FINAL JEE-MAIN EXAMINATION - APRIL, 2023
 Held On Tuesday 11th April, 2023
 TIME : 03:00 PM to 06:00 PM
 SECTION - A

1. The angle of elevation of the top P of a tower from the feet of one person standing due South of the tower is 45° and from the feet of another person standing due west of the tower is 30°. If the height of the tower is 5 meters, then the distance (in meters) between the two persons is equal to
(1) 10
(2) $5 \sqrt{5}$
(3) $\frac{5}{2} \sqrt{5}$
(4) 5

Sol. (1)

Tower $\mathrm{AB}=5 \mathrm{~m}$
$\angle \mathrm{APB}=45^{\circ}$
$\angle \mathrm{PAB}=90^{\circ}$

$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AP}}$
$1=\frac{\mathrm{AB}}{\mathrm{AP}}$
$\mathrm{AP}=5 \mathrm{~m}$

$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{AQ}}$
$\frac{1}{1 \sqrt{3}}=\frac{5}{\mathrm{AQ}}$

$\mathrm{AQ}=5 \sqrt{3}$

$\mathrm{AP}^{2}+\mathrm{AQ}^{2}=\mathrm{PQ}^{2}$
$\mathrm{PQ}^{2}=5^{2}+(5 \sqrt{3})^{2}$
$\mathrm{PQ}^{2}=25+75=100$
$\mathrm{PQ}=10 \mathrm{~cm}$
Option (A) 10 cm correct.
2. Let a, b, c and d be positive real numbers such that $a+b+c+d=11$. If the maximum value of $a^{5} b^{3} c^{2} d$ is 3750β, then the value of β is
(1) 55
(2) 108
(3) 90
(4) 110

Sol. (3)
Given $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=11 \quad(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}>0\}$
$\left(a^{5} b^{3} c^{2} d\right)$ max. $=$?
Let assume Numbers -
$\frac{\mathrm{a}}{5}, \frac{\mathrm{a}}{5}, \frac{\mathrm{a}}{5}, \frac{\mathrm{a}}{5}, \frac{\mathrm{a}}{5}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{2}, \frac{\mathrm{c}}{2}$,
We know A.M. \geq G.M.
$\frac{\frac{a}{5}+\frac{a}{5}+\frac{a}{5}+\frac{a}{5}+\frac{a}{5}+\frac{b}{3}+\frac{b}{3}+\frac{b}{3}+\frac{c}{2}+\frac{c}{2}+d}{11} \geq\left(\frac{a^{5} b^{3} c^{2} d}{5^{5} \cdot 3^{3} \cdot 2^{2} \cdot 1}\right)^{\frac{1}{11}}$
$\frac{11}{11} \geq\left(\frac{a^{5} b^{3} c^{2} d}{5^{5} \cdot 3^{3} \cdot 2^{2} \cdot 1}\right)^{\frac{1}{11}}$
$a^{5} \cdot b^{3} \cdot c^{2} \cdot d \leq 5^{5} \cdot 3^{3} \cdot 2^{2}$,
$\max \left(\mathrm{a}^{5} \mathrm{~b}^{3} \mathrm{c}^{2} \mathrm{~d}\right)=5^{5} .3^{3} .2^{2}=337500$
$=90 \times 3750=\beta \times 3750$
$\beta=90$
Option (C) 90 correct
3. If $f: R \rightarrow R$ be a continuous function satisfying $\int_{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$, then the value of α is
(1) $-\sqrt{3}$
(2) $\sqrt{3}$
(3) $-\sqrt{2}$
(4) $\sqrt{2}$

Sol. (3)
$\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$
$\Rightarrow \int_{0}^{\frac{\pi}{2}} F(\sin 2 x) \sin d x+\alpha \int_{0}^{\frac{\pi}{4}} F(\cos 2 x) \cdot \cos x d x=0$
$\Rightarrow \int_{0}^{\frac{\pi}{4}} F(\sin 2 x) \sin x d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} F(\sin 2 x) \cdot \sin x d x+\alpha \int_{0}^{\frac{\pi}{4}} F(\cos 2 x) \cdot \cos x d x=0$
$\int_{0}^{a} F(x) d x=\int_{0}^{a} F(a-x) d x$
Let $\mathrm{x}=\mathrm{t}+\frac{\pi}{4}$
$\int_{0}^{\frac{\pi}{4}} F(\cos 2 x) \sin \left(\frac{\pi}{4}-x\right) d x+\int_{0}^{\frac{\pi}{4}} F(\cos 2 t) \sin \left(t+\frac{\pi}{4}\right)+\alpha \int_{0}^{\frac{\pi}{4}} F(\cos 2 x) \cos x d x=0$
$\int_{0}^{\frac{\pi}{4}} F(\cos 2 x)\left\{\sin \left(\frac{\pi}{4}-x\right)+\sin \left(x+\frac{\pi}{4}\right)+\alpha \cos x=0\right.$
$\int_{0}^{\frac{\pi}{4}} F(\cos 2 x)\{(\sqrt{2}+\alpha) \cos x\} d x=0$
$(\sqrt{2}+\alpha) \int_{0}^{\frac{\pi}{4}} F(\cos 2 x) \cos x d x=0$
\because in interval $\left(0, \frac{\pi}{4}\right) \Rightarrow F(\cos 2 x) \& \cos x$ is NOT Zero.
$\therefore \sqrt{2}+\alpha=0$
$\alpha=-\sqrt{2}$
4. Let f and g be two functions defined by $f(x)=\left\{\begin{array}{cl}x+1, & x<0 \\ |x-1,| & x \geq 0\end{array}\right.$ and $g(x)=\left\{\begin{array}{cl}x+1, & x<0 \\ 1, & x \geq 0\end{array}\right.$

Then (gof) (x) is
(1) continuous everywhere but not differentiable at $x=1$
(2) continuous everywhere but not differentiable exactly at one point
(3) differentiable everywhere
(4) not continuous at $x=-1$

Sol. (2)

$f(x)=\left\{\begin{array}{l}x+1, x<0 \\ 1-x, 0 \leq x<1 \\ x-1,1 \leq x\end{array}\right.$
$g(x)=\left\{\begin{array}{l}x+1, x<0 \\ 1, x \geq 0\end{array}\right.$
$g(f(x))=\left\{\begin{array}{l}x+2, x<-1 \\ 1, x \geq-1\end{array}\right.$
$\therefore \mathrm{g}(\mathrm{f}(\mathrm{x}))$ is continuous everywhere
$g(f(x))$ is not differentiable at $x=-1$
Differentiable everywhere else
5. If the radius of the largest circle with centre $(2,0)$ inscribed in the ellipse $x^{2}+4 y^{2}=36$ is r, then $12 r^{2}$ is equal to
(1) 69
(2) 72
(3) 115
(4) 92

Sol. (4)
C $(2,0)$
Ellipse $x^{2}+4 y^{2}=36$
$\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$
Equation of Normal at $P(6 \cos \theta, 3 \sin \theta)$ is $(6 \sec \theta) x-(3 \operatorname{cosec} \theta) y=27$
It passes through $(2,0)$
$\Rightarrow \sec \theta=\frac{22}{12}=\frac{9}{4}$
$\cos \theta \frac{4}{9}, \sin \theta=\frac{\sqrt{65}}{9}$
$\mathrm{P}\left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right)$
$\frac{\gamma}{\mathrm{P}\left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right) \mathrm{c}(2,0)}$
$\gamma=\sqrt{\left(\frac{8}{3}-2\right)^{2}+\left(\frac{\sqrt{65}}{3}\right)^{2}}=\frac{\sqrt{69}}{3}$
Value of $12 \gamma^{2}=\left(\frac{\sqrt{69}}{3}\right)^{2} \times 12$
$\Rightarrow \frac{12 \times 69}{9}=92$
6. Let the mean of 6 observations $1,2,4,5 \mathrm{x}$ and y 5 and their variance be 10 . Then their mean deviation about the mean is equal to
(1) $\frac{7}{3}$
(2) $\frac{10}{3}$
(3) $\frac{8}{3}$
(4) 3

Sol. (3)

Mean of $1,2,4,5, \mathrm{x}, \mathrm{y}$ is 5
and variance is 10
\Rightarrow mean $\Rightarrow \frac{12+x+y}{6}=5$
$12+x+y=30$
$x+y=18$
and by variance $\frac{x^{2}+y^{2}+46}{6}-5^{2}=10$
$x^{2}+y^{2}=164$
$x=8 \quad y=10$
mean daviation $=\frac{|x-\bar{x}|}{6}$
$\Rightarrow \frac{4+3+1+0+3+5}{6}=\frac{16}{6}=\frac{8}{3}$
7. Let $A=\{1,3,4,6,9\}$ and $B=\{2,4,5,8,10\}$. Let R be a relation defined on $A \times B$ such that $R=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right.\right.\right.$)): $\mathrm{a}_{1} \leq \mathrm{b}_{2}$ and $\left.\mathrm{b}_{1} \leq \mathrm{a}_{2}\right\}$. Then the number of elements in the set R is
(1) 52
(2) 160
(3) 26
(4) 180

Sol. (2)
Let $\mathrm{a}_{1}=1 \Rightarrow 5$ choices of b_{2}
$a_{1}=3 \Rightarrow 4$ choices of b_{2}
$\mathrm{a}_{1}=4 \Rightarrow 4$ choices of b_{2}
$a_{1}=6 \Rightarrow 2$ choices of b_{2}
$a_{1}=9 \Rightarrow 1$ choices of b_{2}
For (a_{1}, b_{2}) 16 ways .
Similarly, $b_{1}=2 \Rightarrow 4$ choices of a_{2}
$\mathrm{b}_{1}=4 \Rightarrow 3$ choices of a_{2}
$\mathrm{b}_{1}=5 \Rightarrow 2$ choices of a_{2}
$\mathrm{b}_{1}=8 \Rightarrow 1$ choices of a_{2}
Required elements in $\mathrm{R}=160$
8. Let P be the plane passing through the points $(5,3,0),(13,3,-2)$ and $(1,6,2)$. For $\alpha \in N$, if the distances of the points $\mathrm{A}(3,4, \alpha)$ and $\mathrm{B}(2, \alpha$, a) from the plane P are 2 and 3 respectively, then the positive value of a is
(1) 5
(2) 6
(3) 4
(4) 3

Sol. (3)
$\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 8 & 0 & -2 \\ 4 & -3 & -2\end{array}\right|=\hat{\mathrm{i}}(-6)+8 \hat{\mathrm{j}}-24 \hat{\mathrm{k}}$
Normal of the plane $=3 \hat{i}-4 \hat{j}+12 \hat{k}$
Plane: $3 x-4 y+12 z=3$
Distance from A $(3,4, \alpha)$
$\left|\frac{9-16+12 \alpha-3}{13}\right|=2$
$\alpha=3$
$\alpha=-8$ (rejected)
Distance from B(2,3,a)
$\left|\frac{6-12+12 a-3}{13}\right|=3$
$\mathrm{a}=4$
9. If the letters of the word MATHS are permuted and all possible words so formed are arranged as in a dictionary with serial number, then the serial number of the word THAMS is
(1) 102
(2) 103
(3) 101
(4) 104

Sol. (2)

5	2	1	3	4
T	H	A	M	S
4	1	0	0	0
$4!$	$3!$	$2!$	$1!$	$0!$

$\Rightarrow 4 \times 4!+3!\times 1+0+0+0$
$\Rightarrow 96+6=102$
Ran k THAMS $=102+1=103$
10. If four distinct points with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar, then $[\vec{a} \vec{b} \vec{c}]$ is equal to
(1) $[\vec{d} \vec{c} \vec{a}]+[\vec{b} \vec{d} \vec{a}]+[\vec{c} \vec{d} \vec{b}]$
(2) $[\vec{d} \vec{b} \vec{a}]+[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{d}}]+[\overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]$
(3) $[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{b}}]+[\overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{a}}]+[\overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]$
(4) $[\overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{d}}]+[\overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}}]+[\mathrm{d} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{a}}]$

Sol. (1)
$\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}, \overrightarrow{\mathrm{d}} \rightarrow$ coplanar
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=$?
$\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{c}} \rightarrow$ coplanar
$[\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{c}}]=0$
$\Rightarrow(\vec{b}-\vec{a}) \cdot((\vec{c}-\vec{b}) \times(\vec{d}-\vec{c}))=0$
$(\vec{b}-\vec{a}) \cdot(\vec{c} \times \vec{b}-\vec{c} \times \vec{a}-\vec{a} \times \vec{d})=0$
$[\mathrm{bcd}]-[\mathrm{bca}]-[\mathrm{bad}]-[\mathrm{acd}]=0$
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=[\overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{c}} \mathrm{a}]+[\overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{a}}]+[\overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{d}} \overrightarrow{\mathrm{b}}]$
11. The sum of the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+2}$, which are in the ratio $1: 3: 5$, is equal to
(1) 63
(2) 92
(3) 25
(4) 41

Sol. (1)
${ }^{n+2} c_{r-1}:{ }^{n+2} c_{r}:{ }^{n+2} c_{r+1}:: 1: 3: 5$
$\frac{(\mathrm{n}+2)!}{(\mathrm{r}-1)!(\mathrm{n}-\mathrm{r}+3)!} \times \frac{\mathrm{r}!(\mathrm{n}+2-\mathrm{r})!}{(\mathrm{n}+2)!}=\frac{1}{3}$
$\frac{\mathrm{r}}{(\mathrm{n}-\mathrm{r}+3)}=\frac{1}{3} \Rightarrow \mathrm{n}-\mathrm{r}+3=3 \mathrm{r}$
$n=4 r-3-0$
$\frac{(\mathrm{n}+1)!}{\mathrm{r}!(\mathrm{n}+2-\mathrm{r})!} \times \frac{(\mathrm{r}+1)!(\mathrm{n}-\mathrm{r}+1)!}{(\mathrm{n}+2)!}=\frac{3}{5}$
$\frac{r+1}{n+2-r}=\frac{3}{5}$
$8 \mathrm{r}-1=3 \mathrm{n}$
By equation 1 and 2

$$
\begin{array}{ll}
\frac{8 \mathrm{r}-1}{3}=4 \mathrm{r}-3 & \mathrm{n}=4 \mathrm{r}-3 \\
\mathrm{r}=2 & \mathrm{n}=4 \times 2-3 \\
& \mathrm{n}=5
\end{array}
$$

Sum: : ${ }^{7} \mathrm{C}_{1}+{ }^{7} \mathrm{C}_{2}+{ }^{7} \mathrm{C}_{3}=7+21+35=63$
12. Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x>0$. If $y(1)=2$, then $y(2)$ is equal to
(1) $\frac{693}{128}$
(2) $\frac{637}{128}$
(3) $\frac{697}{128}$
(4) $\frac{679}{128}$

Sol. (1)
I.F $==e^{\int \frac{5 d x}{x\left(x^{5}+1\right)}}=e^{e^{\frac{5 x^{-6} d x}{\left(x^{-5}+1\right)}}}$

Put, $1+\mathrm{x}^{-5}=\mathrm{t} \Rightarrow-5 \mathrm{x}^{-6} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \mathrm{e}^{\int \frac{-\mathrm{dt}}{1}}=\frac{1}{\mathrm{t}}=\frac{\mathrm{x}^{5}}{1+\mathrm{x}^{5}}$
$y \cdot \frac{x^{5}}{1+x^{5}}=\int \frac{x^{5}}{\left(1+x^{5}\right)} \times \frac{\left(1+x^{5}\right)^{2}}{x^{7}} d x$
$=\int x^{3} d x+\int x^{-2} d x$
$y \cdot \frac{x^{5}}{1+x^{5}}=\frac{x^{4}}{4}-\frac{1}{x}+c$
Given than: $x=1 \Rightarrow y=2$
$2 \cdot \frac{1}{2}=\frac{1}{4}-1+\mathrm{c}$
$\mathrm{c}=\frac{7}{4}$
$y \cdot \frac{x^{5}}{1+x^{5}}=\frac{x^{4}}{4}-\frac{1}{x}+\frac{7}{4}$
Now put, $\mathrm{x}=2$
$\mathrm{y} \cdot\left(\frac{32}{33}\right)=\frac{21}{4}$
$y=\frac{693}{128}$
13. The converse of $((\sim p) \wedge q) \Rightarrow r$ is
(1) $(\mathrm{pv}(\sim \mathrm{q})) \Rightarrow(\sim \mathrm{r})$
(2) $((\sim \mathrm{p}) \mathrm{vq}) \Rightarrow \mathrm{r}$
(3) $(\sim \mathrm{r}) \Rightarrow((\sim \mathrm{p}) \wedge \mathrm{q}) \quad$ (4) $(\sim \mathrm{r}) \Rightarrow \mathrm{p} \wedge \mathrm{q}$

Sol. (1)
$((-\mathrm{P}) \wedge 2) \Rightarrow \mathrm{r}$
Converse
$\sim((\sim \mathrm{P}) \wedge \mathrm{q}) \Rightarrow(\sim \mathrm{r})$
$(P \vee(\sim q)) \Rightarrow(\sim r)$
14. If the $1011^{\text {th }}$ term from the end in the binominal expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$ is 1024 times $1011^{\text {th }}$ term from the beginning, the $|\mathrm{x}|$ is equal to
(1) 8
(2) 12
(3) 10
(4) 15

Sol. (3)- Bouns

T_{1011} from beginning $=\mathrm{T}_{1010+1}$
$={ }^{2022} \mathrm{C}_{1010}\left(\frac{4 \mathrm{x}}{5}\right)^{1012}\left(\frac{-5}{2 \mathrm{x}}\right)^{1010}$
T_{1011} from end
$={ }^{2022} \mathrm{C}_{1010}\left(\frac{-5}{2 \mathrm{x}}\right)^{1012}\left(\frac{4 \mathrm{x}}{5}\right)^{1010}$
Given: $={ }^{2022} \mathrm{C}_{1010}\left(\frac{-5}{2 \mathrm{x}}\right)^{1012}\left(\frac{4 \mathrm{x}}{5}\right)^{1010}$
$=2^{10} \cdot{ }^{2022} \mathrm{C}_{1010}\left(\frac{-5}{2 \mathrm{x}}\right)^{1010}\left(\frac{4 \mathrm{x}}{5}\right)^{1012}$
$\left(\frac{-5}{2 x}\right)^{2}=2^{10}\left(\frac{4 x}{5}\right)^{2}$
$x^{4}=\frac{5^{4}}{2^{16}}$
$|x|=\frac{5}{16}$
15. If the system of linear equations

$$
\begin{aligned}
& 7 x+11 y+\alpha z=13 \\
& 5 x+4 y+7 z=\beta \\
& 175 x+194 y+57 z=361
\end{aligned}
$$

has infinitely many solutions, then $\alpha+B+2$ is equal to :
(1) 3
(2) 6
(3) 5
(4) 4

Sol. (4)
$7 x+11 y+\alpha z=13$
$5 x+4 y+7 z=\beta$
$175 \mathrm{x}+194 \mathrm{y}+57 \mathrm{z}=361$
4sc condition of Infinite Many solution
$\Delta=0 \& \Delta x, \Delta y, \Delta z=0$ check.
After solving we get $\alpha+13+2=4$
16. Let the line passing through the point $P(2,-1,2)$ and $Q(5,3,4)$ meet the plane $x-y+z=4$ at the point T. Then the distance of the point R from the plane $x+2 y+3 z+2=0$ measured parallel to the line $\frac{x-7}{2}=\frac{y+3}{2}=\frac{z-2}{1}$ is equal to
(1) 3
(2) $\sqrt{61}$
(3) $\sqrt{31}$
(4) $\sqrt{189}$

Sol. (1)
Line: $\frac{x-5}{3}=\frac{y-3}{4}=\frac{z-4}{2}=\lambda$
$\mathrm{R}(3 \lambda+5,4 \lambda+3,2 \lambda+4)$
$\therefore 3 \lambda+5-4 \lambda-3+2 \lambda+4=4$
$\lambda+6=4 \quad \therefore \lambda=-2$
$\therefore \mathrm{R} \equiv(-1,-5,0)$
Line: $\frac{x+1}{2}=\frac{y+5}{2}=\frac{z-0}{1}=\mu$
Point T $=(2 \mu-1,2 \mu-5, \mu)$
It lies on plane
$2 \mu-1+2(2 \mu-5)+3 \mu+2=0$
$\mu=1$
$\therefore \mathrm{T}=(1,-3,1)$
$\therefore \mathrm{RT}=3$
17. Let the function $\mathrm{f}:[0,2] \rightarrow \mathrm{R}$ be defined as
$f(x)=\left\{\begin{array}{cl}\mathrm{e}^{\left.\min \left\{x^{2}, x-x x\right]\right\}}, & x \in[0,1) \\ \mathrm{e}^{\left[\mathrm{x}-\log _{\mathrm{c}} x\right]}, & \mathrm{x} \in[1,2)\end{array}\right.$
where $[t]$ denotes the greatest integer less than or equal to t. Then the value of the integral $\int_{0}^{2} x f(x) d x$ is
(1) $(e-1)\left(e^{2}+\frac{1}{2}\right)$
(2) $1+\frac{3 \mathrm{e}}{2}$
(3) $2 \mathrm{e}-\frac{1}{2}$
(4) $2 \mathrm{e}-1$

Sol. (3)
$\mathrm{F}[0,2] \rightarrow \mathrm{R}$
$F(x)=\left\{\begin{array}{c}\min \left\{x^{2},\{x\}\right\} ; x \in[0,1) \\ {\left[x-\log _{e} x\right]=1 ; x \in[1,2)}\end{array}\right.$
$F(x)= \begin{cases}e^{x^{2}}: & x \in[0,1) \\ e & x \in[1,2)\end{cases}$
$\int_{0}^{2} x f(x) d x=\int_{0}^{1} x . e^{x^{2}} d x+\int_{1}^{2} x . e d x$
$=\frac{1}{2}(e-1)+\frac{1}{2}(4-1) e$
$\Rightarrow 2 \mathrm{e}-\frac{1}{2}$
18. For $a \in C$, let $A=\{z \in C: \operatorname{Re}(a+\bar{z})>\operatorname{Im}(\bar{a}+z)\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$. The among the two statements:
(S1) : If $\operatorname{Re}(a), \operatorname{Im}(a)>0$, then the set A contains all the real numbers
(S2) : If $\operatorname{Re}(a), \operatorname{Im}(a)<0$, then the set B contains all the real numbers,
(1) only (S1) is true
(2) both are false
(3) only (S2) is true
(4) both are true

Sol. (2)
Let $\mathrm{a}=\mathrm{x}_{1}+\mathrm{iy}_{1} \mathrm{z}=\mathrm{x}+\mathrm{iy}$
Now $\operatorname{Re}(a+\bar{z})>\operatorname{Im}(\bar{a}+z)$
$\therefore \mathrm{x}_{1}+\mathrm{x}>-\mathrm{y}_{1}+\mathrm{y}$
$\mathrm{x}_{1}=2, \mathrm{y}_{1}=10, \mathrm{x}=-12, \mathrm{y}=0$
Given inequality is not valid for these values.
S1 is false.
Now $\operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)$
$\mathrm{x}_{1}+\mathrm{x}<-\mathrm{y}_{1}+\mathrm{y}$
$\mathrm{x}_{1}=-2, \mathrm{y}_{1}=-10, \mathrm{x}=12, \mathrm{y}=0$
Given inequality is not valid for these values.
S2 is false.
19. If $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$, then $\lambda, \frac{\lambda}{3}$ are the roots of the equation
(1) $4 x^{2}-24 x-27=0$
(2) $4 x^{2}+24 x+27=0$
(3) $4 x^{2}-24 x+27=0$
(4) $4 x^{2}+24 x-27=0$

Sol. (3)

$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+d & x \\ x & x & x+d^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$
Put $\mathrm{x}=0$
$\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^{2}\end{array}\right|=\frac{9}{8} \times 81$
$\lambda^{3}=\frac{9^{3}}{8}$
$\lambda=\frac{9}{2}$
$\frac{\lambda}{3}=\frac{9}{2 \times 3} \Rightarrow \frac{3}{2}$
$\frac{\lambda}{3}=\frac{3}{2}$
Option (C) $4 x^{2}-24 x+27=0$
has Root $\frac{3}{2}, \frac{9}{2}$
20. The domain of the function $f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}}$ is (where $[x]$ denotes the greatest integer less than or equal to x)
(1) $(-\infty,-3] \cup[6, \infty)$
(2) $(-\infty,-2) \cup(5, \infty)$
(3) $(-\infty,-3] \cup(5, \infty)$
(4) $(-\infty,-2) \cup[6, \infty)$

Sol. (4)
$F(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}}$
$[\mathrm{x}]^{2}-3[\mathrm{x}]-10>0$
$([\mathrm{x}]+2)([\mathrm{x}]-5)>0$

$[\mathrm{x}]<-2$ or $[\mathrm{x}]>5$
$[\mathrm{x}] \leq-3$ or $[\mathrm{x}] \geq 6$
$\mathrm{x}<-2$ or $\mathrm{x} \geq 6$
$x \in(-\infty,-2) \cup[6, \infty)$

SECTION - B

21. If A is the area in the first quadrant enclosed by the curve $C: 2 x^{2}-y+1=0$, the tangent to C at the point $(1,3)$ and the line $x+y=1$, then the value of $60 A$ is \qquad .

Sol. 16

$y=2 x^{2}+1$
Tangenet at $(1,3)$
$y=4 x-1$
$A=\int_{0}^{1}\left(2 x^{2}+1\right) d x-$ area of $(\Delta Q O T)-$ area of
$(\Delta \mathrm{PQR})+$ area of $(\Delta \mathrm{QRS})$
$\mathrm{A}=\left(\frac{2}{3}+1\right)-\frac{1}{2}-\frac{9}{8}+\frac{9}{40}=\frac{16}{60}$
22. Let $A=\{1,2,3,4,5\}$ and $B=\{1,2,3,4,5,6\}$. Then the number of functions $f: A \rightarrow B$ satisfying $f(1)+f(2)=$ $f(4)-1$ is equal to \qquad -

Sol. 360
$\mathrm{f}(1)+\mathrm{f}(2)+1=\mathrm{f}(4) \leq 6$
$\mathrm{f}(1)+\mathrm{f}(2) \leq 5$
Case (i) $\mathrm{f}(1)=1 \Rightarrow \mathrm{f}(2)=1,2,3,4 \Rightarrow 4$ mappings
Case (ii) $\mathrm{f}(1)=2 \Rightarrow \mathrm{f}(2)=1,2,3 \Rightarrow 3$ mappings
Case (iii) $\mathrm{f}(1)=3 \Rightarrow \mathrm{f}(2)=1,2 \Rightarrow 2$ mappings
Case (iv) $\mathrm{f}(1) 4 \Rightarrow \mathrm{f}(2)=1 \Rightarrow 1$ mapping
$f(5) \& f(6)$ both have 6 mappings each
Number of functions $=(4+3+2+1) \times 6 \times 6=360$
23. Let the tangent to the parabola $y^{2}=12 x$ at the point $(3, \alpha)$ be perpendicular to the line $2 x+2 y=3$. Then the square of distance of the point $(6,-4)$ from the normal to the hyperbola $\alpha^{2} x^{2}-9 y^{2}=9 \alpha^{2}$ at its point $(\alpha-1, \alpha+$ 2) is equal to \qquad -.

Sol. 116

$\because \mathrm{P}(3, \alpha)$ lies on $\mathrm{y}^{2}=12 \mathrm{x}$
$\Rightarrow \alpha= \pm 6$
But, $\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{(3, \alpha)}=\frac{6}{\alpha}=1 \Rightarrow \alpha=6(\alpha=-6$ reject $)$
Now, hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{36}=1$, normal at

$$
Q(\alpha-1, \alpha+2) \text { is } \frac{9 x}{5}+\frac{36 y}{8}=45
$$

$\Rightarrow 2 \mathrm{x}+5 \mathrm{y}-50=0$
Now, distance of $(6,-4)$ from $2 x+5 y-50=0$ is equal to
$\left|\frac{2(6)-5(4)-50}{\sqrt{2^{2}+5^{2}}}\right|=\frac{58}{\sqrt{29}}$
\Rightarrow Square of distance $=116$
24. For $\mathrm{k} \in \mathrm{N}$, if the sum of the series $1+\frac{4}{\mathrm{k}}+\frac{8}{\mathrm{k}^{2}}+\frac{13}{\mathrm{k}^{3}}+\frac{19}{\mathrm{k}^{4}}+\ldots \ldots$ is 10 , then the value of k is \qquad
Sol. 2
$10=1+\frac{4}{\mathrm{k}}+\frac{8}{\mathrm{k}^{2}}+\frac{13}{\mathrm{k}^{3}}+\frac{19}{\mathrm{k}^{4}}+$ \qquad
$9=\frac{4}{\mathrm{k}}+\frac{8}{\mathrm{k}^{2}}+\frac{13}{\mathrm{k}^{3}}+\frac{19}{\mathrm{k}^{4}}+$ \qquad upto ∞
$\frac{9}{\mathrm{k}}=\frac{4}{\mathrm{k}^{2}}+\frac{8}{\mathrm{k}^{3}}+\frac{13}{\mathrm{k}^{4}}+\ldots .$. upto ∞
$\mathrm{S}=9\left(1-\frac{1}{\mathrm{k}}\right)=\frac{4}{\mathrm{k}}+\frac{4}{\mathrm{k}^{2}}+\frac{5}{\mathrm{k}^{3}}+\frac{6}{\mathrm{k}^{4}} \ldots \ldots$. upto ∞
$\frac{\mathrm{S}}{\mathrm{k}}=\frac{4}{\mathrm{k}^{2}}+\frac{4}{\mathrm{k}^{3}}+\frac{5}{\mathrm{k}^{4}}+\ldots . .$. upto ∞
$\left(1-\frac{1}{\mathrm{k}}\right) \mathrm{S}=\frac{4}{\mathrm{k}}+\frac{1}{\mathrm{k}^{3}}+\frac{1}{\mathrm{k}^{4}}+\frac{1}{\mathrm{k}^{5}}+\ldots . . \infty$
$9\left(1-\frac{1}{\mathrm{k}}\right)^{2}=\frac{4}{\mathrm{k}}+\frac{\frac{1}{\mathrm{k}^{3}}}{\left(1-\frac{1}{\mathrm{k}}\right)}$
$9(k-1)^{3}=4 k(k-1)+1$
$\mathrm{k}=2$
25. Let the line $\ell: x=\frac{1-y}{-2}=\frac{z-3}{\lambda}, \lambda \in R$ meet the plane $P: x+2 y+3 z=4$ at the point (α, β, γ). If the angle between the line ℓ and the plane P is $\cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then $\alpha+2 \beta+6 \gamma$ is equal to \qquad -.

Sol. 11

$\ell: x=\frac{y-1}{2}=\frac{z-3}{\lambda}, \lambda \in \mathbb{R}$
Dr's of line $\ell(1,2, \lambda)$
Dr's of normal vector of plane $\mathrm{P}: \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=4$
are ($1,2,3$)
Now, angle between line ℓ and plane P is given by
$\sin \theta=\left|\frac{1+4+3 \lambda}{\sqrt{5+\lambda^{2}} \cdot \sqrt{14}}\right|=\frac{3}{\sqrt{14}}\left(\right.$ given $\left.\cos \theta=\sqrt{\frac{5}{14}}\right)$
$\Rightarrow \lambda=\frac{2}{3}$
Let variable point on line ℓ is $\left(\mathrm{t}, 2 \mathrm{t}+1, \frac{2}{3} \mathrm{t}+3\right)$
line of plane P.
$\Rightarrow \mathrm{t}=-1$
$\Rightarrow\left(-1,-1, \frac{7}{3}\right) \equiv(\alpha, \beta, \gamma)$
$\Rightarrow \alpha+2 \beta+6 \gamma=11$
26. The number of points where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts x-axis, is equal to \qquad
Sol. 2
Let $\mathrm{e}^{2 \mathrm{x}}=\mathrm{t}$
$\Rightarrow \mathrm{t}^{4}-\mathrm{t}^{3}-3 \mathrm{t}^{2}-\mathrm{t}+1=0$
$\Rightarrow \mathrm{t}_{2}+\frac{1}{\mathrm{t}_{2}}-\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)-3=0$
$\Rightarrow\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}-\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)-5=0$
$\Rightarrow \mathrm{t}+\frac{1}{\mathrm{t}}=\frac{1+\sqrt{21}}{2}$
Two real values of t .
27. If the line $l_{1}: 3 \mathrm{y}-2 \mathrm{x}=3$ is the angular bisector of the line $l_{2}: \mathrm{x}-\mathrm{y}+1=0$ and $l_{3}: \mathrm{ax}+\beta \mathrm{y}+17$, then $\alpha^{2}+\beta^{2}-$ $\alpha-\beta$ is equal to \qquad _.

Sol. 348

Point of intersection of $\ell_{1}: 3 y-2 x=3$
$\ell_{2}: x-y+1=0$ is $\mathrm{P} \equiv(0,1)$
Which lies on $\ell_{3}: \alpha x-\beta y+17=0$,
$\Rightarrow \beta=-17$
Consider a random point $\mathrm{Q} \equiv(-1,0)$
on $\ell_{2}: x-y+1=0$, image of Q about
$\ell_{2}: x-y+1=0$, is $\mathrm{Q}^{\prime} \equiv\left(\frac{-17}{13}, \frac{6}{13}\right)$ which is calculated by formulae
$\frac{x-(-1)}{2}=\frac{y-0}{-3}=2\left(\frac{-2+3}{13}\right)$
Now, Q^{\prime} lies in $\ell_{3}: \alpha x+\beta y+17=0$
$\Rightarrow \alpha=7$
Now, $\alpha^{2}+\beta^{2}-\alpha-\beta=348$
28. Let the probability of getting head for a biased coin be $\frac{1}{4}$. It is tossed repeatedly until a head appears. Let N be the number of tosses required. If the probability that the equation $64 x^{2}+5 N x+1=0$ has no real root is $\frac{p}{q}$, where p and q are co-prime, then $\mathrm{q}-\mathrm{p}$ is equal to \qquad .

Sol. 27
$64 \mathrm{x}^{2}+5 \mathrm{Nx}+1=0$
$\mathrm{D}=25 \mathrm{~N}^{2}-256<0$
$\Rightarrow \mathrm{N}^{2}<\frac{256}{25} \Rightarrow \mathrm{~N}<\frac{16}{5}$
$\therefore \mathrm{N}=1,2,3$
\therefore Probability $=\frac{1}{4}+\frac{3}{4} \times \frac{1}{4}+\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}=\frac{37}{64}$
$\therefore q-p=27$
29. Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c}=11, \vec{b} \cdot(\vec{a} \times \vec{c})=27$ and $\vec{b} \cdot \vec{c}=-\sqrt{3}|\vec{b}|$, then $|\vec{a} \times \overrightarrow{\mathrm{c}}|^{2}$ is equal to \qquad _.
Sol. 285
$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}+\hat{j}-\hat{k}$
$\vec{b} .(\vec{a} \times \vec{c})=27, \vec{a} \cdot \vec{b}=0$
$\vec{b} \times(\vec{a} \times \vec{c})=-3 \vec{a}$
Let θ be angle between $\vec{b}, \vec{a} \times \vec{c}$
Then $|\vec{b}| \cdot|\vec{a} \times \overrightarrow{\mathbf{c}}| \sin \theta=3 \sqrt{14}$
$|\overrightarrow{\mathrm{b}}| \cdot|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}| \cos \theta=27$
$\Rightarrow \sin \theta=\frac{\sqrt{14}}{\sqrt{95}}$
$\therefore|\overrightarrow{\mathrm{b}}| \times|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}|=3 \sqrt{95}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}|=\sqrt{3} \times \sqrt{95}$
30. Let $S=\left\{z \in C-\{i, 2 i\}: \frac{z^{2}+8 i z-15}{z^{2}-3 i z-2} \in R\right\}$. If $\alpha-\frac{13}{11} i \in S, a \in R-\{0\}$, then $242 \alpha^{2}$ is equal to \qquad -
Sol. 1680

$$
\begin{aligned}
& \left(\frac{z^{2}+8 i z-15}{z^{2}-3 i z-2}\right) \in R \\
& \Rightarrow 1+\frac{(11 z-13)}{\left(z^{2}-3 i z-2\right)} \in R
\end{aligned}
$$

Put $\mathrm{Z}=\alpha-\frac{13}{11} \mathrm{i}$
$\Rightarrow\left(\mathrm{z}^{2}-3 \mathrm{iz}-2\right)$ is imaginary
Put $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\Rightarrow\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{xyi}-3 \mathrm{ix}+3 \mathrm{y}-2\right) \in$ Imaginary
$\Rightarrow \operatorname{Re}\left(x^{2}-y^{2}+3 y-2+(2 x y-3 x) i\right)=0$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}+3 \mathrm{y}-2=0$
$x^{2}=y^{2}-3 y+2$
$x^{2}=(y-1)(y-2) \therefore z=\alpha-\frac{13}{11} i$
Put $x=\alpha, y=\frac{-13}{11}$
$\alpha^{2}=\left(\frac{-13}{11}-11\right)\left(\frac{-13}{11}-2\right)$
$\alpha^{2}=\frac{(24 \times 35)}{121}$
$242 \alpha^{2}=48 \times 35=1680$

