SECTION-A

1. If $\operatorname{gcd}(m, n)=1$ and
$1^{2}-2^{2}+3^{2}-4^{2}+\ldots . .+(2021)^{2}-(2022)^{2}+(2023)^{2}=1012 \mathrm{~m}^{2} \mathrm{n}$
then $\mathrm{m}^{2}-\mathrm{n}^{2}$ is equal to :
(1) 180
(2) 220
(3) 200
(4) 240

Sol. (4)
$(1-2)(1+2)+(3-4)(3+4)+\ldots \ldots+(2021-2022)(2021+2022)+(2023)^{2}=(1012) \mathrm{m}^{2} \mathrm{n}$
$\Rightarrow(-1)[1+2+3+4+\ldots+2022]+(2023)^{2}=(1012) m^{2} n$
$\Rightarrow(-1) \frac{(2022)(2023)}{2}+(2023)^{2}=(1012) m^{2} n$
$\Rightarrow(2023)[2023-1011]=(1012) \mathrm{m}^{2} \mathrm{n}$
$\Rightarrow(2023)(1012)=(1012) \mathrm{m}^{2} \mathrm{n}$
$\Rightarrow \mathrm{m}^{2} \mathrm{n}=2023$
$\Rightarrow \mathrm{m}^{2} \mathrm{n}=(17)^{2} \times 7$
$\mathrm{m}=17, \mathrm{n}=7$
$\mathrm{m}^{2}-\mathrm{n}^{2}=(17)^{2}-7^{2}=289-49=240$
Ans. Option 4
2. The area bounded by the curves $y=|x-1|+|x-2|$ and $y=3$ is equal to :
(1) 5
(2) 4
(3) 6
(4) 3

Sol. (2)
$y=|x-1|+|x-2|$

$\mathrm{A}=\frac{1}{2}[1+3][2]$
$=4$
Ans. Option 2
3. For the system of equations
$x+y+z=6$
$x+2 y+\alpha z=10$
$x+3 y+5 z=\beta$, which one of the following is NOT true :
(1) System has a unique solution for $\alpha=3, \beta \neq 14$.
(2) System has a unique solution for $\alpha=-3, \beta=14$.
(3) System has no solution for $\alpha=3, \beta=24$.
(4) System has infinitely many solutions for $\alpha=3, \beta=14$.

Sol. (1)
$\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & \alpha \\ 1 & 3 & 5\end{array}\right|$
$=(10-3 \alpha)-(5-\alpha)+(3-2)$
$=6-2 \alpha$
$\Delta x=\left|\begin{array}{ccc}6 & 1 & 1 \\ 10 & 2 & \alpha \\ \beta & 3 & 5\end{array}\right|$
$=6(10-3 \alpha)-(50-\alpha 13)+(30-2 \beta)$
$=40-18 \alpha+\alpha \beta-2 \beta$
$\Delta y=\left|\begin{array}{ccc}1 & 6 & 1 \\ 1 & 10 & \alpha \\ 1 & \beta & 5\end{array}\right|$
$=(50-\alpha \beta)-6(5-\alpha)+(\beta-10)$
$=10+6 \alpha+\beta-\alpha \beta$
$\Delta z=\left|\begin{array}{ccc}1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 3 & \beta\end{array}\right|$
$=(2 \beta-30)-(\beta-10)+6(1)$
$=\beta-14$
for Infinite solution

$$
\Delta=0, \quad \Delta_{x}=\Delta_{y}=\Delta_{z}=0
$$

$$
\alpha=3, \quad \beta=14
$$

For unique solution $\alpha \neq 3$

Ans. Option 1

4. Among the statements :
(S1): $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
(S2): $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
(1) only (S 2) is True
(2) only (S1) is True
(3) neigher (S1) and (S2) is True
(4) both (S1) and (S2) are True

Sol. (3)
S1

P	Q	$\sim \mathrm{p}$	$\sim \mathrm{p}^{\wedge} \mathrm{q}$	$\mathrm{p} \Rightarrow \mathrm{q}$	$(\mathrm{p} \Rightarrow \mathrm{q}) \mathrm{v}\left(\sim \mathrm{p}^{\wedge} \mathrm{q}\right)$
T	T	F	F	T	T
T	F	F	F	F	F
F	T	T	T	T	T
F	F	T	F	T	T

S2

P	Q	$\mathrm{q} \Rightarrow \mathrm{p}$	$\sim \mathrm{p}$	$(\sim \mathrm{p})^{\wedge} \mathrm{q}$	$(\mathrm{q} \Rightarrow \mathrm{p}) \Rightarrow\left(\sim \mathrm{p}^{\wedge} \mathrm{q}\right)$
T	T	T	F	F	F
T	F	T	F	F	F
F	T	F	T	T	T
F	F	T	T	F	F

Ans. Option 3
5. $\lim _{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots \ldots .\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}$ is equal to
(1) $\frac{1}{\sqrt{2}}$
(2) $\sqrt{2}$
(3) 1
(4) 0

Sol. (4)
$P=\lim _{\mathrm{n} \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots \ldots \ldots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 \mathrm{n}+1}}\right)$
Let
$\begin{array}{ll}2^{\frac{1}{2}}-2^{\frac{1}{3}} & \rightarrow \text { Smallest } \\ 2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}} & \rightarrow \text { Largest }\end{array}$
Sandwich th.
$\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)^{\mathrm{n}} \leq \mathrm{P} \leq\left(2^{\frac{1}{2}}-2^{\frac{1}{2 \mathrm{n}+1}}\right)^{\mathrm{n}}$
$\binom{\text { lie } b / w}{0 \text { and } 1}^{\mathrm{n}}$
$\lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)^{n}=0$
$\lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)^{n}=0$
$\therefore \mathrm{P}=0$
6. Let P b a square matrix such that $\mathrm{P}^{2}=\mathrm{I}-\mathrm{P}$. For $\alpha, \beta, \gamma, \delta \in \mathrm{N}$, if
$\mathrm{P}^{\alpha}+\mathrm{P}^{\beta}=\gamma \mathrm{I}-29 \mathrm{P}$ and $\mathrm{P}^{\alpha}-\mathrm{P}^{\beta}=\delta \mathrm{I}-13 \mathrm{P}$, then $\alpha+\beta+\gamma-\delta$ is equal to :
(1) 40
(2) 22
(3) 24
(4) 18

Sol. (3)
$\mathrm{P}^{2}=\mathrm{I}-\mathrm{P}$
$\mathrm{P}^{\alpha}+\mathrm{P}^{\beta}=\gamma \mathrm{I}-29 \mathrm{P}$
$\mathrm{P}^{\alpha}-\mathrm{P}^{\beta}=\delta \mathrm{I}-13 \mathrm{P}$
$\mathrm{P}^{4}=(\mathrm{I}-\mathrm{P})^{2}=\mathrm{I}+\mathrm{P}^{2}-2 \mathrm{P}$
$\mathrm{P}^{4}=\mathrm{I}+\mathrm{I}-\mathrm{P}-2 \mathrm{P}=2 \mathrm{I}-3 \mathrm{P}$
$\mathrm{P}^{8}=\left(\mathrm{P}^{4}\right)^{2}=(2 \mathrm{I}-3 \mathrm{P})^{2}=4 \mathrm{I}+9 \mathrm{P}^{2}-12 \mathrm{P}$
$=4 \mathrm{I}+9(\mathrm{I}-\mathrm{P})-12 \mathrm{P}$ $\mathrm{P}^{8}=13 \mathrm{I}-21 \mathrm{P}$
$\mathrm{P}^{6}=\mathrm{P}^{4} \cdot \mathrm{P}^{2} \quad=(2 \mathrm{I}-3 \mathrm{P})(\mathrm{I}-\mathrm{P})$
$=2 \mathrm{I}-5 \mathrm{P}+3 \mathrm{P}^{2}$
$=2 \mathrm{I}-5 \mathrm{P}+3(\mathrm{I}-\mathrm{P})$
$=5 \mathrm{I}-8 \mathrm{P}$
$(1)+(2)$
$\mathrm{P}^{8}+\mathrm{P}^{6}=18 \mathrm{I}-29 \mathrm{P}$
(1) - (2)
$\mathrm{P}^{8}-\mathrm{P}^{6}=8 \mathrm{I}-13 \mathrm{P}$

From (A) $\quad \alpha=8, \quad \beta=6$
$\gamma=18$
$\delta=8$
$\alpha+\beta+\gamma-\delta=32-8=24$
7. A plane P contains the line of intersection of the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\overrightarrow{\mathrm{r}} .(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$. If P passes through the point $(0,2,-2)$, then the square of distance of the point $(12,12,18)$ from the plane P is :
(1) 620
(2) 1240
(3) 310
(4) 155

Sol. (1)
eq^{n} of plane $\quad \mathrm{P}_{1}+\lambda \mathrm{P}_{2}=0$

$$
\begin{aligned}
& (x+y+z-6)+\lambda(2 x+3 y+4 z+5)=0 \\
& \text { pass th. }(0,2,-2) \\
& (-6)+\lambda(6-8+5)=0 \\
& (-6)+\lambda[3]=0 \quad \Rightarrow \lambda=2
\end{aligned}
$$

eq^{n} of plane

$$
5 x+7 y+9 z+4=0
$$

distance from $(12,12,18)$
$\mathrm{d}=\left|\frac{60+84+162+4}{\sqrt{25+49+81}}\right|$
$\mathrm{d}=\frac{310}{\sqrt{155}}$
$\mathrm{d}^{2}=\frac{310 \times 310}{155}$
$d^{2}=620$
Ans. Option 1
8. Let $f(x)$ be a function satisfying $f(x)+f(\pi-x)=\pi^{2}, \forall x \in \mathbb{R}$. Then $\int_{0}^{\pi} f(x) \sin x d x$ is equal to :
(1) $\frac{\pi^{2}}{2}$
(2) π^{2}
(3) $2 \pi^{2}$
(4) $\frac{\pi^{2}}{4}$

Sol. (2)
$I=\int_{0}^{\pi} f(x) \sin x d x$
Apply king property
$I=\int_{0}^{\pi} f(\pi-x) \sin (\pi-x) d x$
Add
$2 I=\int_{0}^{\pi} f(x)+f(\pi-x) \sin x d x$
$2 I=\int_{0}^{\pi} \pi^{2} \sin x d x$
$\not 2 \mathrm{I}=\pi^{2}(\not 2)$
$\mathrm{I}=\pi^{2}$
Ans. Option 2
9. If the coefficients of x^{7} in $\left(a x^{2}+\frac{1}{2 b x}\right)^{11}$ and x^{-7} in $\left(a x-\frac{1}{3 b x^{2}}\right)^{11}$ are equal, then :
(1) $64 \mathrm{ab}=243$
(2) $32 \mathrm{ab}=729$
(3) $729 \mathrm{ab}=32$
(4) $243 \mathrm{ab}=64$

Sol. (3)

$$
\begin{aligned}
& \left(a x^{2}+\frac{1}{2 b x}\right)^{11} \\
& r=\frac{11 \times 2-7}{3}=5
\end{aligned}
$$

Coefficient of x^{7} is $={ }^{11} C_{5}(a)^{6}\left(\frac{1}{2 b}\right)^{5}$
$\left(\mathrm{ax}-\frac{1}{3 \mathrm{bx}^{2}}\right)^{11}$
$r=\frac{11 \times 1-(-7)}{3}=6$
Coefficient of x^{-7} is $={ }^{11} C_{6} \cdot \frac{a 5}{3^{6} b^{6}}$
$\because{ }^{11} \mathrm{C}_{5}\left(\mathrm{a}^{6}\right)\left(\frac{1}{2^{5} \mathrm{~b}^{5}}\right)={ }^{11} \mathrm{C}_{6} \cdot \frac{\mathrm{a} 5}{3^{6} \mathrm{~b}^{6}}$
$\Rightarrow \mathrm{ab}=\frac{2^{5}}{3^{6}}$
$\Rightarrow 729 \mathrm{ab}=32$
Ans. Opiton 3
10. If the tangents at the points P and Q are the circle $x^{2}+y^{2}-2 x+y=5$ meet at the point $R\left(\frac{9}{4}, 2\right)$, then the area of the triangle PQR is :
(1) $\frac{5}{4}$
(2) $\frac{13}{4}$
(3) $\frac{5}{8}$
(4) $\frac{13}{8}$

Sol. (3)
$x^{2}+y^{2}-2 x+y=5$

with resperct to R PQ is C.O.C
eq^{n} of C.O.C is $\mathrm{T}=0$

$$
\begin{aligned}
& \frac{9}{4} x+2 y-\left(x+\frac{9}{4}\right)+\frac{1}{2}(y+2)-5=0 \\
& \frac{5}{4} x+\frac{5}{2} y-\frac{25}{4}=0 \\
& 5 x+10 y-25=0 \\
& x+2 y=5
\end{aligned}
$$

$$
\text { Area }=\frac{1}{2}\left(\mathrm{P}^{\prime}\right)(\mathrm{PQ}) \quad(\mathrm{PQ})=2 \sqrt{\mathrm{r}^{2}-\mathrm{p}^{2}}=\sqrt{5}
$$

$$
\begin{array}{ll}
=\frac{1}{2}\left[\frac{\sqrt{5}}{4}\right](\sqrt{5}) & P^{\prime}=\frac{\frac{9}{4}+4-5}{\sqrt{5}} \\
=\frac{5}{8} & =\left(\frac{5}{4 \sqrt{5}}\right)=\frac{\sqrt{5}}{4}
\end{array}
$$

Method II
area $=\frac{\mathrm{RL}^{3}}{\mathrm{R}^{2}+\mathrm{L}^{2}}$
$\mathrm{R}=\frac{5}{2}$
$\mathrm{L}=\sqrt{\frac{81}{16}+4-\frac{9}{2}+2-5}$
$=\frac{5}{4}$
area $==\frac{5}{8}$
Ans. Option 3
11. Three dice are rolled. If the probability of getting different numbers on the three dice is $\frac{p}{q}$, where p and q are co-prime, then $\mathrm{q}-\mathrm{p}$ is equal to :
(1) 1
(2) 2
(3) 4
(4) 3

Sol. (3)
Fav. $=\frac{\left({ }^{6} \mathrm{C}_{3}\right)(3!)}{6 \times 6 \times 6}$
$=\frac{(20)(6)}{6 \cdot 6 \cdot 6}=\frac{20}{36}=\frac{5}{9}=\frac{\mathrm{p}}{\mathrm{q}}$
$\left.\begin{array}{l}\mathrm{p}=5 \\ \mathrm{q}=9\end{array}\right] \Rightarrow \mathrm{q-p=4}$
Ans. Option 3
12. In a group of 100 persons 75 speak English and 40 speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is α and the number of persons who speak only Hindi is β, then the eccentricity of the ellipse $25\left(\beta^{2} x^{2}+\alpha^{2} y^{2}\right)=\alpha^{2} \beta^{2}$ is :
(1) $\frac{\sqrt{129}}{12}$
(2) $\frac{\sqrt{117}}{12}$
(3) $\frac{\sqrt{119}}{12}$
(4) $\frac{3 \sqrt{15}}{12}$

Sol. (3)

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \\
& \mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=75+40-100 \\
& \mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=15
\end{aligned}
$$

Only E $\rightarrow 60$
$\alpha=60$
Only H $\rightarrow 25$

$$
\beta=25
$$

Both $=15$
$\frac{25 x^{2}}{\alpha^{2}}+\frac{25 y^{2}}{\beta^{2}}=1$
$\frac{25 x^{2}}{(60)^{2}}+\frac{\left(25 y^{2}\right)}{(25)^{2}}=1$
$\mathrm{e}^{2}=1-\left[\frac{25 \times 25}{(60)^{2}}\right]$
$\mathrm{e}^{2}=\frac{(60)^{2}-(25)^{2}}{(60)^{2}}$
$\mathrm{e}^{2}=\frac{(60-25)(60+25)}{60 \times 60}$
$\mathrm{e}^{2}=\frac{(35)(85)}{60 \times 60}=\frac{119}{144}$
$\mathrm{e}=\frac{\sqrt{119}}{12}$
13. If the solution curve $f(x, y)=0$ of the differential equation $\left(1+\log _{e} x\right) \frac{d x}{d y}-x \log _{e} x=e^{y}, x>0$, passes through the points $(1,0)$ and $(\alpha, 2)$, then α^{α} is equal to :
(1) $e^{\sqrt{2} e^{2}}$
(2) $e^{e^{2}}$
(3) $e^{2 e^{\sqrt{2}}}$
(4) $e^{2 e^{2}}$

Sol. (4)

$$
(1+\ln x) \frac{d x}{d y}-x \ln x=e^{y}
$$

Let $\quad \mathrm{x} \ell \mathrm{n} \mathrm{x}=\mathrm{t}$

$$
(1+\ln x) \frac{d x}{d y}=\frac{d t}{d y}
$$

$$
\begin{array}{ll}
\frac{d t}{d y}-t=e^{y} & P=-1, Q=e^{y} \\
& I \cdot F=e^{\int-d y}=e^{-y}
\end{array}
$$

Solution -

$$
\begin{array}{ll}
(\mathrm{t})\left(\mathrm{e}^{-\mathrm{y}}\right)=\int\left(\mathrm{e}^{-\mathrm{y}}\right)\left(\mathrm{e}^{\mathrm{y}}\right) \mathrm{dy} \\
\mathrm{t}\left(\mathrm{e}^{-y}\right)=\mathrm{y}+\mathrm{c} \\
(\mathrm{x} \ln x) \mathrm{e}^{-y}=\mathrm{y}+\mathrm{c} \\
& \Rightarrow \quad \\
& \begin{array}{l}
\text { pass }(1,0) \Rightarrow c=0 \\
\text { pass }(\alpha, 2) \\
\\
\\
\\
\alpha^{\alpha}=\mathrm{e}^{2 e^{2}}
\end{array}
\end{array}
$$

Ans. Option 4

14. Let the sets A and B denote the domain and range respectively of the function $f(x)=\frac{1}{\sqrt{[x]-x}}$, where $[x]$ denotes the smallest integer greater than or equal to x . Then among the statements :
(S1) : $\mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}$ and
$(S 2): A \cup B=(1, \infty)$
(1) only (S1) is true
(2) neither (S 1) nor (S 2) is true
(3) only (S2) is true
(4) both (S1) and (S2) are true

Sol. (1)

$f(x)=\frac{1}{\sqrt{[x]-x}}$
If $x \in I[x]=[x]$ (greatest integer function)
If $x \notin[x]=[x]+1$
$\Rightarrow f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{[x]-x}}, x \in I \\ \frac{1}{\sqrt{[x]+1-x}}, x \notin I\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{l}\frac{1}{\sqrt{-\{x\}}}, x \in I,(\text { does not exist }) \\ \frac{1}{\sqrt{1-\{x\}}}, x \notin I\end{array}\right.$
\Rightarrow domain of $\mathrm{f}(\mathrm{x})=\mathrm{R}-\mathrm{I}$
Now, $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{1-\{\mathrm{x}\}}}, \mathrm{x} \notin \mathrm{I}$
$\Rightarrow x<\{x\}<1$
$\Rightarrow 0<1 \sqrt{1-\{\mathrm{x}\}}<1$
$\Rightarrow \frac{1}{\sqrt{1-\{x\}}}>1$
\Rightarrow Range $(1, \infty)$
$\Rightarrow \mathrm{A}=\mathrm{R}-\mathrm{I}$
B $=(1 \infty)$
So, $A \cap B=(1, \infty)-N$
$A \cup B \neq(1, \infty)$
$\Rightarrow S 1$ is only correct.
15. Let $\mathrm{a} \neq \mathrm{b}$ be two-zero real numbers. Then the number of elements in the set $X=\left\{z \in \mathbb{C}: \operatorname{Re}\left(a^{2}+b z\right)=a\right.$ and $\left.\operatorname{Re}\left(b z^{2}+a z\right)=b\right\}$ is equal to :
(1) 0
(2) 2
(3) 1
(4) 3

Sol. (1) Bonus
$\because \mathrm{z}+\overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z}) \quad$ If $\mathrm{z}=\mathrm{x}+\mathrm{iy} \quad \Rightarrow \mathrm{z}+\overline{\mathrm{z}}=2 \mathrm{x} \quad \mathrm{z}^{2}+(\overline{\mathrm{z}})^{2}=2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
$\left(a^{2}+b z\right)+\left(a \bar{z}^{2}+b \bar{z}\right)=2 a$
$\left(b z^{2}+a z\right)+\left(b \bar{z}^{2}+a \bar{z}\right)=2 b$
add (1) and (2)
$(a+b) z^{2}+(a+b) z+(a+b) \bar{z}^{2}+(a+b) \bar{z}=2(a+b)$
$(\mathrm{a}+\mathrm{b})\left[\mathrm{z}^{2}+\mathrm{z}+(\overline{\mathrm{z}})^{2}+\overline{\mathrm{z}}\right]=2(\mathrm{a}+\mathrm{b})$
sub. (1) and (2)
$(\mathrm{a}-\mathrm{b})\left[\mathrm{z}^{2}-\mathrm{z}+\overline{\mathrm{z}}^{2}-\overline{\mathrm{z}}\right]=2(\mathrm{a}-\mathrm{b})$

$$
\begin{equation*}
\mathrm{z}^{2}+\overline{\mathrm{z}}^{2}-\mathrm{z}-\overline{\mathrm{z}}=2 \tag{4}
\end{equation*}
$$

Case I: If $a+b \neq 0$
From (3) \& (4)

$$
\begin{array}{ll}
2 x+2\left(x^{2}-y^{2}\right)=2 & \Rightarrow x^{2}-y^{2}+x=1 \\
2\left(x^{2}-y^{2}\right)-2 x=2 & \Rightarrow x^{2}-y^{2}-x=1 \tag{6}
\end{array}
$$

(5) - (6)

$$
\begin{aligned}
& 2 \mathrm{x}=0 \Rightarrow \mathrm{x}=0 \\
& \text { from }(5) \quad \mathrm{y}^{2}=-1 \quad \\
&
\end{aligned}
$$

Case II: If $a+b=0$ then infinite number of solution.
So, the set X have infinite number of elements.
16. The sum of all values of α, for which the points whose position vectors are $\hat{i}-2 \hat{j}+3 k, 2 \hat{i}-3 \hat{j}+4 k,(\alpha+1) \hat{i}+2 k$ and $9 \hat{i}+(\alpha-8) \hat{j}+6 \hat{k}$ are coplanar, is equal to :
(1) -2
(2) 2
(3) 6
(4) 4

Sol. (2)

$\mathrm{A}=(1,-2,3)$
$\mathrm{B}=(2,-3,4)$
$\mathrm{C}=(\alpha+1,0,2)$
$\mathrm{D}=(9, \alpha-8,6)$
$[\overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{AC}} \overrightarrow{\mathrm{AD}}]=0$
$\left|\begin{array}{ccc}1 & -1 & 1 \\ \alpha & 2 & -1 \\ 8 & \alpha-6 & 3\end{array}\right|=0$
$\Rightarrow(6+\alpha-6)+1(3 \alpha+8)+\left(\alpha^{2}-6 \alpha-16\right)=0$
$\Rightarrow \alpha^{2}-2 \alpha-8=0$
$\Rightarrow \alpha=4,-2$
\Rightarrow sum of all values of $\alpha=2$
Ans. option 2
17. Let the line L pass through the point ($0,1,2$), intersect the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and be parallel to the plane $2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=4$. Then the distance of the point $\mathrm{P}(1,-9,2)$ from the line L is :
(1) 9
(2) $\sqrt{54}$
(3) $\sqrt{69}$
(4) $\sqrt{74}$

Sol. (4)

$\overrightarrow{\mathrm{PQ}}=(2 \lambda+1,3 \lambda+1,4 \lambda+1)$
$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{n}}=0 \quad \Rightarrow(2 \lambda+1) \cdot(2)+(3 \lambda+1)(1)+(4 \lambda+1)(-3)=0$
$\Rightarrow-5 \lambda=0$
$\Rightarrow \lambda=0$
$\mathrm{Q}=(1,2,3)$
eq ${ }^{\mathrm{n}}$ of line

$$
\frac{x-0}{1}=\frac{y-1}{1}=\frac{z-2}{1}=\mu
$$

distance of line from $(1,-9,2)$
($\left.\mathrm{P}^{\prime} \mathrm{Q}^{\prime}\right) .(1,1,1)=0$
$\Rightarrow[\mu-1, \mu+10, \mu] \cdot[1,1,1]=0$
$\Rightarrow \mu-1+\mu+10+\mu=0$
$\mu=-3$
$\mathrm{Q}^{\prime}=(-3,-2,1)$
$P^{\prime} Q^{\prime}=\sqrt{16+49+9}=\sqrt{74}$

18. All the letters of the word PUBLIC are written in all possible orders and these words are written as in a dictionary with serial numbers. Then the serial number of the word PUBLIC is :
(1) 580
(2) 578
(3) 576
(4) 582

Sol. (4)

Rank $=582$
Ans. Option 4
19. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ represent three coterminous edges of a parallelepiped of volume V. Then the volume of the parallelepiped, whose coterminous edges are represented by $\vec{a}, \vec{b}+\vec{c}$ and $\vec{a}+2 \vec{b}+3 \vec{c}$ is equal to :
(1) 2 V
(2) 6 V
(3) 3 V
(4) V

Sol. (4)

$v=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
$v_{1}=\left[\begin{array}{lll}\vec{a} & \vec{b}+c & \vec{a}+2 \vec{b}+3 \vec{c}\end{array}\right]$
$\mathrm{v}_{1}=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 3\end{array}\right|[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]$
$\mathrm{v}_{1}=(3-2) \mathrm{v}$
$=\mathrm{v}$
Ans. Option 4
20. Among the statements :
(S1) : $2023^{2022}-1999^{2022}$ is divisible by 8
(S2) : $13(13)^{\mathrm{n}}-11 \mathrm{n}-13$ is divisible by 144 for infinitely many $\mathrm{n} \in \mathbb{N}$
(1) only (S2) is correct
(2) only (S 1) is correct
(3) both (S1) and (S2) are incorrect
(4) both (S1) and (S2) are correct

Sol. (4)

$\because x^{n}-y^{n}=(x-y)\left[x^{n-1}+x^{n-2} y+x^{n-3} y^{2}\right.$ \qquad $\left.+y^{\mathrm{n}-1}\right]$
$\mathrm{x}^{\mathrm{n}}-\mathrm{y}^{\mathrm{n}}$ is divisible by $\mathrm{x}-\mathrm{y}$
Stat $1 \rightarrow$

$$
\begin{array}{ll}
\rightarrow & (2023)^{2022}-(1999)^{2022} \\
& (2023)-(1999)=24 \\
\therefore \quad & (2023)^{2022}-(1999)^{2022}
\end{array}
$$

is divisible by 8
Stat $2 \rightarrow$

$$
\begin{aligned}
& 13(1+12)^{\mathrm{n}}-11 \mathrm{n}-13 \\
& 13\left[1+{ }^{\mathrm{n}} \mathrm{C}_{1},(12)+{ }^{\mathrm{n}} \mathrm{C}_{2}(12)^{2}+\ldots\right]-11 \mathrm{n}-13 \\
& \Rightarrow(156 \mathrm{n}-11 \mathrm{n})+13 \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}(12)^{2}+13 \cdot{ }^{\mathrm{n}} \mathrm{C}_{3}(12)^{3}+\ldots \\
& \Rightarrow 145 \mathrm{n}+13 \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}(12)^{2}+13 \cdot{ }^{\mathrm{n}} \mathrm{C}_{3}(12)^{3}+\ldots
\end{aligned}
$$

If $(\mathrm{n}=144 \mathrm{~m}, \mathrm{~m} \in \mathrm{~N})$ then it is divisible by 144 for infinite values of n .
Ans. Option 4

SECTION-B

21. The value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is \qquad :
Sol. 4
$\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$
$\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}$
$\frac{2(4)}{\sqrt{5}-1}-\frac{2(4)}{(\sqrt{5}+1)}$
$\frac{8(\sqrt{5}+1)}{4}-\frac{8(\sqrt{5}-1)}{4}$
$2[(\sqrt{5}+1)-(\sqrt{5}-1)]$
$=4$
22. If $(20)^{19}+2(21)(20)^{18}+3(21)^{2}(20)^{17}+\ldots .+20(21)^{19}=\mathrm{k}(20)^{19}$, then k is equal to \qquad :
Sol. 400

$$
S=(20)^{19}+2(21)(20)^{18}+\ldots \ldots .+20(21)^{19}
$$

$\frac{21}{20} S=21(20)^{18}+2(21)^{9}(20)^{17}+$ \qquad $+(21)^{20}$

Subtract

$$
\begin{aligned}
& \left(1-\frac{21}{20}\right) \mathrm{S}=(20)^{19}+(21)(20)^{18}+(21)^{2}(20)^{17}+\ldots \ldots .+(21)^{19}-(21)^{20} \\
& \left.\left(\frac{-1}{20}\right) \mathrm{S}=(20)^{19}\left[\frac{1-\left(\frac{21}{20}\right)^{20}}{1-\frac{21}{20}}\right]-(21)^{20}\right] \\
& \left(\frac{-1}{20}\right) \mathrm{S}=(21)^{20}-(20)^{20}-(21)^{20}
\end{aligned}
$$

$\mathrm{S}=(20)^{21}=\mathrm{K}(20)^{19}$ (given)
$\mathrm{K}=(20)^{2}=400$
23. Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is reciprocal to that of the hyperbola $2 x^{2}-2 y^{2}=1$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is \qquad :
Sol. 2
$E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \rightarrow e$
$H: x^{2}-y^{2}=\frac{1}{2} \Rightarrow e^{\prime}=\sqrt{2}$
$\mathrm{e}=\frac{1}{\sqrt{2}}$
$\because \mathrm{e}^{2}=\frac{1}{2}$
$1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{1}{2} \Rightarrow \frac{\mathrm{~b}^{2}}{\mathrm{a}^{2}}=\frac{1}{2}$
$a^{2}=2 b^{2}$
$\mathrm{E} \& \mathrm{H}$ are at right angle they are confocal
Focus of Hyperbola = focus of ellipse

$$
\begin{aligned}
& \left(\pm \frac{1}{\sqrt{2}} \cdot \sqrt{2}, 0\right)=\left(\pm \frac{a}{\sqrt{2}}, 0\right) \\
& a=\sqrt{2}
\end{aligned}
$$

$$
\because a^{2}=2 b^{2} \Rightarrow b^{2}=1
$$

Length of $\mathrm{LR}=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2(1)}{\sqrt{2}}$
$=\sqrt{2}$
Square of LR $=2$
24. For $\alpha, \beta, z \in \mathbb{C}$ and $\lambda>1$, if $\sqrt{\lambda-1}$ is the radius of the circle $|z-\alpha|^{2}+|z-\beta|^{2}=2 \lambda$, then $|\alpha-\beta|$ is equal to
\qquad _:

Sol. 2

$$
\begin{aligned}
& \left|\mathrm{z}-\mathrm{z}_{1}\right|^{2}+\left|\mathrm{z}-\mathrm{z}_{2}\right|^{2}=\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|^{2} \\
& \mathrm{z}_{1}=\alpha, \mathrm{z}_{2}=\beta \\
& |\alpha-\beta|^{2}=2 \lambda \\
& |\alpha-\beta|=\sqrt{2 \lambda} \\
& 2 \mathrm{r}=\sqrt{2 \lambda} \\
& 2 \sqrt{\lambda-1}=\sqrt{2 \lambda} \\
& \Rightarrow 4(\lambda-1)=2 \lambda \\
& \lambda=2 \\
& |\alpha-\beta|=2
\end{aligned}
$$

25. Let a curve $y=f(x), x \in(0, \infty)$ pass through the points $P\left(1, \frac{3}{2}\right)$ and $Q\left(a, \frac{1}{2}\right)$. If the tangent at any point $R(b, f(b))$ to the given curve cuts the y-axis at the points $S(0, c)$ such that $b c=3$, then $(P Q)^{2}$ is equal to \qquad :

Sol. 5

Equation of tangent at $R(b, f(2))$ is
$y-f(b)=f^{\prime}(b) .(x-b)$
which passes through ($0, \mathrm{c}$)
$\Rightarrow \mathrm{c}-\mathrm{f}(\mathrm{b})=\mathrm{f}^{\prime}(\mathrm{b}) .(-\mathrm{b})$
$\Rightarrow \frac{3}{\mathrm{~b}}-\mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{b}) .(-\mathrm{b})$
$\Rightarrow \frac{\mathrm{bf}^{\prime}(\mathrm{b})-\mathrm{f}(\mathrm{b})}{\mathrm{b}^{2}}=-\frac{3}{\mathrm{~b}^{3}}$
$\Rightarrow \mathrm{d}\left(\frac{\mathrm{f}(\mathrm{b})}{\mathrm{b}}\right)=-\frac{3}{\mathrm{~b}^{3}} \Rightarrow \frac{\mathrm{f}(\mathrm{b})}{\mathrm{b}}=\frac{3}{2 \mathrm{~b}^{2}}+\lambda$
Which passes through $(1,3 / 2)$
$\Rightarrow \frac{3}{2}=\frac{3}{2}+\lambda \Rightarrow \lambda=0$
$\Rightarrow \mathrm{f}(\mathrm{b})=\frac{3}{2 \mathrm{~b}}$
$\mathrm{f}(\mathrm{a})=\frac{1}{2} \Rightarrow \frac{1}{2}=\frac{3}{2 \mathrm{~b}} \Rightarrow \mathrm{~b}=3$
$\Rightarrow \mathrm{c}=1 \Rightarrow \mathrm{Q}(3,1 / 2)$
$\Rightarrow \mathrm{PQ}^{2}=2^{2}+(1)^{2}=5$
26. If the lines $\frac{x-1}{2}=\frac{2-y}{-3}=\frac{z-3}{\alpha}$ and $\frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{\beta}$ intersect, then the magnitude of the minimum value of $8 \alpha \beta$ is \qquad :

Sol. 18

If the lines $\frac{x-1}{2}=\frac{2-y}{-3}=\frac{z-3}{\alpha}$ and $\frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{\beta}$ intersect Point of first line $(1,2,3)$ and point on second line $(4,1,0)$.
Vector joining both points is $-3 \hat{i}+\hat{j}+3 k$
Now vector along second line is $2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\alpha \mathrm{k}$
Also vector along second line is $5 \hat{i}+2 \hat{j}+\beta k$
Now these three vectors must be coplanar
$\Rightarrow\left|\begin{array}{ccc}2 & 3 & \alpha \\ 5 & 2 & \beta \\ -3 & 1 & 3\end{array}\right|$
$\Rightarrow 2(6-\beta)-3(15+3 \beta)+\alpha(11)=0$
$\Rightarrow \alpha-\beta=3$
Now $\alpha=3+\beta$
Given expression $8(3+\beta) . \beta=8\left(\beta^{2}+3 \beta\right)$
$=8\left(\beta^{2}+3 \beta+\frac{9}{4}-\frac{9}{4}\right)=8\left(\beta+\frac{3}{2}\right)^{2}-18$
So magnitude of minimum value $=18$
27. Let $f(x)=\frac{x}{1+x^{\frac{1}{n}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n>2$. If $f^{n}(x)=n$ (fofof..... upto n times) (x), then $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n-2}\left(f^{n}(x)\right) d x$ is equal to \qquad $:$
Sol. 0
Let $f(x)=\frac{x}{1+x^{n^{\frac{1}{n}}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n>2$.
If $\mathrm{f}^{\mathrm{n}}(\mathrm{x})=\mathrm{n}$ (fofof..... upto n times) (x)
then $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n-2}\left(f^{n}(x)\right) d x$
$f(f(x))=\frac{x}{\left(1+2 x^{n}\right)^{1 / n}}$
$f(f(f(x)))=\frac{x}{\left(1+3 x^{n}\right)^{1 / n}}$
Similarly $f^{n}(x)=\frac{x}{\left(1+n \cdot x^{n}\right)^{1 / n}}$
Now $\lim _{n \rightarrow \infty} \int \frac{x^{n-2} \cdot x d x}{\left(1+n \cdot x^{n}\right)^{1 / n}}=\lim _{n \rightarrow \infty} \int \frac{x^{n-1} \cdot d x}{\left(1+n \cdot x^{n}\right)^{1 / n}}$
Now $1+n x^{n}=\mathrm{t}$
$\mathrm{n}^{2} \cdot \mathrm{x}^{\mathrm{n}-1} \mathrm{dx}=\mathrm{dt}$
$x^{n-1} d x=\frac{d t}{n^{2}}$
$\Rightarrow \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}^{2}} 1_{1}^{1+\mathrm{n}} \frac{\mathrm{dt}}{\mathrm{t}^{1 / \mathrm{n}}}$
$\Rightarrow \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}^{2}}\left[\frac{\mathrm{t}^{1-\frac{1}{n}}}{1-\frac{1}{\mathrm{n}}}\right]_{1}^{1+\mathrm{n}}$
$\Rightarrow \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}(\mathrm{n}-1)}\left((1+\mathrm{n})^{\frac{\mathrm{n}-1}{\mathrm{n}}}-1\right)$ Now let $\mathrm{n}=\frac{1}{\mathrm{~h}}$
$\Rightarrow \lim _{h \rightarrow 0} \frac{\left(1+\frac{1}{h}\right)^{1-h}-1}{\frac{1}{h} \frac{(1-h)}{h}}$
Using series expansion
$\Rightarrow 0$
28. If the mean and variance of the frequency distribution.

x_{i}	2	4	6	8	10	12	14	16
f_{i}	4	4	α	15	8	β	4	5

are 9 and 15.08 respectively, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is \qquad :

Sol. 25

x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}$
2	4	8	16
4	4	16	64
6	α	6α	36α
8	15	120	960
10	8	80	800
12	β	12β	144β
14	4	56	784
16	5	80	1280

$$
\begin{aligned}
& \mathrm{N}=\sum \mathrm{f}_{\mathrm{i}}=40+\alpha+\beta \\
& \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=360+6 \alpha+12 \beta \\
& \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}=3904+36 \alpha+144 \beta \\
& \text { Mean }(\overline{\mathrm{x}})=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=9 \\
& \Rightarrow 360+6 \alpha+12 \beta=9(40+\alpha+\beta) \\
& 3 \alpha=3 \beta \Rightarrow \alpha=\beta \\
& \sigma^{2}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{1}^{2}}{\sum \mathrm{f}_{\mathrm{i}}}-\left(\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}\right)^{2} \\
& \Rightarrow \frac{3904+36 \alpha+144 \beta}{40+\alpha+\beta}-(\overline{\mathrm{x}})^{2}=15.08 \\
& \Rightarrow \frac{3904+180 \alpha}{40+2 \alpha}-(9)^{2}=15.08 \\
& \Rightarrow \alpha=5 \\
& \text { Now, } \alpha^{2}+\beta^{2}-\alpha \beta=\alpha^{2}=25
\end{aligned}
$$

29. The number of points, where the curve $y=x^{5}-20 x^{3}+50 x+2$ crosses the x-axis is \qquad :
Sol. 5

$$
y=x^{5}-20 x^{3}+50 x+2
$$

$$
\begin{aligned}
& \frac{d y}{d x}=5 x^{4}-60 x^{2}+50=5\left(x^{4}-12 x^{2}+10\right) \\
& \frac{d y}{d x}=0 \Rightarrow x^{4}-12 x^{2}+10=0
\end{aligned}
$$

$\Rightarrow \mathrm{x}^{2}=\frac{12 \pm \sqrt{144-40}}{2}$
$\Rightarrow x^{2}=6 \pm \sqrt{26} \Rightarrow x^{2} \approx 6 \pm 5.1$
$\Rightarrow x^{2} \approx 11.1,0.9$
$\Rightarrow \mathrm{x} \approx \pm 3.3, \pm 0.95$
$\mathrm{f}(0)=2, \mathrm{f}(1)=+\mathrm{ve}, \mathrm{f}(2)=-\mathrm{ve}$
$f(-1)=-v e, f(-2)=+v e$

The number of points where the curve cuts the x-axis $=5$.
30. The number of 4-letter words, with or without meaning, each consisting of 2 vowels and 2 consonants, which can be formed from the letters of the word UNIVERSE without repetition is \qquad :

Sol. 432

UNIVERSE

Vowels	Consonant
E, E	N, V,
I, U	R, S

Case I 2 vowels different, 2 consonant different

$$
\left({ }^{3} \mathrm{C}_{2}\right)\left({ }^{4} \mathrm{C}_{2}\right)(4!)
$$

$$
=(3)(6)(24)
$$

$$
=432
$$

