

FINAL JEE-MAIN EXAMINATION - APRIL. 2023

Held On Thursday 06th April, 2023

TIME: 03:00 PM to 06:00 PM

SECTION - A

61. Match List I with List II

List I	List II
(Natural Amino acid)	(One Letter Code)
(A) Arginine	(I) D
(B) Aspartic acid	(II) N
(C) Asparagine	(III) A
(D) Alanine	(IV) R

Choose the correct answer from the options given below:

$$(1) (A) - III, (B) - I, (C) - II (D) - IV$$

$$(2)$$
 (A) – IV, (B) – I, (C) – II (D) –III

$$(3) (A) - IV, (B) - I, (C) - III (D) - II$$

$$(4)$$
 (A) – I, (B) – III, (C) – IV (D) –II

Sol.

Natural Amino acid	One Letter Code
(i) Arginine	R
(ii) Aspartic acid	D
(iii) Asparagine	N
(iv) Alanine	A

- **62.** Formation of which complex, among the following, is not a confirmatory test of Pb²⁺ ions
 - (1) lead sulphate
- (2) lead nitrate
- (3) lead chromate
- (4) lead iodide

- Sol. 2
 - \therefore Pb(NO₃)₂ is a soluble colourless compound so it cannot be used in confirmatory test of Pb⁺² ion.

Topic : Redox Reaction

Sub Topic : Titration Level : Easy

- 63. The volume of 0.02 M aqueous HBr required to neutralize 10.0 mL of 0.01 M aqueous Ba(OH)₂ is (Assume complete neutralization)
 - $(1) 5.0 \, \text{mL}$
- (2) 10.0 mL
- (3) 2.5 mL
- (4) 7.5 mL

Sol.

$$\begin{split} & \text{m.eq. of HBr} = \text{m.eq. of Ba}(OH)_2 \\ & M_1 \times n_1 \times V_1(mL) = M_2 \times n_2 \times V_2(mL) \\ & 0.02 \times 1 \times V_1(mL) = 0.02 \times 2 \times 10 \\ & V_1(mL) = 10 \ mL \end{split}$$

- 64. Group–13 elements react with O_2 in amorphous form to form oxides of type M_2O_3 (M = element). Which among the following is the most basic oxide?
 - (1) Al₂O₃
- (2) Tl₂O₃
- (3) Ga₂O₃
- (4) $B_{2}O_{3}$

Sol. 2

As electropositive character increases basic character of oxide increases.

$$\underbrace{B_2O_3}_{acidic} < \underbrace{Al_2O_3}_{amphoteric} < \underbrace{In_2O_3}_{basic} < \underbrace{Tl_2O_3}_{basic}$$

- **65.** The IUPAC name of $K_3[Co(C_2O_4)_3]$ is -
 - (1) Potassium tris(oxalate) cobaltate(III)
- (2) Potassium trioxalatocobalt(III)
- (3) Potassium trioxalatocobaltate(III)
- (4) Potassium tris(oxalate)cobalt(III)

Sol. 3

IUPAC name of K₃[Co(C₂O₄)₃] is Potassium trioxalatocobaltate(III)

Topic : Atomic Structure Sub Topic : De-Broglie Principle

Level : Moderate

∜Saral

66. If the radius of the first orbit of hydrogen atom is a₀, then de Broglie's wavelength of electron in 3rd orbit is

- (1) $\frac{\pi a_0}{6}$
- (2) $\frac{\pi a_0}{3}$
- (3) $6\pi a_0$
- (4) $3\pi a_0$

Sol.

By De-Broglie principle

$$2\underline{\pi}r = n\lambda$$

$$2\pi \times \frac{n^2}{z}a_0 = n\lambda$$

$$2\pi \times \frac{n}{z}a_0 = \lambda$$

$$\lambda = 2\pi \times \frac{3}{1}a_0 = 6\pi a_0$$

Topic : Chemistry in everyday life

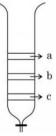
Sub Topic : Pesticides Level : Easy

67. The group of chemicals used as pesticide is

(1) Sodium chlorate, DDT, PAN (2) DDT, Aldrin

(3) Aldrin, Sodium chlorate, Sodium arsinite (4) Dieldrin, Sodium arsinite, Tetrachlorothene

Sol. 2


(Fact base)

DDT & Aldrin are used as pesticide

Topic : Surface Chemistry Sub Topic : Chromatography

Level : Moderate

68. From the figure of column, chromatography given below, identify incorrect statements.

A. Compound 'c' is more polar than 'a' and 'b'

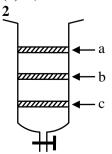
B. Compound 'a' is least polar

C. Compound 'b' comes out of the column before 'c' and after 'a'

D. Compound 'a' spends more time in the column

Choose the correct answer from the options given below:

choose the correct answer from the options given below


(1) A, B and D only

(2) A, B and C only

(3) B and D only

(D) B, C and D only

Sol.

- (i) Since C is eluting first and a is last that means C is least power and a is most polar.
- (ii) So incorrect options will be (A), (B), (C)

Adsorption of compound α Attraction

- α Polarity
- α Spend time in column

$$\alpha \frac{1}{\text{come out from column}}$$

Order of polarity $\rightarrow a > b > c$

Come out from column order $\rightarrow c > b > a$

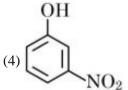
Spend time in column $\rightarrow a > b > c$

- 69. Ion having highest hydration enthalpy among the given alkaline earth metal ions is:
 - (1) Be^{2+}
- (2) Ba^{2+}
- (3) Ca^{2+}
- (4) Sr^{2+}

Sol. 1

Hydration enthalpy
$$\propto \frac{1}{\text{size}}$$

Down the group as size increases hydration enthalpy decreases


Order:
$$Be^{2+} > Mg^{+2} > Ca^{+2} > Sr^{+2} > Ba^{+2}$$

Topic : Alcohol

Sub Topic : Acidic Strength

Level : Easy

70. The strongest acid from the following is

Sol. 4

Since -I of $-NO_2 > Cl$

So, most acidic will be (4)

&Saral

Topic : Hydrogen

Sub Topic: Alkene-Chemical Properties

Level : Moderate

71. In the following reaction, 'B' is

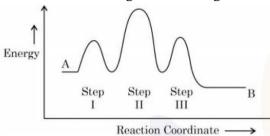
$$\begin{array}{c} & & \\$$

Sol.

- **72.** Structures of BeCl₂ in solid state, vapour phase and at very high temperature respectively are:
 - (1) Polymeric, Dimeric, Monomeric
- (2) Dimeric, Polymeric, Monomeric
- (3) Monomeric, Dimeric, Polymeric
- (4) Polymeric, Monomeric, Dimeric

Sol.

In solid state BeCl₂ as polymer, in vapour state it form chloro-bridged dimer while above 1200K it is monomer.



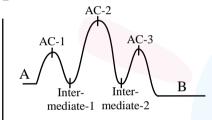
Topic : Chemical Kinetic

Sub Topic: Complex Reaction/Activation energy

Level : Moderate

73. Consider the following reaction that goes from A to B in three steps as shown below:

Choose the correct option


Number of intermediates Number of Activated complex Rate determining step

- (1) 2
- (2) 3
- (3) 2
- (4) 2

- 3 2
- 3

- II II
- III

Sol.

Number of Intermediate $\rightarrow 2$

Number of Activated complex $\rightarrow 3$

Rate determining step \rightarrow II

Topic : Electrochemistry Sub Topic : Electrolyte Cell

Level : Easy

1

- 74. The product, which is not obtained during the electrolysis of brine solution is
 - (1) HCl
- (2) NaOH
- (3) Cl₂
- (4) H_{2}

Sol.

Brine solution (NaCl + H₂O)

Electrolyte $\begin{bmatrix} NaCl \rightarrow Na^{+} + Cl^{-} \\ H_{2}O \rightarrow 2H^{+} + OH^{-} \\ At Cathode \rightarrow 2H^{\oplus} + 2e^{\Theta} \rightarrow H_{2} \\ At Anode \rightarrow 2Cl^{-} \rightarrow Cl_{2} \\ \uparrow + 2e^{\Theta} \end{bmatrix}$

 $Na^{\scriptscriptstyle +} + OH^{\scriptscriptstyle -} {\:\rightarrow\:} NaOH$

Answer 1 (HCl)

- 75. Which one of the following elements will remain as liquid inside pure boiling water?
 - (1) Li 2
- (2) Ga
- (3) Cs
- (4) Br

Sol.

Li, Cs reacts vigorously with water.

 Br_2 changes in vapour state in boiling water (BP = 58°C)

Ga reacts with water above 100° C (MP = 29° C, BP = 2400° C)

6

76. Given below are two statements: one is labelled as "Assertion A" and the other is labelled as "Reason R" Assertion A: In the complex $Ni(CO)_4$ and $Fe(CO)_5$, the metals have zero oxidation state.

Reason R: Low oxidation states are found when a complex has ligands capable of π –donor character in addition to the σ – bonding.

In the light of the above statement, choose the most appropriate answer from the options given below

- (1) A is not correct but R is correct.
- (2) A is correct but R is not corret
- (3) Both A and R are correct and R is the correct explanation of A
- (4) Both A and R are correct but R is NOT the correct explanation of A.

Sol. 2

Low oxidation state of metals can stabilized by synergic bonding so ligand has to be π -acceptor.

Topic : Chemistry in everyday life Sub Topic : Chemical in medicines

Level : Easy

77. Given below are two statements:

Statement I: Morphine is a narcotic analgesic. It helps in reliving pain without producing sleep.

Statement II: Morphine and its derivatives are obtained from opium poppy.

In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is true but statement II is false (2) Both statement I and statement II are true
- (3) Statement I is false but statement II is true (4) Both Statement I and Statement II are false

Sol. 2

Fact

 $Morphine \rightarrow$

- (i) Morphine is a narcotic analgesic, it help in relieving plan and producing sleep.
- (ii) Morphine and its derivatives are obtained from opium.
- **78.** Find out the major product from the following reaction.

$$(1) \underbrace{\begin{array}{c} (1) \text{MeMgBr/Cul} \\ (2) \text{nPrI} \end{array}}_{\text{(1)}}$$

$$(2) \underbrace{\begin{array}{c} M_{\text{I}} \\ M_{\text{I}$$

Sol. 3

- **79.** During the reaction of permanganate with thiosulphate, the change in oxidation of manganese occurs by value of 3. Identify which of the below medium will favour the reaction
 - (1) aqueous neutral

(2) aqueous acidlic

- (3) both aqueous acidic and neutral
- (4) both aqueous acidic and faintly alkaline

Sol.

In neutral or weakly alkaline solution oxidation state of Mn changes by 3 unit

$$\stackrel{^{+7}}{\text{Mn}} O_4^{-1} \rightarrow \stackrel{^{+4}}{\text{Mn}} O_2$$

80. Element not present in Nessler's reagent is

(1) K

(2) N

(3)I

(4) Hg

Sol. 2

Nessler reagent is- K₂[HgI₄]

SECTION - B

Topic : Electrochemistry

Sub Topic: Reactivity Series of Metal

Level : Moderate

81. The standard reduction potentials at 298 K for the following half cells are given below:

 $NO_3^- + 4H^+ + 3e^- \rightarrow NO(g) + 2H_2O$

 $E^{\theta} = 0.97V$ $E^{\theta} = -1.19V$

 $V^{2+}(aq) + 2e^{-} \rightarrow V$

 $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe$

 $E^{\theta} = -0.04V$

 $Ag^+(aq) + e^- \rightarrow Ag(s)$ $Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$ $E^{\theta} = 0.80V$ $E^{\theta} = 1.40V$

The number of metal(s) which will be oxidized by NO₃ in aqueous solution is _____

Sol.

 $Metal + NO_3^- \rightarrow Metal Nitrate$

(V, Fe, Ag)

Less value of reaction potential then 0.97 volt.

Answer 3

Topic : Solid State

Sub Topic: Types of Crystal System

Level : Tough

82. Number of crystal system from the following where body centred unit cell can be found, is

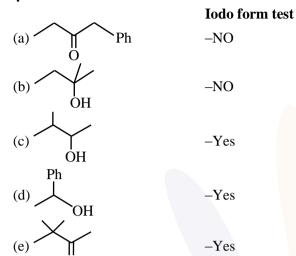
Cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, monoclinic, triclinic

Sol.

BCC present in → Cubic, Tetragonal orthorhombic

Topic : Carbonyl

Sub Topic: Chemical Properties


Level

- Among the following the number of compounds which will give positive iodoform reaction is 83.
 - (a) 1-Phenylbutan-2-one
 - (b) 2–Methylbutan–2–ol
 - (c) 3-Methylbutan-2-ol
 - (d) 1-Phenylethanol
 - (e) 3,3-dimethylbutan-2-one
 - (f) 1–Phenylpropan –2–ol

Sol. 4

(f) Ph

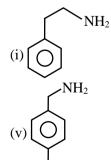
For carbonyl compound C—CH₃ 1

FCH₃ for alcohol — CH—CH₃ OH

should be present for idoform test.

Topic : Nitrogen Contain

Sub Topic : Isomerism Level : Moderate


84. Number of isomeric aromatic amines with molecular formula $C_8H_{11}N$, which can be synthesized by Gabriel Phthalimide synthesis is______

Sol. 5

By Gabriel phthalimide synthesis \rightarrow i-amine is prepared $C_8H_{11}N \rightarrow$ Should be aromatic & i-amine

ö

Du = C + 1 -
$$\frac{H-N}{2}$$

= 8 + 1 - $\frac{11-1}{2}$
= 9 - $\frac{10}{2}$ = 9 - 5 = 4 \rightarrow it means benzene ring

Topic : Liquid Solution Sub Topic : Osmotic Pressure

Level : Easy

85. Consider the following pairs of solution which will be isotonic at the same temperature. The number of pairs of solutions is/are

A. 1 M aq. NaCl and 2 M aq. Urea

B. 1 M aq. CaCl₂ and 1.5 M aq. KCl

C. 1.5 M aq. AlCl₃ and 2 M aq. Na₂SO₄

D. 2.5 M aq. KCl and 1 M aq. $Al_2(SO_4)_3$

Sol. 4

A. 1 M aq. NaCl \Rightarrow 2 M aq. Ions 2 M aq. Urea \Rightarrow 2 M aq. Urea \Rightarrow 1 Isotonic

B. 1 M aq. $CaCl_2 \Rightarrow 3$ M aq. Ions
1.5 M aq. $KCl \Rightarrow 3$ M aq. Ions

— Isotonic

C. 1.5 M aq. AlCl₃ \Rightarrow 6 M aq. Ions 2 M aq. Na₂SO₄ \Rightarrow 6 M aq. Ions

D. 2.5 M aq. KCl \Rightarrow 5 M aq. Ions 1 M aq. Al₂(SO₄)₃ \Rightarrow 5 M aq. Ions

Topic : Surface Chemistry
Sub Topic : Classification of Colloids

Level : Easy

86. The number of colloidal systems from the following, which will have 'liquid' as the dispersion medium, is ______

Gem stones, paints, smoke, cheese, milk, hair cream, insecticide sprays, froth, soap lather

Sol. 5

Liquid dispersion medium

Paints, milk, hair cream, froth, soap lather

Topic : Solid State

Sub Topic: Classification of Solid

Level : Moderate

87. In an ice crystal, each water molecule is hydrogen bonded to ______ neighbouring molecules.

Sol. 2

Topic : Thermochemistry **Sub Topic**: Heat of Combustion

: Moderate Level

88. Consider the following date

> $= -241.8 \text{ kJ mol}^{-1}$ Heat of combustion of $H_2(g)$ $= -393.5 \text{ kJ mol}^{-1}$ Heat of combustion of C(s)Heat of combustion of $C_2H_5OH(l)$ $=-1234.7 \text{ kJ mol}^{-1}$

The heat of formation of $C_2H_5OH(l)$ is (-) _____kJ mol⁻¹ (Nearest integer).

Sol. 278

$$2C_{(s)} + O_2 \rightarrow 2CO_2$$
 $-393.5 \times 2 = -787 \text{ kJ}$...(1)

$$3H_2 + \frac{3}{2}O_2 \rightarrow 3H_2O$$
 $-241.5 \times 8 \times 3 = -725.4 \text{ kJ}$...(2)

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$
 -1234.7 kJ ...(3)

$$3H_2O + 2CO_2 \rightarrow C_2H_5OH + 3O_2 + 1234.7 \text{ kJ}$$
 ...(4)

$$2C_{(s)} + 3H_2(g) + \frac{1}{2}O_2 C_2H_5OH \qquad ...(5)$$

eq
$$(5)$$
 = eq (1) + eq (2) + eq (4)
= (-787) + (-72537) + (1234.7)
= -277.7 = 278

Topic : Chemical Equilibrium

Sub Topic: Dissociation Level : Tough

89. The equilibrium composition for the reaction $PCl_3 + Cl_2 \square PCl_5$ at 298 K is given below:

$$[PCl_3]_{eq} = 0.2 \, mol \, L^{-1}, [Cl_2]_{eq} = 0.1 \, mol \, L^{-1}, [PCl_5]_{eq} = 0.40 \, mol \, L^{-1}$$

If 0.2 mol of Cl₂ is added at the same temperature, the equilibrium concentrations of PCl₅ is _____x $10^{-2} \, \text{mol} \, L^{-1}$

Given: K_C for the reaction at 298 K is 20

Sol.

$$K_{c} = \frac{[PCl_{5}]}{[PCl_{3}][Cl_{2}]} = \frac{0.4}{0.2 \times 0.1} = 20$$

$$PCl_{3} + Cl_{2} \rightleftharpoons PCl_{5}$$

$$0.2 \text{ M} \qquad 0.1 \text{ M} \qquad 0.4 \text{ M}$$

$$\begin{array}{cccc} t_{eq1} & 0.2 \ M & 0.1 \ M & 0.4 \ M \\ t_{eq2} & 0.2 - x & 0.1 + 0.2 - x & 0.4 + x \end{array}$$

$$K_c = 20 = \frac{0.4 + x}{(0.2 - x)(0.3 - x)}$$

After solving by quadratic equation. We can get value of x.

X = 0.084

$$\begin{aligned} [PCl_5] &= 0.4 + x \\ &= 0.4 + 0.084 \\ &= 0.484 = 48.4 \times 10^{-2} \end{aligned}$$

Ans. 48

90. The number of species having a square planar shape from the following is_

 $XeF_4,SF_4,SiF_4,BF_4^-,BrF_4^-[Cu(NH_3)_4]^{2+},[FeCl_4]^{2-},[PtCl_4]^{2-}$

Sol.

 XeF_4 , $BrF_4^-[Cu(NH_3)_4]^{2+}$, $[PtCl_4]^{2-}$ has square planar shape.