8}\right)$

Sol. (2)
$2 x^{y}+3 y^{x}=20$
$\mathrm{v}_{1} \mathrm{v}_{2}\left(\mathrm{v}_{2} \frac{1}{\mathrm{v}_{1}}+\operatorname{lnv}_{1} \cdot \mathrm{v}_{2}^{1}\right)$
$2 x^{y}\left(y \cdot \frac{1}{x}+\ln x \frac{d y}{d x}\right)+3 y^{x}\left(x \frac{1}{y} \cdot \frac{d y}{d x}+\ln y \cdot 1\right)=0$
Put (2, 2)
$2.4\left(1+\ln 2 \frac{\mathrm{dy}}{\mathrm{dx}}\right)+3.4\left(1 . \frac{\mathrm{dy}}{\mathrm{dx}}+\ln 2\right)=0$
$\frac{d y}{d x}[8 \ln 2+12]+8+12 \ln 2=0$
$\frac{\mathrm{dy}}{\mathrm{dx}}=-\left[\frac{2+3 \ln 2}{3+2 \ln 2}\right]=-\left[\frac{2+\ln 8}{3+\ln 4}\right]$
17. If the system of equations
$x+y+a z=b$
$2 x+5 y+2 z=6$
$x+2 y+3 z=3$
has infinitely many solutions, then $2 a+3 b$ is equal to :
(1) 28
(2) 20
(3) 25
(4) 23

Sol. (4)
$x+y+a z=b$
$2 x+5 y+2 z=6$
$x+2 y+3 z=3$
For ∞ solution
$\Delta=0, \Delta_{x}=0, \Delta_{y}=0, \Delta_{z}=0$
$\Delta=\left|\begin{array}{lll}1 & 1 & \mathrm{a} \\ 2 & 5 & 2 \\ 1 & 2 & 3\end{array}\right|=0 \Rightarrow 11-4-\mathrm{a}=0 \Rightarrow \mathrm{a}=7$
$\Delta_{\mathrm{z}}=\left|\begin{array}{lll}1 & 1 & \mathrm{~b} \\ 2 & 5 & 6 \\ 1 & 2 & 3\end{array}\right|=0 \Rightarrow 3-0-\mathrm{b}=0 \Rightarrow \mathrm{~b}=3$
Hence $2 \mathrm{a}+3 \mathrm{~b}=23$
Ans. 4
18. Statement $(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to:
(1) $(\mathrm{P} \vee \mathrm{R}) \Rightarrow \mathrm{Q}$
(2) $(P \Rightarrow R) \vee(Q \Rightarrow R)(3)(P \Rightarrow R) \wedge(Q \Rightarrow R)$
(4) $(P \wedge R) \Rightarrow Q$

Sol. (1)
$(\mathrm{P} \Rightarrow \mathrm{Q}) \wedge(\mathrm{R} \Rightarrow \mathrm{Q})$
We known that $\mathrm{P} \Rightarrow \mathrm{Q} \equiv \sim \mathrm{P} \vee \mathrm{Q}$
$\Rightarrow(\sim \mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{R} \vee \mathrm{Q})$
$\Rightarrow(\sim P \wedge \sim R) \vee Q$
$\Rightarrow \sim(P \vee R) \vee Q$
$\Rightarrow(\mathrm{P} \vee \mathrm{R}) \Rightarrow \mathrm{Q}$
19. Let $5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x>0$. Then $18 \int_{1}^{2} f(x) d x$ is equal to :
(1) $10 \log _{e} 2-6$
(2) $10 \log _{e} 2+6$
(3) $5 \log _{\mathrm{e}} 2-3$
(4) $5 \log _{\mathrm{e}} 2+3$

Sol. (1)
$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3$
$x \rightarrow \frac{1}{x}$
$5 f\left(\frac{1}{x}\right)+4 f(x)=x+3$
(1) $\times 5-(2) \times 4$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{5}{9 \mathrm{x}}-\frac{4}{9} \mathrm{x}+\frac{1}{3}$
$\Rightarrow 18 \int_{1}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}=18\left(\frac{5}{9} \ln 2-\frac{4}{9} \times \frac{3}{2}+\frac{1}{3}\right)$
$=10 \ln 2-6$
20. The mean and variance of a set of 15 numbers are 12 and 14 respectively. The mean and variance of another set of 15 numbers are 14 and σ^{2} respectively. If the variance of all the 30 numbers in the two sets is 13 , then σ^{2} is equal to :
(1) 12
(2) 10
(3) 11
(4) 9

Sol. (2)

Combine var. $=\frac{\mathrm{n}_{1} \sigma^{2}+\mathrm{n}_{2} \sigma^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}+\frac{\mathrm{n}_{1} \mathrm{n}_{2}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)^{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}$
$13=\frac{15 \cdot 14+15 \cdot \sigma^{2}}{30}+\frac{15 \cdot 15(12-14)^{2}}{30 \times 30}$
$13=\frac{14+\sigma^{2}}{2}+\frac{4}{4}$
$\sigma^{2}=10$

SECTION-B

21. Let the tangents to the curve $x^{2}+2 x-4 y+9=0$ at the point $P(1,3)$ on it meet the y-axis at A. Let the line passing through P and parallel to the line $x-3 y=6$ meet the parabola $y^{2}=4 x$ at B. If B lies on the line $2 x-$ $3 y=8$, then $(A B)^{2}$ is equal to \qquad -

Sol. (292)

C: $x^{2}+2 x-4 y+9=0$
$C:(x+1)^{2}=4(y-2)$
$\mathrm{T}_{\mathrm{P}(1,3)}: \mathrm{x} .1+(\mathrm{x}+1)-2(\mathrm{y}+3)+9=0$
: $2 \mathrm{x}-2 \mathrm{y}+4=0$
$\mathrm{T}_{\mathrm{p}}: \mathrm{x}-\mathrm{y}+2=0$
A : $(0,2)$
Line $\|$ to $x-3 y=6$ passes $(1,3)$ is $x-3 y+8=0$
Meet parabola: $y^{2}=4 x$
$\Rightarrow y^{2}=4(3 y-8)$
$\Rightarrow y^{2}-12 y+32=0$
$\Rightarrow(y-8)(y-4)=0$
\Rightarrow point of intersection are
$(4,4) \&(16,8)$ lies on $2 x-3 y=8$
B
Hence A : $(0,2)$
B : $(16,8)$
$(\mathrm{AB})^{2}=256+36=292$
22. Let the point ($p, p+1$) lie inside the region $E=\left\{(x, y): 3-x \leq y \leq \sqrt{9-x^{2}}, 0 \leq x \leq 3\right\}$. If the set of all values of p is the interval (a, b), then $b^{2}+b-a^{2}$ is equal to \qquad -
Sol. (3)

$$
3-x \leq y \leq \sqrt{9-x^{2}} ; 0 \leq x \leq 3
$$

$\mathrm{L}(\mathrm{A})>0 \Rightarrow \mathrm{P}+\mathrm{P}+1-3>0 \Rightarrow \mathrm{P}>1$
$\mathrm{S}(\mathrm{A})<0 \Rightarrow \mathrm{P}+1-\sqrt{9-\mathrm{P}^{2}}<0$
$\Rightarrow \mathrm{P}+1<\sqrt{9-\mathrm{P}^{2}}$
$\Rightarrow \mathrm{P}+2 \mathrm{P}+1<9-\mathrm{P}^{2}$
$\Rightarrow 2 \mathrm{P}^{2}+2 \mathrm{P}-8<0$
$\Rightarrow \mathrm{P}^{2}+\mathrm{P}-4<0$
$\Rightarrow \mathrm{P} \in\left(\frac{-1-\sqrt{17}}{2}, \frac{-1+\sqrt{17}}{2}\right)$
(1) \cap (2) $P \in\left(1, \frac{\sqrt{17}-1}{2}\right) \equiv(a, b)$
$\mathrm{b}^{2}+\mathrm{b}-\mathrm{a}^{2}=4-1=3$
23. Let $y=y(x)$ be a solution of the differential $(x \cos x) d y+(x y \sin x+y \cos x-1) d x=0,0<x<\frac{\pi}{2}$. If $\frac{\pi}{3} y\left(\frac{\pi}{3}\right)=\sqrt{3}$, then $\left|\frac{\pi}{6} y^{\prime \prime}\left(\frac{\pi}{6}\right)+2 y^{\prime}\left(\frac{\pi}{6}\right)\right|$ is equal to \qquad .
Sol. (2)
$(x \cos x) d y+(x y \sin x+y \cos x-1) d x=0,0<x<\frac{\pi}{2}$
$\frac{d y}{d x}+\left(\frac{x \sin x+\cos x}{x \cos x}\right) y=\frac{1}{x \cos x}$
IF $=x \sec x$
$y \cdot x \sec x=\int \frac{x \sec x}{x \cos x} d x=\tan x+c$
Since y $\left(\frac{\pi}{3}\right)=\frac{3 \sqrt{3}}{\pi} \quad$ Hence $c=\sqrt{3}$
Hence $\left|\frac{\pi}{6} y^{\prime \prime}\left(\frac{\pi}{6}\right)+y^{\prime}\left(\frac{\pi}{6}\right)\right|=|-2|=2$
24. Let $\mathrm{a} \in \mathbb{Z}$ and $[\mathrm{t}]$ be the greatest integer $\leq \mathrm{t}$. Then the number of points, where the function $\mathrm{f}(\mathrm{x})=[\mathrm{a}+13 \sin$ $x], x \in(0, \pi)$ is not differentiable, is \qquad ـ.

Sol. (25)
$f(x)=[a+13 \sin x]=a+[13 \sin x]$ in $(0, \pi)$
$x \in(0, \pi)$
$\Rightarrow 0<13 \sin \mathrm{x} \leq 13$
$\Rightarrow[13 \sin \mathrm{x}]=\{0,1,2,3, \ldots 12,13$,

\downarrow	\downarrow	\downarrow
2	2	1

Total point of N.D. $=25$.
25. If the area of the region $S=\left\{(x, y): 2 y-y^{2} \leq x^{2} \leq 2 y, x \geq y\right\}$ is equal to $\frac{n+2}{n+1}-\frac{\pi}{n-1}$, then the natural number n is equal to \qquad _.
Sol. (5)
$x^{2}+y^{2}-2 y \geq 0 \& x^{2}-2 y \leq 0, x \geq y$
Hence required area $=\frac{1}{2} \times 2 \times 2-\int_{0}^{2} \frac{x^{2}}{2} d x-\left(\frac{\pi}{4}-\frac{1}{2}\right)$
$=\frac{7}{6}-\frac{\pi}{4} \Rightarrow \mathrm{n}=5$
26. The number of ways of giving 20 distinct oranges to 3 children such that each child gets at least one orange is
\qquad -.

Sol. 3483638676
Total - (one child receive no orange + two child receive no orange)
$=3^{20}-\left({ }^{3} \mathrm{C}_{1}\left(2^{20}-2\right)+{ }^{3} \mathrm{C}_{2} 1^{20}\right)=3483638676$
27. Let the image of the point $P(1,2,3)$ in the plane $2 x-y+z=9$ be Q. If the coordinates of the point R are (6 , 10,7). then the square of the area of the triangle PQR is \qquad .
Sol. (594)
Let $\mathrm{Q}(\alpha, \beta, \gamma)$ be the image of P , about the plane
$2 x-y+z=9$
$\frac{\alpha-1}{2}=\frac{\beta-2}{-1}=\frac{\gamma-3}{1}=2$
$\Rightarrow \alpha=5, \beta=0, \gamma=5$
Then area of triangle PQR is $=\frac{1}{2}|\overrightarrow{\mathrm{PQ}} \times \overrightarrow{\mathrm{PR}}|$
$=|-12 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+21 \hat{\mathrm{k}}|=\sqrt{144+9+441}=\sqrt{594}$
Square of area $=594$
28. A circle passing through the point $\mathrm{P}(\alpha . \beta)$ in the first quadrant touches the two coordinate axes at the points A and B. The point P is above the line $A B$. The point Q on the line segment $A B$ is the foot of perpendicular from P on $A B$. If $P Q$ is equal to 11 units, then value of $\alpha \beta$ is \qquad -

Sol. (121)

Let equation of circle is $(x-a)^{2}+(y-a)^{2}=a^{2}$
which is passing through $\mathrm{P}(\alpha, \beta)$
then $(\alpha-a) 2+(\beta-a)^{2}=a^{2}$
$\alpha^{2}+\beta^{2}-2 \alpha a-2 \beta \alpha+a^{2}=0$
Here equation of $A B$ is $x+y=a$
Let $\mathrm{Q}\left(\alpha^{\prime}, \beta^{\prime}\right)$ be foot of perpendicular of P on AB
$\frac{\alpha^{\prime}-\alpha}{1}=\frac{\beta^{\prime}-\beta}{1}=\frac{-(\alpha+\beta-a)}{2}$
$P Q^{2}=\left(\alpha^{\prime}-\alpha\right)+\left(\beta^{\prime}-\beta\right)=\frac{1}{4}(\alpha+\beta-a)^{2}+\frac{1}{4}(\alpha+\beta-a)^{2}$
$121=\frac{1}{2}(\alpha+\beta-a)^{2}$
$242=\alpha^{2}+\beta^{2}-2 \alpha a-2 \beta a+a^{2}+2 \alpha \beta$
$242=2 \alpha \beta$
$\Rightarrow \alpha \beta=121$
29. The coefficient of x^{18} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is \qquad .

Sol. (5005)
$\left(\mathrm{x}^{4}-\frac{1}{\mathrm{x}^{3}}\right)^{15}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{15} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{4}\right)^{15-\mathrm{r}}\left(\frac{-1}{\mathrm{x}^{3}}\right)^{\mathrm{r}}$
$60-7 \mathrm{r}=18$
$r=6$
Hence coeff. of $\mathrm{x}^{18}={ }^{15} \mathrm{C}_{6}=5005$
30. Let $\mathrm{A}=\{1,2,3,4, \ldots, 10\}$ and $\mathrm{B}=\{0,1,2,3,4\}$. The number of elements in the relation $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times$ $\left.\mathrm{A}: 2(\mathrm{a}-\mathrm{b})^{2}+3(\mathrm{a}-\mathrm{b}) \in \mathrm{B}\right\}$ is \qquad .
Sol. (18)
$\mathrm{A}=\{1,2,3, \ldots \ldots .10\}$
$B=\{0,1,2,3,4\}$
$\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: 2(\mathrm{a}-\mathrm{b})^{2}+3(\mathrm{a}-\mathrm{b}) \in \mathrm{B}\right\}$
Now $2(a-b)^{2}+3(a-b)=(a-b)(2(a-b)+3)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ or $\mathrm{a}-\mathrm{b}=-2$
When $\mathrm{a}=\mathrm{b} \Rightarrow 10$ order pairs
When $\mathrm{a}-\mathrm{b}=-2 \Rightarrow 8$ order pairs
Total $=18$

