31. A hydraulic automobile lift is designed to lift vehicles of mass 5000 kg . The area of cross section of the cylinder carrying the load is $250 \mathrm{~cm}^{2}$. The maximum pressure the smaller piston would have to bear is [Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]:
(1) $2 \times 10^{+5} \mathrm{~Pa}$
(2) $20 \times 10^{+6} \mathrm{~Pa}$
(3) $200 \times 10^{+6} \mathrm{~Pa}$
(4) $2 \times 10^{+6} \mathrm{~Pa}$

Sol. (4)

From pascal law same $\Delta \mathrm{P}$ transmitted through out liquid
$\Delta \mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}}=\frac{5000 \times 10}{250 \times 10^{-4}}$
$=2 \times 10^{6} \mathrm{~Pa}$
32. The orbital angular momentum of a satellite is L, when it is revolving in a circular orbit at height h from earth surface. If the distance of satellite from the earth center is increased by eight times to its initial value, then the new angular momentum will be-
(1) 8 L
(2) 3 L
(3) 4 L
(4) 9 L

Sol. (2)
$L=m v o r\left(v_{0}=\sqrt{\frac{G M}{h}}\right)$
$\mathrm{L}=\mathrm{m} \sqrt{\mathrm{GMh}}$
$h^{\prime} \rightarrow \mathrm{h}+8 \mathrm{~h}=9 \mathrm{~h}$
$L^{\prime}=m \sqrt{\text { GM9h }}$
$\frac{L^{\prime}}{L}=3$
$L^{\prime}=3 \mathrm{~L}$

33. The waves emitted when a metal target is bombarded with high energy electrons are
(1) Microwaves
(2) X-rays
(3) Radio Waves
(4) Infrared rays

Sol. (2)

By theory
34. Match List I with List II

LIST - I		LIST - II		
A.	Torque	I.	$\mathrm{ML}^{-2} \mathrm{~T}^{-2}$	
B.	Stress	II.	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$	
C.	Pressure gradient	III.	$\mathrm{ML}^{-1} \mathrm{t}^{-1}$	
D.	Coefficient of viscosity	IV	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$	

Choose the correct answer from the options given below:
(1) A-III, B-IV, C-I, D-II
(2) A-II, B-I, C-IV, D-III
(3) A-IV, B-II, C-III, D-I
(4) A-II, B-IV, C-I, D-III

Sol. (4)
[Torque] = F.L
$\mathrm{MLT}^{-2} \cdot \mathrm{~L}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
$[$ Stress $]=\frac{\mathrm{F}}{\mathrm{A}}$
$\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
$[$ Pressure gradient $]=\frac{\Delta \mathrm{P}}{\Delta \mathrm{L}}=\frac{\mathrm{F}}{\mathrm{A}^{2} \cdot \mathrm{~L}}$

$$
=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{3}}
$$

$$
=\mathrm{ML}^{-2} \mathrm{~T}^{-2}
$$

$F=n A \frac{d v}{d y}$
$\eta=M L^{-1} \mathrm{~T}^{-1}$
35. Give below are two statements

Statement I : Area under velocity- time graph gives the distance travelled by the body in a given time.
Statement II : Area under acceleration- time graph is equal to the change in velocity- in the given time.
In the light of given statement, choose the correct answer from the options given below.
(1) Both Statement I and Statement II are true.
(2) Statement I is correct but Statement II is false.
(3) Both Statement I and and Statement II are false.
(4) Statement I is incorrect but Statement II is true.

Sol. (Official Ans. (1))
(Motion Ans. (4))
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{s}}}{\mathrm{dt}} \Rightarrow \int \mathrm{d} \overrightarrow{\mathrm{s}}=\int \overrightarrow{\mathrm{v}} \mathrm{dt}$
Area of \vec{v} vs time gives displacement
$\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}} \Rightarrow \int \mathrm{d} \overrightarrow{\mathrm{v}}=\int \overrightarrow{\mathrm{a}} \mathrm{dt}$
Area of \vec{a} vs t graph gives change in velocity
36. The power radiated from a linear antenna of length l is proportional to (Given, $\lambda=$ Wavelength of wave):
(1) $\frac{l}{\lambda}$
(2) $\frac{l^{2}}{\lambda}$
(3) $\frac{l}{\lambda^{2}}$
(4) $\left(\frac{l}{\lambda}\right)^{2}$

Sol. (4)
37. Electric potential at a point ' P ' due to a point charge of $5 \times 10^{-9} \mathrm{C}$ is 50 V . The distance of ' P ' from the point charge is:
(Assume, $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{+9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$)
(1) 3 cm
(2) 9 cm
(3) 0.9 cm
(4) 90 cm

Sol. (4)

$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}}$
$\Rightarrow \mathrm{r}=\frac{9 \times 10^{9} \times 5 \times 10^{-9}}{50}$
$\Rightarrow \mathrm{r}=\frac{9}{10} \times 100 \mathrm{~cm}$
$\mathrm{r}=90 \mathrm{~cm}$
38. The acceleration due to gravity at height h above the earth if $h \ll R$ (Radius of earth) is given by
(1) $g^{\prime}=g\left(1-\frac{h^{2}}{2 R^{2}}\right)$
(2) $g^{\prime}=g\left(1-\frac{h}{2 R}\right)$
(3) $g^{\prime}=g\left(1-\frac{2 h^{2}}{R^{2}}\right)$
(4) $g^{\prime}=g\left(1-\frac{2 h}{R}\right)$

Sol. (4)
$\mathrm{g}^{\prime}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}$
$g^{\prime}=\frac{G M}{R^{2}\left(1+\frac{h}{R}\right)^{2}}$
using binomial expansion $\&$ neglect higher order term
$\Rightarrow \mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}}\right)$
39. An emf of 0.08 V is induced in a metal rod of length 10 cm held normal to a uniform magnetic field of 0.4 T , when moves with a velocity of:
(1) $2 \mathrm{~ms}^{-1}$
(2) $20 \mathrm{~ms}^{-1}$
(3) $3.2 \mathrm{~ms}^{-1}$
(4) $0.5 \mathrm{~ms}^{-1}$

Sol. (1)

$\varepsilon=\mathrm{Blv}$
$\Rightarrow 0.08=\mathrm{v} \times 0.4 \times \frac{10}{100}$
$\Rightarrow \mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
40. Work done by a Carnot engine operating between temperatures $127^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ is 2 kJ . The amount of heat transferred to the engine by the reservoir is:
(1) 2 kJ
(2) 4 kJ
(3) 2.67 kJ
(4) 8 kJ

Sol. (4)

Q_{1}
H.E) $\Rightarrow \mathrm{w}=2 \mathrm{~kJ}$

T
(300 k)
$\mathrm{n}=1-\frac{300}{400}=\frac{1}{4}$
$\mathrm{n}=\frac{\mathrm{w}}{\mathrm{Q}_{1}}=\frac{1}{4} \Rightarrow \mathrm{Q}_{1}=8 \mathrm{~kJ}$
41. The width of fringe is 2 mm on the screen in a double slits experiment for the light of wavelength of 400 nm .

The width of the fringe for the light of wavelength 600 nm will be:
(1) 1.33 mm
(2) 3 mm
(3) 2 mm
(4) 4 mm

Sol. (2)

$\beta=\frac{D \lambda}{d}$
$\Rightarrow \beta \propto \lambda$
$\frac{\beta_{1}}{\beta_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \Rightarrow \frac{2}{\beta}=\frac{400}{600}$
$\beta=3 \mathrm{~mm}$
42. The temperature at which the kinetic energy of oxygen molecules becomes double than its value at $27^{\circ} \mathrm{C}$ is
(1) $1227^{\circ} \mathrm{C}$
(2) $627^{\circ} \mathrm{C}$
(3) $327^{\circ} \mathrm{C}$
(4) $927^{\circ} \mathrm{C}$

Sol. (3)

KE of O_{2} molecules $=5 \times\left(\frac{1}{2} \mathrm{KT}\right)$
$(\mathrm{KE})_{27^{\circ} \mathrm{C}}=5 \times \frac{1}{2} \mathrm{k}(27+273)=\frac{5}{2} \mathrm{k} \times 300$
$(\mathrm{KE})_{\mathrm{T}}=2\left(\frac{5}{2} \mathrm{k}\right) \times 300=\frac{5}{2} \mathrm{k}(600)$
i.e. $T=600 \mathrm{~K}$
$=600-273$
$\mathrm{T}=327^{\circ} \mathrm{C}$
43. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason \mathbf{R}

Assertion A : Electromagnets are made of soft iron.
Reason R: Soft iron has high permeability and low retentivity.
In the light of above, statements, chose the most appropriate answer from the options given below.
(1) \mathbf{A} is correct but \mathbf{R} is not correct
(2) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}
(3) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(4) \mathbf{A} is not correct but \mathbf{R} is correct

Sol. (2)
44. The trajectory of projectile, projected from the ground is given by $y=x-\frac{x^{2}}{20}$. Where x and y are measured in meter. The maximum height attained by the projectile will be.
(1) 10 m
(2) 200 m
(3) $10 \sqrt{2} \mathrm{~m}$
(4) 5 m

Sol. (4)
$y=x-\frac{x^{2}}{20}$
$\left(\frac{d y}{d x}\right)=1-\frac{x}{10}$ for $y_{\max } ; \frac{d y}{d x}=0$
$\mathrm{x}=10$
$y_{\max }=10-\frac{100}{20}=5 m$
45. A bullet of mass 0.1 kg moving horizontally with speed $400 \mathrm{~ms}^{-1}$ hits a wooden block of mass 3.9 kg kept on a horizontal rough surface. The bullet gets embedded into the block and moves 20 m before coming to rest. The coefficient of friction between the block and the surface is \qquad _.
(Given $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 0.90
(2) 0.65
(3) 0.25
(4) 0.50

Sol. (3)

20 m
After collision
Apply momentum conservation just before and just after the collision
$0.1 \times 400=(3.9+.1) u^{\prime}$
$\Rightarrow \mathrm{u}=10 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{KE}=\mathrm{w}_{\text {all FORCE }}$
$\because \mathrm{f}=\mu \mathrm{mg}$ (kinetic friction)
$\Rightarrow 0-\frac{1}{2}(4)(10)^{2}=-\mu(4) g \times 20$
$\Rightarrow \mu=0.25$
46. For a given transistor amplifier circuit in $C E$ configuration $V_{C C}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{b}}=100 \mathrm{k} \Omega$ and $\beta=100$.

Value of base current I_{b} is

(1) $\mathrm{I}_{\mathrm{b}}=100 \mu \mathrm{~A}$
(2) $\mathrm{I}_{\mathrm{b}}=10 \mu \mathrm{~A}$
(3) $\mathrm{I}_{\mathrm{b}}=0.1 \mu \mathrm{~A}$
(4) $\mathrm{I}_{\mathrm{b}}=1.0 \mu \mathrm{~A}$

Sol. (2)

$\mathrm{V}_{\mathrm{cc}}=1 \mathrm{~V}$
$\mathrm{R}_{\mathrm{c}} \mathrm{I}_{\mathrm{c}}=1$
$\mathrm{I}_{\mathrm{c}}=\frac{1}{10^{3}} \mathrm{~A}=1 \mathrm{~mA}$
$\beta=\frac{I_{c}}{I_{\beta}}$
$\mathrm{I}_{\beta}=\frac{\mathrm{I}_{\mathrm{C}}}{\beta}$
$=1 \times 10^{-5} \mathrm{~A}$
$=10 \mu \mathrm{~A}$
47. For particle P revolving round the centre O with radius of circular path r and angular velocity ω, as shown in below figure, the projection of OP on the x -axis at time t is

(1) $x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$
(2) $x(t)=\operatorname{rcos}\left(\omega t-\frac{\pi}{6} \omega\right)$
(3) $x(t)=\operatorname{rcos}(\omega t)$
(4) $x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$

Sol. (1)
$\theta=\omega t$

Angle from x axis $=\omega t+\frac{\pi}{6}$
Projection of OP on x axis $=\mathrm{r} \cos \left(\omega \mathrm{t}+\frac{\pi}{6}\right)$
48. A radio active material is reduced to $1 / 8$ of its original amount in 3 days. If $8 \times 10^{-3} \mathrm{~kg}$ of the material is left after 5 days the initial amount of the material is
(1) 64 g
(2) 40 g
(3) 32 g
(4) 256 g

Sol. (4)

$\mathrm{m}=\mathrm{m}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$\frac{\mathrm{m}_{0}}{8}=\mathrm{m}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$-\ln 8=-\lambda t$
$=\lambda=\frac{\ln 8}{3}$ per day
$\mathrm{m}=\mathrm{m}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$8=m_{0} e^{-\frac{\ln 8}{3} \times 5}$
$\Rightarrow 8=\mathrm{m}_{0} \mathrm{e}^{-\frac{3 \ln 2}{3} \times 5}$
$8=m_{0} e^{\ln 2^{-5}}$
$=8 \mathrm{~m}_{0}\left(\frac{1}{2^{5}}\right)$
$\mathrm{m}_{0}=8 \times 2^{5}$
$=8 \times 32$
$\mathrm{m}_{0}=256 \mathrm{gm}$
49. The equivalent resistance between A and B as shown in figure is:

(1) $20 \mathrm{k} \Omega$
(2) $30 \mathrm{k} \Omega$
(3) $5 \mathrm{k} \Omega$
(4) $10 \mathrm{k} \Omega$

Sol. (3)

Potential different across all resistor is same
So they are in parallel
$\frac{1}{\mathrm{R}}=\frac{1}{20}++\frac{1}{20}+\frac{1}{10}$
$\mathrm{R}_{\mathrm{eq}}=5 \mathrm{k} \Omega$
50. In photo electric effect
A. The photocurrent is proportional to the intensity of the incident radiation.
B. Maximum Kinetic energy with which photoelectrons are emitted depends on the intensity of incident light.
C. Max K.E with which photoelectrons are emitted depends on the frequency of incident light.
D. The emission of photoelectrons require a minimum threshold intensity of incident radiation.
E. Max. K.E of the photoelectrons is independent of the frequency of the incident light.

Choose the correct answer from the options given below:
(1) B and C only
(2) A and C only
(3) A and E only
(4) A and B only

Sol. (2)

$\mathrm{h} \nu=\phi+(\mathrm{KE})_{\text {max }}$
$(\mathrm{KE})_{\max }=\mathrm{hv}-\phi$

SECTION - B

51. A 600 pF capacitor is charged by 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. Electrostatic energy lost in the process is \qquad $\mu \mathrm{J}$
Sol. (6)
loss of strength $=\frac{1}{2} \frac{c \times c}{c+c}\left(v_{1}-v_{2}\right)^{2}$
$=\frac{1}{2} \times\left[\frac{600 \times 10^{-12}}{2}\right] \times(200)^{2}$
$=600 \times 10^{-12} \times 10^{4}=6 \times 10^{-6}=6 \mu \mathrm{~J}$
52. A series combination of resistor of resistance 100Ω, inductor of inductance 1 H and capacitor of capacitance $6.25 \mu \mathrm{~F}$ is connected to an ac source. The quality factor of the circuit will be \qquad -
Sol. (4)
$\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
$=\frac{1}{100} \sqrt{\frac{1}{6.25 \times 10^{-6}}}$
$=4$
53. The number density of free electrons in copper is nearly $8 \times 10^{28} \mathrm{~m}^{-3}$. A copper wire has its area of cross section $=2 \times 10^{-6} \mathrm{~m}^{2}$ and is carrying a current of 3.2 A . The drift speed of the electrons is \qquad $\times 10^{-6} \mathrm{~ms}^{-1}$
Sol. (125)
I = neAvd
$\Rightarrow 3.2=8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2 \times 10^{-6}\left(\mathrm{v}_{\mathrm{d}}\right)$
$\Rightarrow \mathrm{v}_{\mathrm{d}}=\frac{1}{8 \times 10^{-6} \times 10^{9}}$
$\Rightarrow \mathrm{v}_{\mathrm{d}}=125 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
54. A hollow spherical ball of uniform density rolls up a curved surface with an initial velocity $3 \mathrm{~m} / \mathrm{s}$ (as shown in figure).

Maximum height with respect to the initial position covered by it will be \qquad $\mathrm{cm}\left(\right.$ take, $\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

Sol. (75)

A
$(\mathrm{M} . \mathrm{E})_{\mathrm{A}}=(\mathrm{M} . \mathrm{E})_{\mathrm{B}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \mathrm{mv}_{0}^{2}+\frac{1}{2} \times\left(\frac{2}{3} \mathrm{mR}^{2}\right)\left(\frac{\mathrm{v}_{0}}{\mathrm{R}}\right)^{2}=\mathrm{mgH}_{\max } \\
& \Rightarrow \mathrm{H}_{\max }=\frac{5}{6} \frac{\mathrm{v}_{0}^{2}}{\mathrm{~g}}=\frac{5}{6} \times \frac{3^{2}}{10}=0.75 \mathrm{~m} \\
& \Rightarrow \mathrm{H}_{\max }=75 \mathrm{~cm}
\end{aligned}
$$

55. A steel rod of length 1 m and cross sectional area $10^{-4} \mathrm{~m}^{2}$ is heated from $0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ without being allowed to extend or bend. The compressive tension produced in the rod is \qquad $\times 10^{4} \mathrm{~N}$. (Given Young's modulus of steel $=2 \times 10^{11} \mathrm{Nm}^{-2}$, coefficient of linear expansion $=10^{-5} \mathrm{~K}^{-1}$)
Sol. (4)
Thermal stress $=\mathrm{Y} \alpha \Delta \mathrm{T}$
$\mathrm{F}=\mathrm{Y} \mathrm{A} \alpha \Delta \mathrm{T}$
$=2 \times 10^{11} \times 10^{-4} \times 10^{-5} \times 200$
$=4 \times 10^{4}$
$\mathrm{x}=4$
56. The ratio of magnetic field at the centre of a current carrying coil of radius r to the magnetic field at distance r from the centre of coil on its axis is $\sqrt{x}: 1$. The value of x is \qquad
Sol. (8)
$B_{\text {axis }}=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
$\frac{\left(B_{\text {axis }}\right) x=R}{\left(B_{\text {axis }}\right) x=0}=\frac{\frac{\mu_{0} i R^{2}}{2\left(\mathrm{R}^{2}+\mathrm{R}^{2}\right)^{3 / 2}}}{\frac{\mu_{0} \mathrm{iR}^{2}}{2\left(\mathrm{R}^{2}\right)^{3 / 2}}}=\frac{\mathrm{R}^{3}}{2^{3 / 2} \mathrm{R}^{3}}=\frac{1}{\sqrt{8}}$
$\frac{(B)_{\mathrm{At}_{\text {centrs }}}}{(\mathrm{B})_{\mathrm{At}} \mathrm{x}=\mathrm{R}}=\frac{\sqrt{8}}{1}$
$x=8$
57. The ratio of wavelength of spectral lines H_{α} and H_{β} in the Balmer series is $\frac{x}{20}$. The value of x is \qquad
Sol. (27)
58. Two transparent media having refractive indices 1.0 and 1.5 are separated by a spherical refracting surface of radius of curvature 30 cm . The centre of curvature of surface is towards denser medium and a point object is placed on the principle axis in rarer medium at a distance of 15 cm from the pole of the surface. The distance of image from the pole of the surface is \qquad cm .
Sol. (30)

$\frac{1.5}{\mathrm{v}}-\frac{1}{(-15)}=\frac{1.5-1}{30}$
$\Rightarrow \frac{1.5}{\mathrm{v}}-\frac{1}{60}-\frac{1}{15}=\frac{1-4}{60}$
$\mathrm{V}=-30 \mathrm{~cm}$
$=30 \mathrm{~cm}$
59. A guitar string of length 90 cm vibrates with a fundamental frequency of 120 Hz . The length of the string producing a fundamental frequency of 180 Hz will be \qquad cm.

Sol. (60)
$f=\frac{\mathrm{V}}{2 \mathrm{~L}}$
(Fundamental Frequency)
$120=\frac{\mathrm{V}}{2 \mathrm{~L}}$
$180=\frac{\mathrm{V}}{2 \mathrm{~L}^{\prime}}$
$\frac{\mathrm{L}^{\prime}}{\mathrm{L}}=\frac{120}{180}$
$\mathrm{L}^{\prime}=\frac{2}{3} \times 90$
$L^{\prime}=60 \mathrm{~cm}$
60. A body of mass 5 kg is moving with a momentum of $10 \mathrm{~kg} \mathrm{~ms}^{-1}$. Now a force of 2 N acts on the body in the direction of its motion for 5 s . The increase in the Kinetic energy of the body is \qquad J.

Sol. (30)
$(K E)=\frac{\mathrm{P}^{2}}{2 \mathrm{M}}$
$\Rightarrow \frac{1}{2} \mathrm{mu}^{2}=\frac{(10)^{2}}{2 \times 5}$
$=\frac{1}{2} \times 5 \times \mathrm{u}^{2}=\frac{100}{10}$
Initial speed $u=2 \mathrm{~m} / \mathrm{s}$
$\Delta K E=w_{\text {all forces }}$
$=\overrightarrow{\mathrm{F}} \cdot \vec{S} \quad\left(\theta=0^{\circ}\right)$
$=\mathrm{F}\left(\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}\right)$
$=2 .\left[2 \times 5+\frac{1}{2} \times \frac{2}{5} \times 5^{2}\right]$
$=30 \mathrm{~J}$

