FINAL JEE-MAIN EXAMINATION - APRIL, 2023
Held On Thursday 13th April, 2023
TIME : 09:00 AM to 12:00 PM
SECTION - A
31. Different combination of 3 resistors of equal resistance R are shown in the figures. The increasing order for
power dissipation is:
(A)

(C)

(B)

(D) I

(1) $\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{D}}$
(2) $\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}$
(3) $\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{A}}$
(4) $\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}$

Sol. (1)
Power dissipation, $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
(A) $R_{e q}=\frac{R}{2}+R=\frac{3 R}{2}$
(B) $\mathrm{R}_{\text {eq }}=\frac{(2 R)(\mathrm{R})}{2 R+R}=\frac{2 R}{3}$
(C) $\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}}{3}$
(D) $R_{\text {eq }}=3 R$
$R_{D}>R_{A}>R_{B}>R_{C}$
Since, $\mathrm{P} \propto \mathrm{R}_{\text {eq }}$
$P_{D}>P_{A}>P_{B}>P_{C}$
32. For the following circuit and given inputs A and B, chose the correct option for output ' Y '

(1)

(2)

(3)

(4)

Sol. (3)

Output, $\quad \mathrm{y}=\overline{\overline{\mathrm{A}} \cdot \mathrm{B}}=\overline{\overline{\mathrm{A}}}+\mathrm{B}$

$$
\mathrm{y}=\mathrm{A}+\overline{\mathrm{B}}
$$

t_{1} to $\mathrm{t}_{2}, \quad \mathrm{~A}=0, \mathrm{~B}=1, \mathrm{Y}=0$
t_{2} to $\mathrm{t}_{3} \quad \mathrm{~A}=1, \mathrm{~B}=1, \mathrm{Y}=1$
t_{3} to $\mathrm{t}_{4} \quad \mathrm{~A}=0, \mathrm{~B}=0, \mathrm{Y}=1$
t_{4} to $\mathrm{t}_{5}, \quad \mathrm{~A}=1, \mathrm{~B}=1, \mathrm{Y}=1$
t_{5} to $\mathrm{t}_{6}, \quad \mathrm{~A}=1, \mathrm{~B}=0, \mathrm{Y}=1$
After $\mathrm{t}_{6}, \quad \mathrm{~A}=0, \mathrm{~B}=0, \mathrm{Y}=1$
33. A bullet of 10 g leaves the barrel of gun with a velocity of $600 \mathrm{~m} / \mathrm{s}$. If the barrel of gun is 50 cm long and mass of gun is 3 kg , then value of impulse supplied to the gun will be:
(1) 12 Ns
(2) 6 Ns
(3) 3 Ns
(4) 36 Ns

Sol. (2)

Impulse, $|\overrightarrow{\mathrm{I}}|=|\Delta \overrightarrow{\mathrm{p}}|$

$$
\begin{aligned}
& =\mathrm{mV}-0 \\
& =\left(10 \times 10^{-3} \mathrm{~kg}\right)(600 \mathrm{~m} / \mathrm{s}) \\
\mathrm{I}= & 6 \mathrm{~N}-\mathrm{S}
\end{aligned}
$$

34. Which of the following Maxwell's equation is valid for time varying conditions but not valid for static conditions:
(1) $\oint \vec{D} \cdot \overrightarrow{d A}=Q$
(2) $\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dl}}=-\frac{\partial \phi_{\mathrm{B}}}{\partial \mathrm{t}}$
(3) $\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dl}}=0$
(4) $\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{dl}}=\mu_{0} \mathrm{I}$

Sol. (2)
For static conditions
$\oint \overrightarrow{\mathrm{E}} . \mathrm{d} \overrightarrow{\mathrm{l}}=0$
For time varying condition,

$$
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{l}}=-\frac{\partial \phi_{\mathrm{B}}}{\partial \mathrm{t}}
$$

35. Match List - I with List - II

List - I (Layer of atmosphere)	List - II (Approximate height over earth's surface)
(A) F1 - Layer	(I) 10 km
(B) D - Layer	(II) $170-190 \mathrm{~km}$
(C) Troposphere	(III) 100 km
(D) E - layer	(IV) $65-75 \mathrm{~km}$

Choose the correct answer from the options given below:
(1) A - II, B - I, C - IV, D - III
(2) A - II, B - IV, C - III, D - I
(3) A - II, B - IV, C - I, D - III
(4) A - III, B - IV, C - I, D - II

Sol. (3)
$\mathrm{F}_{1} \rightarrow$ Lower part of F layer of ionosphere $(170-190 \mathrm{Km})$
$\mathrm{D} \rightarrow$ Lowest layer of ionosphere ($65-75 \mathrm{Km}$)
Troposphere \rightarrow Lowest layer of atmosphere (10 Km)
$\mathrm{E} \rightarrow$ Middle part of ionosphere $(100 \mathrm{Km})$
36. The rms speed of oxygen molecule in a vessel at particular temperature is $\left(1+\frac{5}{x}\right)^{\frac{1}{2}} v$, where v is the average speed of the molecule. The value of x will be: (Take $\pi=\frac{22}{7}$)
(1) 28
(2) 27
(3) 8
(4) 4

Sol. (1)

$\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathrm{M}}}$
$\mathrm{V}_{\mathrm{avg}}=v=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}$
$\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \pi}{8}} v$
$\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3}{8} \times \frac{22}{7}} v=\left(\frac{33}{28}\right)^{1 / 2} v$
$\mathrm{V}_{\mathrm{rms}}=\left(1+\frac{5}{28}\right)^{1 / 2} v$
$\mathrm{x}=28$
37. The ratio of powers of two motors is $\frac{3 \sqrt{x}}{\sqrt{x}+1}$, that are capable of raising 300 kg water in 5 minutes and 50 kg water in 2 minutes respectively from a well of 100 m deep. The value of x will be
(1) 16
(2) 2
(3) 4
(4) 2.4

Sol. (1)
$\mathrm{P}=\frac{\text { Work }}{\text { Time }}$
$P_{1}=\frac{\mathrm{mgh}}{\mathrm{t}_{1}}=\frac{(300) \mathrm{g}(100)}{5}$
$\mathrm{P}_{2}=\frac{(50) \mathrm{g}(100)}{2}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{600}{250}=\frac{12}{5}=\frac{3 \times 4}{4+1}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{3 \sqrt{16}}{\sqrt{16}+1}$
$x=16$
38. Two trains ' A ' and ' B^{\prime} ' of length ' l ' and ' $4 l$ ' are travelling into a tunnel of length ' L ' in parallel tracks from opposite directions with velocities $108 \mathrm{~km} / \mathrm{h}$ and $72 \mathrm{~km} / \mathrm{h}$, respectively. If train 'A' takes 35 s less time than train 'B' to cross the tunnel then, length ' L ' of tunnel is:
(Given $\mathrm{L}=60 l$)
(1) 2700 m
(2) 1800 m
(3) 1200 m
(4) 900 m

Sol. (2)

L

L

$$
\mathrm{V}_{\mathrm{A}}=108 \times \frac{5}{18}=30 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{V}_{\mathrm{B}}=72 \times \frac{5}{18}=20 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{T}_{\mathrm{A}}=\frac{\ell+\mathrm{L}}{30}, \mathrm{~T}_{\mathrm{B}}=\frac{4 \ell+\mathrm{L}}{20}
$$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}-35
$$

$$
\frac{\ell+\mathrm{L}}{30}=\frac{4 \ell+\mathrm{L}}{20}-35
$$

Given, $L=60 \ell$

$$
\begin{aligned}
& \frac{61 \ell}{30}=\frac{64 \ell}{20}-35 \\
& \frac{192 \ell-122 \ell}{60}=35 \\
& 70 \ell=60 \times 35 \\
& \ell=30 \mathrm{~m} \\
& L=60 \ell=1800 \mathrm{~m}
\end{aligned}
$$

39. Two bodies are having kinetic energies in the ratio $16: 9$. If they have same linear momentum, the ratio of their masses respectively is:
(1) $16: 9$
(2) $4: 3$
(3) $9: 16$
(4) $3: 4$

Sol. (3)

Kinetic energy, $K E=\frac{P^{2}}{2 m}$
$\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
$\frac{16}{9}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
$\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{9}{16}$
40. The figure shows a liquid of given density flowing steadily in horizontal tube of varying cross - section. Cross sectional areas at A is $1.5 \mathrm{~cm}^{2}$, and B is $25 \mathrm{~mm}^{2}$, if the speed of liquid at B is $60 \mathrm{~cm} / \mathrm{s}$ then $\left(P_{A}-P_{B}\right)$ is:
(Given P_{A} and P_{B} are liquid pressures at A and B points)
Density $\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$
A and B are on the axis of tube

(1) 175 Pa
(2) 36 Pa
(3) 27 Pa
(4) 135 Pa

Sol. (1)

By equation of continuity,

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\
& \left(1.5 \times 10^{-4}\right) \mathrm{V}_{\mathrm{A}}=\left(25 \times 10^{-6}\right) 60 \mathrm{~cm} / \mathrm{s} \\
& \mathrm{~V}_{\mathrm{A}}=10 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

By Bernoulli's theorem,

$$
\begin{aligned}
& P_{A}+\frac{1}{2} \rho V_{A}^{2}=P_{B}+\frac{1}{2} \rho V_{B}^{2} \\
& P_{A}-P_{B}=\frac{\rho}{2}\left(V_{B}^{2}-V_{A}^{2}\right) \\
& P_{A}-P_{B}=\frac{1000}{2}\left(60^{2}-10^{2}\right) \times 10^{-4} \\
& P_{A}-P_{B}=175 \mathrm{~Pa}
\end{aligned}
$$

41. ${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B}+{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$

In the given nuclear reaction, the approximate amount of energy released will be:
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,

$$
\begin{aligned}
& \text { mass of }{ }_{90}^{234} \mathrm{~B}=234.04363 \times 931.5 \mathrm{MeV} / \mathrm{c}^{2} \\
& \text { mass of } \left.{ }_{2}^{4} \mathrm{D}=4.00260 \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}\right]
\end{aligned}
$$

(1) 4.25 MeV
(2) 5.9 MeV
(3) 3.82 MeV
(4) 2.12 MeV

Sol. (1)
$\mathrm{Q}=\Delta \mathrm{mC}^{2}$
$\mathrm{Q}=(238.05079-234.04363-4.00260) \times 931.5 \mathrm{MeV}$
$\mathrm{Q}=0.00456 \times 931.5 \mathrm{MeV}$
$\mathrm{Q}=4.25 \mathrm{MeV}$
42. A disc is rolling without slipping on a surface. The radius of the disc is R . At $t=0$, the top most point on the disc is A as shown in figure. When the disc completes half of its rotation, the displacement of point A from its initial position is

(1) $2 R \sqrt{\left(1+4 \pi^{2}\right)}$
(2) $R \sqrt{\left(\pi^{2}+4\right)}$
(3) $2 R$
(4) $\mathrm{R} \sqrt{\left(\pi^{2}+1\right)}$

Sol. (2)

Displacement $=\mathrm{A}^{\prime} \mathrm{A}$

$$
\begin{aligned}
& \mathrm{A}^{\prime} \mathrm{A}=\sqrt{(\pi \mathrm{R})^{2}+(2 \mathrm{R})^{2}} \\
& \mathrm{~A}^{\prime} \mathrm{A}=\mathrm{R} \sqrt{\pi^{2}+4}
\end{aligned}
$$

43. Which graph represents the difference between total energy and potential energy of a particle executing SHM vs it's distance from mean position?
(1)

(2)

(3)

(4)

Sol. (2)
Total energy in $\mathrm{SHM}=\mathrm{E}$
$E=K+U$
$E-U=K$
$\mathrm{E}-\mathrm{U}=\mathrm{K}$
$\mathrm{E}-\mathrm{U}=\frac{1}{2} m \omega^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)$

44. Two charges each of magnitude 0.01 C and separated by a distance of 0.4 mm constitute an electric dipole. If the dipole is placed in an uniform electric field ' \vec{E} ' of 10 dyne/C making 30° angle with \vec{E}, the magnitude of torque acting on dipole is
(1) $1.5 \times 10^{-9} \mathrm{Nm}$
(2) $2.0 \times 10^{-10} \mathrm{Nm}$
(3) $1.0 \times 10^{-8} \mathrm{Nm}$
(4) $4.0 \times 10^{-10} \mathrm{Nm}$

Sol. (2)

Dipole moment, $\mathrm{P}=\mathrm{qd}$

$$
\begin{aligned}
& \mathrm{P}=0.01 \times 0.4 \times 10^{-3} \\
& \mathrm{P}=4 \times 10^{-6} \mathrm{C}-\mathrm{m}
\end{aligned}
$$

Torque, $\tau=\mathrm{pE} \sin \theta$

$$
\begin{aligned}
& \tau=4 \times 10^{-6} \times\left(10 \times 10^{-5}\right) \times \sin 30^{\circ} \\
& \tau=4 \times 10^{-10} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

45. Under isothermal condition, the pressure of a gas is given by $P=\mathrm{aV}^{-3}$, where a is a constant and V is the volume of the gas. The bulk modulus at constant temperature is equal to
(1) $\frac{P}{2}$
(2) 2 P
(3) P
(4) $3 P$

Sol. (4)
$\mathrm{P}=\mathrm{aV}^{-3}$
$\frac{\mathrm{dP}}{\mathrm{dV}}=-3 \mathrm{aV}^{-4}$
Bulk modulus, $\mathrm{B}=-\mathrm{V} \frac{\mathrm{dP}}{\mathrm{dV}}$
$B=-V\left(\frac{-3 a}{V^{4}}\right)$
$\mathrm{B}=3 \frac{\mathrm{a}}{\mathrm{V}^{3}}=3 \mathrm{P}$
46. A planet having mass 9 Me and radius 4 Re , where Me and Re are mass and radius of earth respectively, has escape velocity in km / s given by:
(Given escape velocity on earth $\mathrm{V}_{\mathrm{e}}=11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}$)
(1) 11.2
(2) 67.2
(3) 33.6
(4) 16.8

Sol. (4)

Escape velocity, $\mathrm{v}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
$\mathrm{V}_{\mathrm{p}}=\sqrt{\frac{2 \mathrm{G}\left(9 \mathrm{~m}_{\mathrm{e}}\right)}{4 \mathrm{R}_{\mathrm{e}}}}=\frac{3}{2}\left(\mathrm{~V}_{\mathrm{e}}\right)_{\text {earth }}$
$\mathrm{v}_{\mathrm{p}}=\frac{3}{2} \times 11.2 \mathrm{~km} / \mathrm{s}$
$\mathrm{v}_{\mathrm{p}}=16.8 \mathrm{~km} / \mathrm{s}$
47. A body of mass $(5 \pm 0.5) \mathrm{kg}$ is moving with a velocity of $(20 \pm 0.4) \mathrm{m} / \mathrm{s}$. Its kinetic energy will be
(1) $(1000 \pm 140) \mathrm{J}$
(2) $(500 \pm 140) \mathrm{J}$
(3) $(500 \pm 0.14) \mathrm{J}$
(4) $(1000 \pm 0.14) \mathrm{J}$

Sol. (1)

Kinetic energy, $K E=\frac{1}{2} \mathrm{mv}^{2}$

$$
\mathrm{KE}=\frac{1}{2} \times 5 \times 20^{2}
$$

$$
\mathrm{KE}=1000 \mathrm{~J}
$$

$\frac{\Delta \mathrm{K}}{\mathrm{K}}=\frac{\Delta \mathrm{m}}{\mathrm{m}}+\frac{2 \Delta \mathrm{v}}{\mathrm{v}}$
$\frac{\Delta \mathrm{K}}{1000}=\frac{0.5}{5}+2 \times \frac{0.4}{20}$
$\Delta \mathrm{K}=1000(0.1+0.04)$
$\Delta \mathrm{K}=1000 \times 0.14$
$\Delta K=140 \mathrm{~J}$
$K E=(1000 \pm 140) J$
48. The difference between threshold wavelengths for two metal surfaces A and B having work function $\phi_{\mathrm{A}}=9 \mathrm{eV}$ and $\phi_{\mathrm{B}}=4.5 \mathrm{eV}$ in nm is:
\{Given, hc $=1242 \mathrm{eV} \mathrm{nm}\}$
(1) 276
(2) 264
(3) 540
(4) 138

Sol. (4)
$\phi=\frac{\mathrm{hc}}{\lambda}$
$\lambda_{\mathrm{A}}=\frac{1242}{9}=138 \mathrm{~nm}$
$\lambda_{\mathrm{B}}=\frac{1242}{4.5}=276 \mathrm{~nm}$
$\lambda_{\mathrm{B}}-\lambda_{\mathrm{A}}=276-138=138 \mathrm{~nm}$
49. The source of time varying magnetic field may be
(A) A permanent magnet
(B) An electric field changing linearly with time
(C) Direct current
(D) A decelerating charge particle
(E) An antenna fed with a digital signal

Choose the correct answer from the options given below:
(1) (B) and (D) only
(2) (C) and (E) only
(3) (D) only
(4) (A) only

Sol. (3)
Accelerated charge particle produces EMW which has time varying E and B.
If E is linear function of time then B will be constant.
50. A vessel of depth ' d ' is half filled with oil of refractive index n_{1} and the other half is filled with water of refractive index n_{2}. The apparent depth of this vessel when viewed from above will be -
(1) $\frac{d\left(n_{1}+n_{2}\right)}{2 n_{1} n_{2}}$
(2) $\frac{\mathrm{d}_{1} \mathrm{n}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}$
(3) $\frac{\mathrm{dn}_{1} \mathrm{n}_{2}}{2\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}$
(4) $\frac{2 \mathrm{~d}\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}{\mathrm{n}_{1} \mathrm{n}_{2}}$

Sol. (1)

$\left(\mathrm{d}_{\text {app }}\right)_{1}=\frac{\mathrm{d}}{2\left(\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}\right)}=\frac{\mathrm{n}_{2} \mathrm{~d}}{2 \mathrm{n}_{1}}$
$\left(\mathrm{d}_{\text {app }}\right)_{2}=\frac{\left(\mathrm{d}_{\text {app }}\right)_{1}+\frac{\mathrm{d}}{2}}{\mathrm{n}_{2}}$
$=\frac{\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}+1\right) \frac{\mathrm{d}}{2}}{\mathrm{n}_{2}}$
$\left(\mathrm{d}_{\mathrm{app}}\right)_{2}=\frac{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{d}}{2 \mathrm{n}_{1} \mathrm{n}_{2}}$

SECTION - B

51. When a resistance of 5Ω is shunted with a moving coil galvanometer, it shows a full scale deflection for a current of 250 mA , however when 1050Ω resistance is connected with it in series, it gives full scale deflection for 25 volt. The resistance of galvanometer is \qquad Ω.
Sol. (50)
For ammeter,

$\mathrm{I}_{\mathrm{g}}(\mathrm{G})=\left(250-\mathrm{I}_{\mathrm{g}}\right) 5$
$I_{g}=\frac{1250}{5+G} \mathrm{~mA}$
For voltmeter,

$V=I_{g} R$
$25=\mathrm{I}_{\mathrm{g}}(\mathrm{G}+1050)$
From equation (1),
$25=\frac{1250 \times 10^{-3}}{\mathrm{G}+5}(\mathrm{G}+1050)$
$20(\mathrm{G}+5)=\mathrm{G}+1050$
$19 \mathrm{G}=1050-100$
$\mathrm{G}=\frac{950}{19}=50 \Omega$
52. The radius of $2^{\text {nd }}$ orbit of He^{+}of Bohr's model is r_{1} and that of fourth orbit of Be^{3+} is represented as r_{2}. Now the ratio $\frac{r_{2}}{r_{1}}$ is $x: 1$. The value of x is \qquad
Sol. (2)
$\mathrm{r} \propto \frac{\mathrm{n}^{2}}{\mathrm{Z}}$
$\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)^{2} \times \frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}$
$\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\left(\frac{4}{2}\right)^{2} \times \frac{2}{4}$
$\underline{\mathrm{r}_{2}}=2$
r_{1}
$x=2$
53. A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is $\pi: 22$ the, the value of its angular speed will be rad/s.
Sol. (4)
Angular momentum,
$\mathrm{L}=\mathrm{I} \omega$
$\mathrm{L}=\frac{2}{5} \mathrm{MR}^{2} \omega$
Energy $=\frac{1}{2} \mathrm{MV}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
$\mathrm{E}=\frac{1}{2} \mathrm{M}(\omega \mathrm{R})^{2}+\frac{1}{2}\left(\frac{2}{5} \mathrm{MR}^{2}\right) \omega^{2}$
$=\frac{7}{10} \mathrm{M} \omega^{2} \mathrm{R}^{2}$
$\frac{L}{E}=\frac{4}{7 \omega}=\frac{\pi}{22}$
$\omega=\frac{88}{7 \pi}=\frac{88}{7 \times \frac{22}{7}}=4 \mathrm{rad} / \mathrm{s}$
54. A fish rising vertically upward with a uniform velocity of $8 \mathrm{~ms}^{-1}$, observes that a bird is diving vertically downward towards the fish with the velocity of $12 \mathrm{~ms}^{-1}$. If the refractive index of water is $\frac{4}{3}$, then the actual velocity of the diving bird to pick the fish, will be \qquad ms^{-1}.

Sol. (3)

$\mathrm{d}_{\text {app }}=\mathrm{d}_{1}+\mu \mathrm{d}$
$\mathrm{v}_{\text {app }}=\mathrm{v}_{1}+\mu \mathrm{v}$
$12=8+\frac{4}{3} v$
$4=\frac{4}{3} v$
$\mathrm{v}=3 \mathrm{~m} / \mathrm{s}$
55. The elastic potential energy stored in a steel wire of length 20 m stretched through 2 cm is 80 J . The cross sectional area of the wire is \qquad mm^{2}.
(Given, $\mathrm{y}=2.0 \times 10^{11} \mathrm{Nm}^{-2}$)
Sol. (40)
Energy, $\mathrm{U}=\frac{1}{2} \mathrm{kx}^{2}$
$80=\frac{1}{2} \mathrm{k}\left(2 \times 10^{-2}\right)^{2}$
$\mathrm{k}=\frac{160}{4 \times 10^{-4}}$
$\mathrm{k}=4 \times 10^{5} \mathrm{~N} / \mathrm{m}$
$\frac{\mathrm{yA}}{\ell}=4 \times 10^{5}$
$A=\frac{4 \times 10^{5} \times 20}{2 \times 10^{11}}$
$\mathrm{A}=40 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{A}=40 \mathrm{~mm}^{2}$
56. From the given transfer characteristic of a transistor in CE configuration, the value of power gain of this configuration is 10^{x}, for $R_{B}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega$. The value of x is \qquad

Sol. (3)
Current gain, $\beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}$
$\beta=\frac{10 \mathrm{~mA}}{100 \mu \mathrm{~A}}$
$\beta=100$
Power gain $\beta^{2} \frac{R_{C}}{R_{B}}$
$=10^{4} \times \frac{1}{10}$
$=10^{3}$
So, $x=3$
57. In the given figure, an inductor and a resistor are connected in series with a batter of emf E volt. $\frac{E^{a}}{2 b} \mathrm{~J} / \mathrm{s}$ represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical value of $\frac{b}{a}$ will be \qquad

Sol. (25)
$\mathrm{U}=\frac{1}{2} \mathrm{LI}^{2}$
$\mathrm{I}=\mathrm{I}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
Rate of energy, $\mathrm{P}=\frac{\mathrm{dU}}{\mathrm{dt}}$
$\mathrm{P}=\mathrm{LI} \frac{\mathrm{dI}}{\mathrm{dt}}$
$\frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{L}\left(\mathrm{I} \frac{\mathrm{d}^{2} \mathrm{I}}{\mathrm{dt}^{2}}+\left(\frac{\mathrm{dI}}{\mathrm{dt}}\right)^{2}\right)$
For maximum rate, $\frac{\mathrm{dP}}{\mathrm{dt}}=0$
$\mathrm{I} \frac{\mathrm{d}^{2} \mathrm{I}}{\mathrm{dt}^{2}}=-\left(\frac{\mathrm{dI}}{\mathrm{dt}}\right)^{2}$
$\mathrm{I}=\mathrm{I}_{0}\left(1-\mathrm{e}^{\mathrm{t} / \tau}\right)$
$\frac{\mathrm{dI}}{\mathrm{dt}}=\frac{\mathrm{I}_{0}}{\tau} \mathrm{e}^{-\mathrm{t} / \tau}$
$\frac{\mathrm{d}^{2} \mathrm{I}}{\mathrm{dt}^{2}}=-\frac{\mathrm{I}_{0}}{\tau^{2}} \mathrm{e}^{-\mathrm{t} / \tau}$
By equation (1),
$I_{0}\left(1-e^{-t / \tau}\right) \times \frac{I_{0}}{\tau^{2}} e^{-t / \tau}=\frac{-I_{0}^{2}}{\tau^{2}} e^{-2 t / \tau}$
Let $\mathrm{e}^{-t / \tau}=\mathrm{x}$
$\mathrm{x}-\mathrm{x}^{2}=\mathrm{x}^{2}$
$\mathrm{x}=\frac{1}{2}$
Maximum power,
$\mathrm{P}=\mathrm{LI} \frac{\mathrm{dI}}{\mathrm{dt}}$
$\mathrm{P}=\mathrm{LI}_{0}\left(1-\frac{1}{2}\right)\left(\frac{\mathrm{I}_{0}}{\tau} \times \frac{1}{2}\right)$
$\mathrm{P}=\frac{\mathrm{LI} \mathrm{I}_{0}^{2}}{4 \times \frac{\mathrm{L}}{\mathrm{R}}}=\frac{\mathrm{I}_{0}^{2} \mathrm{R}}{4}$
$P=\frac{E^{2}}{4 R}$
$\mathrm{a}=2,2 \mathrm{~b}=4 \mathrm{R}$
$\mathrm{b}=2 \mathrm{R}=50$
$\underline{b}=25$
58. A potential V_{o} is applied across a uniform wire of resistance R. The power dissipation is P_{1}. The wire is then cut into two equal halves and a potential of V_{o} is applied across the length of each half. The total power dissipation across two wires is P_{2}. The ratio $P_{2}: P_{1}$ is $\sqrt{x}: 1$. The value of x is \qquad
Sol. (16)

$$
P_{1}=\frac{v_{0}^{2}}{R}
$$

$\mathrm{P}_{2}=\frac{\mathrm{v}_{0}^{2}}{\left(\frac{\mathrm{R}}{2}\right)}+\frac{\mathrm{v}_{0}^{2}}{\left(\frac{\mathrm{R}}{2}\right)}$
$\mathrm{P}_{2}=4 \mathrm{P}_{1}$
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{4}{1}=\frac{\sqrt{\mathrm{x}}}{1}$
$x=16$
59. At a given point of time the value of displacement of a simple harmonic oscillator is given as $\mathrm{y}=\mathrm{A} \cos \left(30^{\circ}\right)$.

If amplitude is 40 cm and kinetic energy at that time is 200 J , the value of force constant is $1.0 \times 10^{\times} \mathrm{Nm}^{-1}$. The value of x is \qquad
Sol. (4)

$$
v=\omega \sqrt{A^{2}-x^{2}}
$$

$\mathrm{y}=\mathrm{A} \times \frac{\sqrt{3}}{2}$
$v=\omega \sqrt{\mathrm{A}^{2}-\frac{3 \mathrm{~A}^{2}}{4}}=\frac{\omega \mathrm{A}}{2}$
Given, $\mathrm{KE}=200 \mathrm{~J}$
$\frac{1}{2} m \frac{\omega^{2} \mathrm{~A}^{2}}{4}=200$
$K A^{2}=1600 \quad\left(K=m \omega^{2}\right)$
$K=\frac{1600}{\left(40 \times 10^{-2}\right)^{2}}$
$\mathrm{K}=10^{4} \mathrm{~N} / \mathrm{m}$
$\mathrm{x}=4$
60. A thin infinite sheet charge and an infinite line charge of respective charge densities $+\sigma$ and $+\lambda$ are placed parallel at 5 m distance from each other. Points ' P ' and ' Q ' are at $\frac{3}{\pi} \mathrm{~m}$ and $\frac{4}{\pi} \mathrm{~m}$ perpendicular distances from line charge towards sheet charge, respectively. ' E_{P} ' and ${ }^{\prime} \mathrm{E}_{\mathrm{Q}}$ ' are the magnitudes of resultant electric field intensities at point 'P' and 'Q' respectively. If $\frac{E_{P}}{E_{Q}}=\frac{4}{a}$ for $2|\sigma|=|\lambda|$, then the value of a is \qquad
Sol. (6)

$$
\mathrm{E}_{\mathrm{P}}=\frac{2 \mathrm{~K} \lambda}{\mathrm{r}}-\frac{\sigma}{2 \varepsilon_{0}}
$$

$$
\mathrm{E}_{\mathrm{P}}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\lambda}{2 \pi \varepsilon_{0}\left(\frac{3}{\pi}\right)}
$$

$$
\mathrm{E}_{\mathrm{P}}=\frac{2 \sigma}{2 \varepsilon_{0}}-\frac{2 \sigma}{6 \varepsilon_{0}}=\frac{\sigma}{6 \varepsilon_{0}}
$$

Similarly, $\mathrm{E}_{\mathrm{Q}}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{2 \sigma}{2 \pi \varepsilon_{0}\left(\frac{4}{\pi}\right)}=\frac{\sigma}{4 \varepsilon_{0}}$

$$
\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{Q}}}=\frac{4}{6}
$$

$$
a=6
$$

