FINAL JEE-MAIN EXAMINATION - APRIL, 2023

SECTION-A

1. An arc $P Q$ of a circle subtends a right angle at its centre O. The mid point of the arc $P Q$ is R. If $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{u}}+\beta \overrightarrow{\mathrm{v}}$, then α, β^{2} are the roots of the equation:
(1) $3 x^{2}-2 x-1=0$
(2) $3 x^{2}+2 x-1=0$
(3) $x^{2}-x-2=0$
(4) $x^{2}+x-2=0$

Sol. (3)

Let $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{u}}=\hat{\mathrm{i}}$
$\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{q}}=\hat{\mathrm{j}}$
$\because \mathrm{R}$ is the mid point of $\overrightarrow{\mathrm{PQ}}$
Then $\overrightarrow{O R}=\vec{v}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$
Now
$\overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{u}}+\beta \overrightarrow{\mathrm{v}}$
$\hat{\mathrm{j}}=\alpha \hat{\mathrm{i}}+\beta\left(\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}\right)$
$\beta=\sqrt{2}, \alpha+\frac{\beta}{\sqrt{2}}=0 \Rightarrow \alpha=-1$
Now equation
$x^{2}-\left(\alpha+\beta^{2}\right) x+\alpha \beta^{2}=0$
$x^{2}-(-1+2) x+(-1)(2)=0$
$x^{2}-x-2=0$
2. A square piece of tin of side 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. If the volume of the box is maximum, then its surface area (in cm^{2}) is equal to :
(1) 800
(2) 1025
(3) 900
(4) 675

Sol. (1)
Let the side of the square to be cut off be xcm .
Then, the length and breadth of the box will be $(30-2 x) \mathrm{cm}$ each and the height of the box is x cm therefore,

The volume $V(x)$ of the box is given by
$\mathrm{V}(\mathrm{x})=\mathrm{x}(30-2 \mathrm{x})^{2}$
$\frac{d v}{d x}=(30-2 x)^{2}+2 x \times(30-2 x)(-2)$
$0=(30-2 x)^{2}-4 x(30-2 x)$
$0=(30-2 x)[(30-2 x)-4 x]$
$0=(30-2 x)(30-6 x)$
$\mathrm{x}=15,5$
$\mathrm{x} \neq 15 \quad$ (Not possible)
$\{\therefore \mathrm{V}=0\}$
Surface area without top of the box $=\ell b+2(b h+h \ell)$
$=(30-2 x)(30-2 x)+2[(30-2 x) x+(30-2 x) x]$
$=\left[(30-2 x)^{2}+4\{(30-2 x) x\}\right.$
$=\left[(30-10)^{2}+4(5)(30-10)\right]$
$=400+400$
$=800 \mathrm{~cm}^{2}$
3. Let O be the origin and the position vector of the point P be $-\hat{i}-2 \hat{j}+3 \hat{k}$. If the position vectors of the A, B and C are $-2 \hat{i}+\hat{j}-3 \hat{k}, 2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $-4 \hat{i}+2 \hat{j}-\hat{k}$ respectively, then projection of the vector $\overrightarrow{O P}$ on a vector perpendicular to the vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ is :
(1) $\frac{10}{3}$
(2) $\frac{8}{3}$
(3) $\frac{7}{3}$
(4) 3

Sol. (4)
Position vector of the point $P(-1,-2,3), A(-2,1,-3) B(2,4,-2)$, and $C(-4,2,-1)$
Then $\overrightarrow{\mathrm{OP}} \cdot \frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{|(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}})|}$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & 1 \\ -2 & 1 & 2\end{array}\right|$
$=\hat{\mathrm{i}}(5)-\hat{\mathrm{j}}(8+2)+\hat{\mathrm{k}}(4+6)$
$=5 \hat{i}-10 \hat{j}+10 \hat{k}$
Now

$$
\begin{aligned}
& \overrightarrow{\mathrm{OP} \cdot} \cdot \frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{\left\lvert\,\left(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}) \mid}=(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{k}) \cdot \frac{(5 \hat{\mathrm{i}}-10 \hat{j}+10 \hat{k})}{\sqrt{(5)^{2}+(-10)^{2}+(10)^{2}}}\right.\right.} \\
& =\frac{-5+20+30}{\sqrt{25+100+100}} \\
& =\frac{45}{\sqrt{225}}=\frac{45}{15}=3
\end{aligned}
$$

4. If A is a 3×3 matrix and $|\mathrm{A}|=2$, then $\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|$ is equal to :
(1) $3^{12} \cdot 6^{10}$
(2) $3^{11} \cdot 6^{10}$
(3) $3^{12} \cdot 6^{11}$
(4) $3^{10} \cdot 6^{11}$

Sol. (2)
Given $|\mathrm{A}|=2$
Now, $\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|$
$|3 \mathrm{~A}|=3^{3} .|\mathrm{A}|$
$=3^{3}$. (2)
Adj. $\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)=\operatorname{adj}\left\{\left(3^{3} .2\right) \mathrm{A}^{2}\right\}$
$=\left(2.3^{3}\right)^{2}(\operatorname{adj} \mathrm{~A})^{2}$
$=2^{2} \cdot 3^{6} .(\operatorname{adj} \mathrm{A})^{2}$
$\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|=\left|2^{2} \cdot 3 \cdot 3^{6}(\operatorname{adj} \mathrm{~A})^{2}\right|$

$$
\begin{aligned}
& =\left(2^{2} \cdot 3^{7}\right)^{3}|\operatorname{adj} \mathrm{~A}|^{2} \\
& =2^{6} \cdot 3^{21}\left(|\mathrm{~A}|^{2}\right)^{2} \\
& =2^{6} \cdot 3^{21}\left(2^{2}\right)^{2} \\
& =2^{10} \cdot 3^{21} \\
& =2^{10} \cdot 3^{10} \cdot 3^{11}
\end{aligned}
$$

$\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|=6^{10} .3^{11}$
5. Let two vertices of a triangle ABC be $(2,4,6)$ and $(0,-2,-5)$, and its centroid be $(2,1,-1)$. If the image of the third vertex in the plane $x+2 y+4 z=11$ is (α, β, γ), then $\alpha \beta+\beta \gamma+\gamma \alpha$ is equal to :
(1) 76
(2) 74
(3) 70
(4) 72

Sol. (2)

Given Two vertices of Triangle $\mathrm{A}(2,4,6)$ and $\mathrm{B}(0,-2,-5)$ and if centroid $\mathrm{G}(2,1,-1)$
Let Third vertices be ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
Now $\frac{2+0+\mathrm{x}}{3}=2, \frac{4-2+\mathrm{y}}{3}=1, \frac{6-5+\mathrm{z}}{3}=-1$
$\mathrm{x}=4, \mathrm{y}=1, \quad \mathrm{z}=-1$
Third vertices $C(4,1,-4)$

Now, Image of vertices $C(4,1,-4)$ in the given plane is $D(\alpha, \beta, \gamma)$

Now
$\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=-2 \frac{(4+2-16-11)}{1+4+16}$
$\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{42}{21} \Rightarrow 2$
$\alpha=6, \beta=5, \gamma=4$
Then $\alpha \beta+\beta \gamma+\gamma \alpha$
$=(6 \times 5)+(5 \times 4)+(4 \times 6)$
$=30+20+24$
$=74$
6. The negation of the statement :
$(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \vee(\sim \mathrm{r}))$ is
(1) $((\sim \mathrm{p}) \vee \mathrm{r})) \wedge(\sim \mathrm{q})$
(2) $((\sim \mathrm{p}) \vee(\sim \mathrm{q})) \wedge(\sim \mathrm{r})$
(3) $((\sim \mathrm{p}) \vee(\sim q)) \vee(\sim r)$
(4) $(p \vee r) \wedge(\sim q)$

Sol. (1)

$(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \vee(\sim \mathrm{r}))$
$\sim[(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \vee(\sim \mathrm{r}))]$
$=\sim(p \vee q) \wedge(\sim q \wedge r)$
$=(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\sim \mathrm{q} \wedge \mathrm{r})$
$=(\sim \mathrm{p} \vee \mathrm{r}) \wedge(\sim \mathrm{q})$
7. The shortest distance between the lines $\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2}$ and $\frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}$ is :
(1) 8
(2) 7
(3) 6
(4) 9

Sol. (4)
$\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2}$ and $\frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}$

Shortest distance $(d)=\frac{\left\|\begin{array}{ccc}a_{2}-a_{1} & b_{2}-b_{1} & c_{2}-c_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right\|}{\left\|\begin{array}{ccc}\hat{i} & \hat{j} & k \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right\|}$

$$
=\frac{\left\|\begin{array}{ccc}
4+2 & 1-0 & -3-5 \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right\|}{\left\|\begin{array}{ccc}
\hat{i} & \hat{j} & k \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right\|}
$$

$$
=\frac{\left|\begin{array}{ccc}
6 & 1 & -8 \\
1 & -2 & 2 \\
1 & 2 & 0
\end{array}\right|}{|\hat{\mathrm{i}}(-4)-\hat{\mathrm{j}}(-2)+\mathrm{k}(2+2)|}
$$

$$
=\frac{|-54|}{|-4 \hat{i}+2 \hat{\mathrm{j}}+4 \mathrm{k}|}
$$

$$
=\frac{54}{\sqrt{16+4+16}}
$$

$$
=\frac{54}{6}
$$

$$
=9
$$

8. If the coefficient of x^{7} in $\left(a x-\frac{1}{b x^{2}}\right)^{13}$ and the coefficient of x^{-5} in $\left(a x+\frac{1}{b x^{2}}\right)^{13}$ are equal, then $a^{4} b^{4}$ is equal to :
(1) 22
(2) 44
(3) 11
(4) 33

Sol. (1)
$\left(\mathrm{ax}-\frac{1}{\mathrm{bx}^{2}}\right)^{13}$
We have,
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{p})^{\mathrm{n}-\mathrm{r}}(\mathrm{q})^{\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-\mathrm{r}} \cdot(\mathrm{x})^{-2 \mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(-\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-3 \mathrm{r}}$

Coefficient of x^{7}
$\Rightarrow 13-3 \mathrm{r}=7$
$\mathrm{r}=2$
r in equation (1)
$\mathrm{T}_{3}={ }^{13} \mathrm{C}_{2}(\mathrm{a})^{13-2}\left(-\frac{1}{\mathrm{~b}}\right)^{2}(\mathrm{x})^{13-6}$
$={ }^{13} \mathrm{C}_{2}(\mathrm{a})^{11}\left(\frac{1}{\mathrm{~b}}\right)^{2}(\mathrm{x})^{7}$
Coefficient of x^{7} is ${ }^{13} C_{2} \frac{(a)^{11}}{b^{2}}$
Now, $\left(\mathrm{ax}+\frac{1}{\mathrm{bx}^{2}}\right)^{13}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{bx}^{2}}\right)^{\mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-\mathrm{r}}(\mathrm{x})^{-2 \mathrm{r}}$
$={ }^{13} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{13-\mathrm{r}}\left(\frac{1}{\mathrm{~b}}\right)^{\mathrm{r}}(\mathrm{x})^{13-3 \mathrm{r}}$
Coefficient of x^{-5}
$\Rightarrow 13-3 r=-5$
$r=6$
r in equation
${ }^{T}{ }_{7}={ }^{13} C_{6}(a)^{13-6}\left(\frac{1}{b}\right)^{6}(x)^{13-18}$
$\mathrm{T}_{7}={ }^{13} \mathrm{C}_{6}(\mathrm{a})^{7}\left(\frac{1}{\mathrm{~b}}\right)^{6}(\mathrm{x})^{-5}$
Coefficient of x^{-5} is ${ }^{13} \mathrm{C}_{6}(\mathrm{a})^{7}\left(\frac{1}{\mathrm{~b}}\right)^{6}$
ATQ
Coefficient of $x^{7}=$ coefficient of x^{-5}
$\mathrm{T}_{3}=\mathrm{T}_{7}$
${ }^{13} \mathrm{C}_{2}\left(\frac{\mathrm{a}^{11}}{\mathrm{~b}^{2}}\right)={ }^{13} \mathrm{C}_{6}(\mathrm{a})^{7}\left(\frac{1}{\mathrm{~b}}\right)^{6}$
$\mathrm{a}^{4} \cdot \mathrm{~b}^{4}=\frac{{ }^{13} \mathrm{C}_{6}}{{ }^{13} \mathrm{C}_{2}}$
$=\frac{13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 1}{13 \times 12 \times 6 \times 5 \times 4 \times 3}=22$
9. A line segment $A B$ of length λ moves such that the points A and B remain on the periphery of a circle of radius λ. Then the locus of the point, that divides the line segment $A B$ in the ratio $2: 3$, is a circle of radius :
(1) $\frac{2}{3} \lambda$
(2) $\frac{\sqrt{19}}{7} \lambda$
(3) $\frac{3}{5} \lambda$
(4) $\frac{\sqrt{19}}{5} \lambda$

Sol. (4)

Since OAB form equilateral Δ
$\therefore \angle \mathrm{OAP}=60^{\circ}$
$\mathrm{AP}=\frac{2 \lambda}{5}$
$\cos 60^{\circ}=\frac{\mathrm{OA}^{2}+\mathrm{AP}^{2}-\mathrm{OP}^{2}}{2 \mathrm{OA} \cdot \mathrm{AP}}$
$\Rightarrow \frac{1}{2}=\frac{\lambda^{2}+\frac{4 \lambda^{2}}{25}-\mathrm{OP}^{2}}{2 \lambda\left(\frac{2 \lambda}{5}\right)}$
$\Rightarrow \frac{2 \lambda^{2}}{5}=\lambda^{2}+\frac{4 \lambda^{2}}{25}-\mathrm{OP}^{2}$
$\Rightarrow \mathrm{OP}^{2}=\frac{19 \lambda^{2}}{25}$
$\Rightarrow \mathrm{OP}=\frac{\sqrt{19}}{5} \lambda$
Therefore, locus of point P is $\frac{\sqrt{19}}{5} \lambda$
10. For the system of linear equations
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$,
which of the following is NOT correct ?
(1) The system in inconsistent for $\alpha=-5$ and $\beta=8$
(2) The system has infinitely many solutions for $\alpha=-6$ and $\beta=9$
(3) The system has a unique solution for $\alpha \neq-5$ and $\beta=8$
(4) The system has infinitely many solutions for $\alpha=-5$ and $\beta=9$

Sol. (2)

Given
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
$\Delta=\left|\begin{array}{ccc}2 & -1 & 3 \\ 3 & 2 & -1 \\ 4 & 5 & \alpha\end{array}\right|=7 \alpha+35$
$\Delta=7(\alpha+5)$
For unique solution $\Delta \neq 0$
$\alpha \neq-5$
For inconsistent \& Infinite solution
$\Delta=0$
$\alpha+5=0 \Rightarrow \alpha=-5$
$\Delta_{1}=\left|\begin{array}{ccc}5 & -1 & 3 \\ 7 & 2 & -1 \\ \beta & 5 & -5\end{array}\right|=-5(\beta-9)$
$\Delta_{2}=\left|\begin{array}{ccc}2 & 5 & 3 \\ 3 & 7 & -1 \\ 4 & \beta & -5\end{array}\right|=11(\beta-9)$
$\Delta_{3}=\left|\begin{array}{ccc}2 & -1 & 5 \\ 3 & 2 & 7 \\ 4 & 5 & \beta\end{array}\right|$
$\Delta_{3}=7(\beta-9)$
For Inconsistent system :-
At least one $\Delta_{1}, \Delta_{2} \& \Delta_{3}$ is not zero $\alpha=-5, \beta=8$ option (A) True
Infinite solution:
$\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
From here $\beta-9=0 \Rightarrow \beta=9$
$\alpha=-5 \&$ option (D) True
$\beta=9$
Unique solution
$\alpha \neq-5, \beta=8 \rightarrow$ option (C) True
Option (B) False
For Infinitely many solution α must be -5 .
11. Let the first term a and the common ratio r of a geometric progression be positive integers. If the sum of squares of its first three is 33033 , then the sum of these terms is equal to :
(1) 210
(2) 220
(3) 231
(4) 241

Sol. (3)

Let $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$ be three terms of GP
Given : $\mathrm{a}^{2}+(\mathrm{ar})^{2}+\left(\mathrm{ar}^{2}\right)^{2}=33033$
$\mathrm{a}^{2}\left(1+\mathrm{r}^{2}+\mathrm{r}^{4}\right)=11^{2} \cdot 3 \cdot 7 \cdot 13$
$\Rightarrow \mathrm{a}=11$ and $1+\mathrm{r}^{2}+\mathrm{r}^{4}=3.7 .13$
$\Rightarrow r^{2}\left(1+r^{2}\right)=273-1$
$\Rightarrow r^{2}\left(r^{2}+1\right)=272=16 \times 17$
$\Rightarrow r^{2}=16$
$\therefore \mathrm{r}=4 \quad[\because \mathrm{r}>0]$
Sum of three terms $=a+a r+a^{2}=a\left(1+r+r^{2}\right)$
$=11(1+4+16)$
$=11 \times 21=231$
12. Let P be the point of intersection of the line $\frac{x+3}{3}=\frac{y+2}{1}=\frac{1-z}{2}$ and the plane $x+y+z=2$. If the distance of the point P from the plane $3 x-4 y+12 z=32$ is q, then q and $2 q$ are the roots of the equation :
(1) $x^{2}+18 x-72=0$
(2) $x^{2}+18 x+72=0$
(3) $x^{2}-18 x-72=0$
(4) $x^{2}-18 x+72=0$

Sol. (4)
$\frac{x+3}{3}=\frac{y+2}{1}=\frac{1-z}{2}=\lambda$
$\mathrm{x}=3 \lambda-3, \mathrm{y}=\lambda-2, \mathrm{z}=1-2 \lambda$
$\mathrm{P}(3 \lambda-3, \lambda-2,1-2 \lambda)$ will satisfy the equation of plane $x+y+z=2$.
$3 \lambda-3+\lambda-2+1-2 \lambda=2$
$2 \lambda-4=2$
$\lambda=3$
$\mathrm{P}(6,1,-5)$
Perpendicular distance of P from plane $3 \mathrm{x}-4 \mathrm{y}+12 \mathrm{z}-32=0$ is
$\mathrm{q}=\left|\frac{3(6)-4(1)+12(-5)-32}{\sqrt{9+16+144}}\right|$
$\mathrm{q}=6$.
$2 \mathrm{q}=12$
Sum of roots $=6+12=18$
Product of roots $=6(12)=72$
\therefore Quadratic equation having q and 2 q as roots is $\mathrm{x}^{2}-18 \mathrm{x}+72$.
13. Let f be a differentiable function such that $\mathrm{x}^{2} \mathrm{f}(\mathrm{x})-\mathrm{x}=4 \int_{0}^{\mathrm{x}} \mathrm{tf}(\mathrm{t}) \mathrm{dt}, \mathrm{f}(1)=\frac{2}{3}$. Then $18 \mathrm{f}(3)$ is equal to :
(1) 180
(2) 150
(3) 210
(4) 160

Sol. (4)
$x^{2} f(x)-x=4 \int_{0}^{x} t f(t) d t$
Differentiate w.r.t. x
$\mathrm{x}^{2} \mathrm{f}^{\prime}(\mathrm{x})+2 \mathrm{xf}(\mathrm{x})-1=4 \mathrm{xf}(\mathrm{x})$
Let $y=f(x)$
$\Rightarrow x^{2} \frac{d y}{d x}-2 x y-1=0$
$\frac{d y}{d x}-\frac{2}{x} y=\frac{1}{x^{2}}$
I.F. $=\mathrm{e}^{\int \frac{-2}{\mathrm{x}} \mathrm{dx}}=\frac{1}{\mathrm{x}^{2}}$

Its solution is
$\frac{y}{x^{2}}=\int \frac{1}{x^{4}} d x+C$
$\frac{y}{x^{2}}=\frac{-1}{3 x^{3}}+C$
$\because f(1)=\frac{2}{3} \Rightarrow \mathrm{y}(1)=\frac{2}{3}$
$\Rightarrow \frac{2}{3}=-\frac{1}{3}+\mathrm{C}$
$\Rightarrow \mathrm{C}=1$
$\because y=-\frac{1}{3 x}+x^{2}$
$f(x)=-\frac{1}{3 x}+x^{2}$
$f(3)=-\frac{1}{9}+9=\frac{80}{9} \Rightarrow 18 f(3)=160$
14. Let N denote the sum of the numbers obtained when two dice are rolled. If the probability that $2^{\mathrm{N}}<\mathrm{N}$! is $\frac{\mathrm{m}}{\mathrm{n}}$, where m and n are coprime, then $4 m-3 n$ equal to :
(1) 12
(2) 8
(3) 10
(4) 6

Sol. (2)

$2^{\mathrm{N}}<\mathrm{N}$! is satisfied for $\mathrm{N} \geq 4$
Required probability $\mathrm{P}(\mathrm{N} \geq 4)=1-\mathrm{P}(\mathrm{N}<4)$
$\mathrm{N}=1$ (Not possible)
$\mathrm{N}=2(1,1)$
$\Rightarrow \mathrm{P}(\mathrm{N}=2)=\frac{1}{36}$
$\mathrm{N}=3(1,2),(2,1)$
$\Rightarrow \mathrm{P}(\mathrm{N}=3)=\frac{2}{36}$
$\mathrm{P}(\mathrm{N}<4)=\frac{1}{36}+\frac{2}{36}=\frac{3}{36}$
$\therefore \mathrm{P}(\mathrm{N} \geq 4)=1-\frac{3}{36}=\frac{33}{36}=\frac{11}{12}=\frac{\mathrm{m}}{\mathrm{n}}$
$\Rightarrow \mathrm{m}=11, \mathrm{n}=12$
$\therefore 4 m-3 n=4(11)-3(12)=8$
15. If $I(x)=\int e^{\sin ^{2} x}(\cos x \sin 2 x-\sin x) d x$ and $I(0)=1$, then $I\left(\frac{\pi}{3}\right)$ is equal to :
(1) $e^{\frac{3}{4}}$
(2) $-\mathrm{e}^{\frac{3}{4}}$
(3) $\frac{1}{2} \mathrm{e}^{\frac{3}{4}}$
(4) $-\frac{1}{2} \mathrm{e}^{\frac{3}{4}}$

Sol. (3)
$I=\int \underbrace{e^{\sin ^{2} x} \sin 2 x}_{\text {II }} \underbrace{\cos x d x}_{I}-\int e^{\sin ^{2} x} \sin x d x$
$=\cos x \int e^{\sin ^{2} x} \sin 2 x d x-\int\left((-\sin x) \int e^{\sin ^{2} x} \sin 2 x d x\right) d x-\int e^{\sin ^{2} x} \sin x d x$
$\sin ^{2} \mathrm{x}=\mathrm{t}$
$\sin 2 \mathrm{xdx}=\mathrm{dt}$
$=\cos x \int e^{t} d t+\int\left(\sin x \int e^{t} d t\right) d x-\int e^{\sin ^{2} x} \sin x d x$
$=e^{\sin ^{2} x} \cos x+\int e^{\sin ^{2} x} \sin x d x-\int e^{\sin ^{2} x} \sin x d x$
$I=e^{\sin ^{2} x} \cos x+C$
I (0) $=1$
$\Rightarrow 1=1+\mathrm{C}$
$\Rightarrow \mathrm{C}=0$
$\therefore I=\mathrm{e}^{\sin ^{2} \mathrm{x}} \cos \mathrm{x}$
I $\left(\frac{\pi}{3}\right)=\mathrm{e}^{\sin ^{2} \frac{\pi}{3}} \cos \frac{\pi}{3}$
$=\frac{\mathrm{e}^{\frac{3}{4}}}{2}$
16. $96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to :
(1) 4
(2) 2
(3) 3
(4) 1

Sol. (3)

$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{2^{2} \pi}{33} \cos \frac{2^{3} \pi}{33} \cos \frac{2^{4} \pi}{33}$
$\because \cos A \cos 2 A \cos 2^{2} A \ldots . \operatorname{Cos} 2^{n-1} A=\frac{\sin \left(2^{n} A\right)}{2^{n} \sin A}$
Here $\mathrm{A}=\frac{\pi}{33}, \mathrm{n}=5$
$=\frac{96 \sin \left(2^{5} \frac{\pi}{33}\right)}{2^{5} \sin \left(\frac{\pi}{33}\right)}$
$=\frac{96 \sin \left(\frac{32 \pi}{33}\right)}{32 \sin \left(\frac{\pi}{33}\right)}$
$=\frac{3 \sin \left(\pi-\frac{\pi}{33}\right)}{\sin \left(\frac{\pi}{33}\right)}=3$
17. Let the complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ be such that $\frac{2 \mathrm{z}-3 \mathrm{i}}{2 \mathrm{z}+\mathrm{i}}$ is purely imaginary. If $\mathrm{x}+\mathrm{y}^{2}=0$, then $\mathrm{y}^{4}+\mathrm{y}^{2}-\mathrm{y}$ is equal to :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{3}{4}$

Sol. (4)
$\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\frac{(2 z-3 i)}{2 z+i}=$ purely imaginary
Means $\operatorname{Re}\left(\frac{2 z-3 i}{2 z+i}\right)=0$
$\Rightarrow \frac{(2 \mathrm{z}-3 \mathrm{i})}{(2 \mathrm{z}+\mathrm{i})}=\frac{2(\mathrm{x}+\mathrm{iy})-3 \mathrm{i}}{2(\mathrm{x}+\mathrm{iy})+\mathrm{i}}$
$=\frac{2 x+2 y i-3 i}{2 x+i 2 y+i}$
$=\frac{2 \mathrm{x}+\mathrm{i}(2 \mathrm{y}-3)}{2 \mathrm{x}+\mathrm{i}(2 \mathrm{y}+1)} \times \frac{2 \mathrm{x}-\mathrm{i}(2 \mathrm{y}+1)}{2 \mathrm{x}-\mathrm{i}(2 \mathrm{y}+1)}$
$\operatorname{Re}\left[\frac{2 z-3 i}{2 z+i}\right]=\frac{4 x^{2}+(2 y-3)(2 y+1)}{4 x^{2}+(2 y+1)^{2}}=0$
$\Rightarrow 4 \mathrm{x}^{2}+(2 \mathrm{y}-3)(2 \mathrm{y}+1)=0$
$\Rightarrow 4 x^{2}+\left[4 y^{2}+2 y-6 y-3\right]=0$
$\because x+y^{2}=0 \Rightarrow x=-y^{2}$
$\Rightarrow 4\left(-y^{2}\right)^{2}+4 y^{2}-4 y-3=0$
$\Rightarrow 4 \mathrm{y}^{4}+4 \mathrm{y}^{2}-4 \mathrm{y}=3$
$\Rightarrow y^{4}+y^{2}-\mathrm{y}=\frac{3}{4}$
Therefore, correct answer is option (4).
18. If $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{e}(123)}{x \log _{e}(1234)-\left(\tan 1^{\circ}\right)}, x>0$, then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is :
(1) 2
(2) 4
(3) 8
(4) 0

Sol. (2)
$\mathrm{f}(\mathrm{x})=\frac{(\tan 1) \mathrm{x}+\log 123}{\mathrm{x} \log 1234-\tan 1}$
Let $\mathrm{A}=\tan 1, \mathrm{~B}=\log 123, \mathrm{C}=\log 1234$
$f(x)=\frac{A x+B}{x C-A}$
$f(f(x))=\frac{A\left(\frac{A x+B}{x C-A}\right)+B}{C\left(\frac{A x+B}{C X-A}\right)-A}$
$=\frac{A^{2} x+A B+x B C-A B}{A C x+B C-A C x+A^{2}}$
$=\frac{\mathrm{x}\left(\mathrm{A}^{2}+\mathrm{BC}\right)}{\left(\mathrm{A}^{2}+\mathrm{BC}\right)}=\mathrm{x}$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
$f\left(f\left(\frac{4}{x}\right)\right)=\frac{4}{x}$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))+\mathrm{f}\left(\mathrm{f}\left(\frac{4}{\mathrm{x}}\right)\right)$
$\mathrm{AM} \geq \mathrm{GM}$
$x+\frac{4}{x} \geq 4$
19. The slope of tangent at any point (x, y) on a curve $y=y(x)$ is $\frac{x^{2}+y^{2}}{2 x y}, x>0$. If $y(2)=0$, then a value of y (8) is :
(1) $4 \sqrt{3}$
(2) $-4 \sqrt{2}$
(3) $-2 \sqrt{3}$
(4) $2 \sqrt{3}$

Sol. (1)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
$\mathrm{y}=\mathrm{vx}$
$y(2)=0$
$\mathrm{y}(8)=$?
$\frac{d v}{d x}=v+x \frac{d v}{d x}$
$\mathrm{v}+\frac{\mathrm{xdv}}{\mathrm{dx}}=\frac{\mathrm{x}^{2}+\mathrm{v}^{2} \mathrm{x}^{2}}{2 \mathrm{vx}}$
x. $\frac{d v}{d x}=\left(\frac{v^{2}+1}{2 v}-v\right)$
$\frac{2 \mathrm{vdv}}{\left(1-\mathrm{v}^{2}\right)}=\frac{\mathrm{dx}}{\mathrm{x}}$
$-\ln \left(1-v^{2}\right)=\ln x+C$
$\ln \mathrm{x}+\ln \left(1-\mathrm{v}^{2}\right)=\mathrm{C}$
$\ln \left[x\left(1-\frac{y^{2}}{x^{2}}\right)\right]=C$
$\ln \left[\left(\frac{x^{2}-y^{2}}{x}\right)\right]=C$
$x^{2}-y^{2}=c x$
$\mathrm{y}(2)=0$ at $\mathrm{x}=2, \mathrm{y}=0$
$4=2 C \Rightarrow C=2$
$x^{2}-y^{2}=2 x$
Hence, at $\mathrm{x}=8$
$64-y^{2}=16$
$\mathrm{y}=\sqrt{48}=4 \sqrt{3}$
$y(8)=4 \sqrt{3}$
Option (1)
20. Let the ellipse $\mathrm{E}: \mathrm{x}^{2}+9 \mathrm{y}^{2}=9$ intersect the positive x -and y -axes at the points A and B respectively. Let the major axis of E be a diameter of the circle C . Let the line passing through A and B meet the circle C at the point P. If the area of the triangle with vertices A, P and the origin O is $\frac{m}{n}$, where m and n are coprime, then $\mathrm{m}-\mathrm{n}$ is equal to :
(1) 16
(2) 15
(3) 18
(4) 17

Sol. (4)

Equation of line AB or AP is
$\frac{x}{3}+\frac{y}{1}=1$
$x+3 y=3$
$x=(3-3 y)$
Intersection point of line AP \& circle is $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
$x^{2}+y^{2}=9 \Rightarrow(3-3 y)^{2}+y^{2}=9$
$\Rightarrow 3^{2}\left(1+y^{2}-2 y\right)+y^{2}=9$
$\Rightarrow 5 y^{2}-9 y=0 \Rightarrow y(5 y-9)=0$
$\Rightarrow y=9 / 5$
Hence $x=3(1-y)=3\left(1-\frac{9}{5}\right)=3\left(\frac{-4}{5}\right)$
$x=\frac{-12}{5}$
$\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\left(\frac{-12}{5}, \frac{9}{5}\right)$
Area of $\triangle \mathrm{AOP}$ is $=\frac{1}{2} \times \mathrm{OA} \times$ height
Height $=9 / 5, \quad \mathrm{OA}=3$
$=\frac{1}{2} \times 3 \times \frac{9}{5}=\frac{27}{10}=\frac{\mathrm{m}}{\mathrm{n}}$
Compare both side $\mathrm{m}=27, \quad \mathrm{n}=10 \Rightarrow \mathrm{~m}-\mathrm{n}=17$
Therefore, correct answer is option-D

SECTION-B

21. Some couples participated in a mixed doubles badminton tournament. If the number of matches played, so that no couple in a match, is 840 , then the total numbers of persons, who participated in the tournament, is
\qquad —.
Sol. 16
Let number of couples $=\mathrm{n}$
$\therefore{ }^{\mathrm{n}} \mathrm{C}_{2} \times{ }^{\mathrm{n}-2} \mathrm{C}_{2} \times 2=840$
$\Rightarrow \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)=840 \times 2$
$=21 \times 40 \times 2$
$=7 \times 3 \times 8 \times 5 \times 2$
$\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)=8 \times 7 \times 6 \times 5$
$\therefore \mathrm{n}=8$
Hence, number of persons $=16$.
22. The number of elements in the set $\left\{n \in Z:\left|n^{2}-10 n+19\right|<6\right\}$ is \qquad .

Sol. 6
$-6<n^{2}-10 n+19<6$
$\Rightarrow \mathrm{n}^{2}-10 \mathrm{n}+25>0$ and
$\mathrm{n}^{2}-10 \mathrm{n}+13<0$
$(\mathrm{n}-5)^{2}>0$
$5-3 \sqrt{2}<\mathrm{n}<5+3 \sqrt{2}$
$N \in Z-\{5\}$
$\mathrm{n}=\{2,3,4,5,6,7,8\}$
...(i)
From (i) \cap (ii)
$\mathrm{N}=\{2,3,4,5,6,8$,
Number of values of $n=6$
23. The number of permutations of the digits $1,2,3, \ldots$., 7 without repetition, which neither contain the string 153 nor the string 2467, is \qquad .
Sol. 4898
Numbers are 1, 2, 3, 4, 5, 6, 7
Numbers having string (154) $=(154), 2,3,6,7=5$!
Numbers having string $(2467)=(2467), 1,3,5=4$!
Number having string (154) and (2467)
$=(154),(2467)=2$!
Now $n(154 \cup 2467)=5!+4!-2$!
$=120+24-2=142$
Again total numbers $=7!=5040$
Now required numbers $=\mathrm{n}$ (neither 154 nor 2467)
$=5040-142$
$=4898$
24. Let $\mathrm{f}:(-2,2) \rightarrow \mathbb{R}$ be defined by
$f(x)=\left\{\begin{array}{l}x[x] \quad,-2<x<0 \\ (x-1)[x], 0 \leq x<2\end{array}\right.$
where $[\mathrm{x}$] denotes the greatest integer function. If m and n respectively are the number of points in $(-2,2)$ at which $\mathrm{y}=|\mathrm{f}(\mathrm{x})|$ is not continuous and not differentiable, then $\mathrm{m}+\mathrm{n}$ is equal to \qquad -.

Sol. 4
$f(x)=\left\{\begin{array}{cc}-2 x, & -2<x<-1 \\ -x, & -1 \leq x<0 \\ 0, & 0 \leq x<1 \\ x-1, & 1 \leq x<2\end{array}\right.$
Clearly $f(x)$ is discontinuous at $x=-1$ also non differentiable.
$\therefore \mathrm{m}=1$
Now for differentiability
$\mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{cc}-2 & -2<\mathrm{x}<-1 \\ -1 & -1<\mathrm{x}<0 \\ 0 & 0<\mathrm{x}<1 \\ -1 & 1<\mathrm{x}<2\end{array}\right.$
Clearly $f(x)$ is non-differentiable at $x=-1,0,1$
Also, $|f(x)|$ remains same.
$\therefore \mathrm{n}=3$
$\therefore \mathrm{m}+\mathrm{n}=4$
25. Let a common tangent to the curves $y^{2}=4 x$ and $(x-4)^{2}+y^{2}=16$ touch the curves at the points P and Q. Then (PQ) $)^{2}$ is equal to \qquad :
Sol. 32

$\mathrm{y}^{2}=4 \mathrm{x}$
$(x-4)^{2}+y^{2}=16$
Let equation of tangent of parabola
$\mathrm{y}=\mathrm{mx}+1 / \mathrm{m}$
Now equation 1 also touches the circle

$$
\begin{aligned}
& \therefore\left|\frac{4 \mathrm{~m}+1 / \mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}}\right|=4 \\
& (4 \mathrm{~m}+1 / \mathrm{m})^{2}=16+16 \mathrm{~m}^{2} \\
& 16 \mathrm{~m}^{4}+8 \mathrm{~m}^{2}+1=16 \mathrm{~m}^{2}+16 \mathrm{~m}^{4} \\
& 8 \mathrm{~m}^{2}=1 \\
& \mathrm{~m}^{2}=1 / 8 \quad\left\{\mathrm{~m}^{4}=0\right\}(\mathrm{m} \rightarrow \infty)
\end{aligned}
$$

For distinet points consider only $\mathrm{m}^{2}=1 / 8$.
Point of contact of parabola
$\mathrm{P}(8,4 \sqrt{2})$
$\therefore \mathrm{PQ}=\sqrt{\mathrm{S}_{1}} \Rightarrow(\mathrm{PQ})^{2}=\mathrm{S}_{1}$
$=16+32-16=32$
26. If the mean of the frequency distribution

Class :	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency :	2	3	x	5	4

is 28 , then its variance is \qquad -.
Sol. 151

C.I.	f	x	$\mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$	$\mathrm{x}^{2}{ }_{\mathrm{i}}$
$0-10$	2	5	10	25
$10-20$	3	15	45	225
$20-30$	x	25	25 x	625
$30-40$	5	35	175	1225
$40-50$	4	45	180	2025

$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}$
$28=\frac{10+45+25 \mathrm{x}+175+130}{14+\mathrm{x}}$
$28 \times 14+28 \mathrm{x}=410+25 \mathrm{x}$
$\Rightarrow 3 \mathrm{x}=410-392$
$\Rightarrow \mathrm{x}=\frac{18}{3}=6$
\therefore Variance $=\frac{1}{\mathrm{~N}} \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^{2}-(\overline{\mathrm{x}})^{2}$
$=\frac{1}{20} 18700-(28)^{2}$
$=935-784=151$
27. The coefficient of x^{7} in $\left(1-x+2 x^{3}\right)^{10}$ is \qquad .
Sol. 960
$\left(1-x+2 x^{3}\right)^{10}$

a	b	c
3	7	0
5	4	1
7	1	2

$\mathrm{T}_{\mathrm{n}}=\frac{10!}{\mathrm{a}!\mathrm{b}!\mathrm{c}!}(-2 \mathrm{x})^{\mathrm{b}}\left(\mathrm{x}^{3}\right)^{\mathrm{c}}$
$=\frac{10!}{a!b!c!}(-2)^{b} x^{b+3 c}$
$\Rightarrow b+3 c=7, a+b+c=10$
\therefore Coefficient of $\mathrm{x}^{7}=\frac{10!}{3!7!0!}(-1)^{7}+\frac{10!}{5!4!1!}(-1)^{4}(\mathbf{2})$
$+\frac{10!}{7!1!2!}(-1)^{1}(2)^{2}$
$=-120+2520-1440=960$
28. Let $\mathrm{y}=\mathrm{p}(\mathrm{x})$ be the parabola passing through the points $(-1,0),(0,1)$ and $(1,0)$. If the area of the region $\left\{(\mathrm{x}, \mathrm{y}):(\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2} \leq 1, \mathrm{y} \leq \mathrm{p}(\mathrm{x})\right\}$ is A, then $12(\pi-4 \mathrm{~A})$ is equal to \qquad :
Sol. 16
There can be infinitely many parabolas through given points.
Let parabola $x^{2}=-4 a(y-1)$

Passes through $(1,0)$
$\therefore \mathrm{b}=-4 \mathrm{a}(-1) \Rightarrow \mathrm{a}=\frac{1}{4}$
$\therefore \mathrm{x}^{2}=-(\mathrm{y}-1)$
Now area covered by parabola $=\int_{-1}^{0}\left(1-x^{2}\right) d x$
$=\left(x-\frac{x^{3}}{3}\right)_{1}^{b}=(0-0)-\left\{-1+\frac{1}{3}\right\}$
$=\frac{2}{3}$
Required Area $=$ Area of sector $-\{$ Area of square - Area covered by Parabola $\}$
$=\frac{\pi}{4}-\left\{1-\frac{2}{3}\right\}$
$=\frac{\pi}{4}-\frac{1}{3}$
$\therefore 12(\pi-4 \mathrm{~A})=12\left[\pi-4\left(\frac{\pi}{4}-\frac{1}{3}\right)\right]$
$=12\left[\pi-\pi+\frac{4}{3}\right]$
$=16$
29. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three distinct positive real numbers such that $(2 \mathrm{a})^{\log _{\mathrm{c}} \mathrm{a}}=(\mathrm{bc})^{\log _{\mathrm{e}} \mathrm{b}}$ and $\mathrm{b}^{\log _{e} 2}=\mathrm{a}^{\log _{\mathrm{e}} \mathrm{c}}$. Then $6 \mathrm{a}+$ $5 b c$ is equal to \qquad -.

Sol. Bouns

$$
\begin{aligned}
& (2 a)^{\ln a}=(b c)^{\ln b} \quad 2 a>0, b c>0 \\
& \ln a(\ln 2+\ln a)=\ln b(\ln b+\ln c) \\
& \ln 2 \cdot \ln b=\ln c \cdot \ln a \\
& \ln 2=\alpha, \ln a=x, \ln b=y, \ln c=z \\
& \alpha y=x z \\
& x(\alpha+x)=y(y+z) \\
& \alpha=\frac{x z}{y} \\
& x\left(\frac{x z}{y}+x\right)=y(y+z) \\
& x^{2}(z+y)=y^{2}(y+z) \\
& y+z=0 \text { or } x^{2}=y^{2} \Rightarrow x=-y \\
& b c=1 \text { or } a b=1 \\
& b c=1 \text { or } a b=1
\end{aligned}
$$

$$
(1) \text { if } \mathrm{bc}=1 \Rightarrow(2 \mathrm{a})^{\ln \mathrm{a}}=1 \longrightarrow \mathrm{a}
$$

$$
(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\left(\frac{1}{2}, \lambda, \frac{1}{\lambda}\right), \lambda \neq 1,2, \frac{1}{2}
$$

then
$6 a+5 b c=3+5=8$
(II) $(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(\lambda, \frac{1}{\lambda}, \frac{1}{2}\right), \lambda \neq 1,2, \frac{1}{2}$

In this situation infinite answer are possible
So, Bonus.
30. The sum of all those terms, of the arithmetic progression $3,8,13, \ldots, 373$, which are not divisible by 3 , is equal to \qquad -

Sol. 9525
A.P: 3, 8, 13..... 373
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$373=3+(n-1) 5$
$\Rightarrow \mathrm{n}=\frac{370}{5}$
$\Rightarrow \mathrm{n}=75$

Now Sum $=\frac{\mathrm{n}}{2}[\mathrm{a}+1]$
$=\frac{75}{2}[3+373]=14100$
Now numbers divisible by 3 are,
3,18,33
.363
$363=3+(k-1) 15$
$\Rightarrow \mathrm{k}-1=\frac{360}{15}=24 \Rightarrow \mathrm{k}=25$
Now, sum $=\frac{25}{2}(3+363)=4575 \mathrm{~s}$
\therefore req. sum $=14100-4575$
$=9525$

