FINAL JEE-MAIN EXAMINATION - APRIL, 2023
 Held On Saturday 08th April, 2023
 TIME : 03:00 PM to 06:00 PM

SECTION - A

Topic: Chemistry in everyday life

Level: Med

61. The statement/s which are true about antagonists from the following is/are :
A. They bind to the receptor site
B. Get transferred inside the cell for their action
C. Inhibit the natural communication of the body
D. Mimic the natural messenger.

Choose the correct answer from the options given below:
(1) A and B
(2) A and C
(3) A, C and D
(4) B only

Sol. 2
Antagonists bind to receptor site and inhibit the natural communication of both

Topic: Chemical kinetics

Sub: collision theory

Level: Easy

62. The correct reaction profile diagram for a positive catalyst reaction.
(1)

(2)

(3)

(4)

Reaction Coordinate

Sol. 4
Catalysts decrease activation energy only.

Topic :

Sub Topic :

Level :
63. Given below are two statements : One is labelled as Assertion A and other is labelled as Reason \mathbf{R}

Assertion A : Sodium is about 30 times as abundant as potassium in the oceans.
Reason R : Potassium is bigger in size than sodium.
In the light of the above statements, choose the correct answer from the options given below
(1) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(2) \mathbf{A} is true but \mathbf{R} is false
(3) \mathbf{A} is false but \mathbf{R} is true
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Sol. 1
Due to bigger size of potassium, it forms more efficient lattices as compared to sodium with silicates.
The abundance of sodium in ocean is more due to the more soluble nature of salt of sodium as compared to potassium salts.

Topic

Sub Topic :

Level :

64. Which of these reactions is not a part of breakdown of ozone in stratosphere?
(1) $\mathrm{CF}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\text { uv }} \dot{\mathrm{C}}(\mathrm{g})+\dot{\mathrm{C}} \mathrm{F}_{2} \mathrm{Cl}(\mathrm{g})$
(2) $\dot{\mathrm{C}}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{Cl} \dot{\mathrm{O}}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
(3) $2 \mathrm{Cl} \dot{\mathrm{O}} \rightarrow \mathrm{ClO}_{2}(\mathrm{~g})+\mathrm{C} \dot{\mathrm{l}}(\mathrm{g})$
(4) $\mathrm{Cl} \dot{\mathrm{O}}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Sol. 3
Ozone destruction
$\mathrm{CF}_{2} \mathrm{Cl}_{2} \xrightarrow{\text { hv }} \dot{\mathrm{C}} \mathrm{l}+\dot{\mathrm{C}} \mathrm{F}_{2} \mathrm{Cl}(\mathrm{g})$
$\dot{\mathrm{C}} \mathrm{l}+\mathrm{O}_{3} \rightarrow \mathrm{Cl} \dot{\mathrm{O}}+\mathrm{O}_{2}$
$\stackrel{\bullet}{\mathrm{O}}+\dot{\mathrm{O}} \rightarrow \dot{\mathrm{C}} \mathrm{l}+\mathrm{O}_{2}$
Topic: Nomenclature
Level: Easy
65. The correct IUPAC nomenclature for the following compound is :

(1) 2-Methyl-5-oxohexanoic acid
(2) 2-Formyl-5-methylhexan-6-oic acid
(3) 5-Formyl-2-methylhexanoic acid
(4) 5-Methyl-2-oxohexan-6-oic acid

Sol. 1

2-Methyl-5-oxohexanoic acid

Topic :

Sub Topic :

Level :
66. Henry Moseley studied characteristic X-ray spectra of elements. The graph which represents his observation correctly is
Given $v=$ frequency of X-ray emitted
$\mathrm{Z}=$ atomic number
(1)

(2)

(3)

(4)

Sol. 2
$\sqrt{\mathrm{v}} \alpha \mathrm{Z}$

Topic :

Sub Topic :

Level :
67. Match list I with list II

Coordination complex Cox		List II Number of unpaired electrons	
A.	$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$	I.	0
B.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	II.	3
C.	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	III.	2
D.	$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	IV.	4

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-IV, B-III, C-II, D-I
(3) A-II, B-I, C-IV, D-III
(4) A-III, B-IV, C-I, D-II

Sol. 1
For option (A)
$\mathrm{Cr}^{+3}: 3 \mathrm{~d}^{3}$
$\mathrm{CN}^{-} \rightarrow \mathrm{SFL}$
\Rightarrow No. of unpaired electrons $=3$
For option (B)
$\mathrm{Fe}^{+2}: 3 \mathrm{~d}^{6}$
$\mathrm{H}_{2} \mathrm{O}$: WFL
No. of unpaired electrons $=4$
For option (C)
$\mathrm{Co}^{+3}: 3 \mathrm{~d}^{6}$
$\mathrm{NH}_{3}: \mathrm{SFL}$
No. of unpaired electrons $=0$
For option (D)
$\mathrm{Ni}^{+2}: 3 \mathrm{~d}^{8}$
NH_{3} : SFL
No. of unpaired electrons $=2$

Topic: Hydrocarbon

Level: Med

68. Major product ' P ' formed in the following reaction is :

(1)

(2)

(3)

(4)

Sol. 3

Topic :

Sub Topic :

Level :

69. For a good quality cement, the ratio of lime to the total of the oxides of Si, Al and Fe should be as close as to
(1) 2
(2) 1
(3) 3
(4) 4

Sol. 1

$$
\frac{\% \mathrm{CaO}}{\% \mathrm{SiO}_{2}+\% \mathrm{Al}_{2} \mathrm{O}_{3}+\% \mathrm{Fe}_{2} \mathrm{O}_{3}}=1.9-2.1
$$

Option (1) is correct.

Topic: Biomolecule

Level: Easy

70. Match list I with list II

List I Natural amino acid		List II One letter code	
A.	Glutamic acid	I.	Q
B.	Glutamine	II.	W
C.	Tyrosine	III.	E
D.	Tryptophan	IV.	Y

Choose the correct answer from the options given below:
(1) A-III, B-I, C-IV, D-II
(2) A-IV, B-III, C-I, D-II
(3) A-II, B-I, C-IV, D-III
(4) A-III, B-IV, C-I, D-II

Sol. 1

A-III, B-I, C-IV, D-II
Fact

Topic: Mole concept

Sub: Significant figares

Level: F

71. Which of the following have same number of significant figures ?
A. 0.00253
B. 1. 0003
C. 15.0
D. 163

Choose the correct answer from the options given below
(1) B and C only
(2) A, B and C only
(3) A, C and D only
(4) C and D only

Sol. 3

$0.00253,15.0,163$
All have three significant figures.

Topic: Qualitative

Sub:

Level:M

72. Given below are two statements :

Statement I : Methyl orange is a weak acid.
Statement II : The benzenoid form of methyl orange is more intense/deeply coloured than the quinonoid form.
In the light of the above statement, choose the most appropriate answer from the options given below:
(1) Both statement I and statement II are incorrect
(2) Both statement I and Statement II are correct
(3) Statement I is correct but statement II is incorrect
(4) Statement I is incorrect but statement II is correct

Sol. 1
(i) Methy orange is weak base

So both statement are false

Topic: GOC

Level: Easy

73. The descending order of acidity for the following carboxylic acid is -
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{F}_{3} \mathrm{C}-\mathrm{COOH}$
C. $\mathrm{ClCH}_{2}-\mathrm{COOH}$
D. $\mathrm{BrCH}_{2}-\mathrm{COOH}$

Choose the correct answer from the options given below:
(1) D $>$ B $>$ A $>$ E $>$ C
(2) B $>$ D $>$ C $>$ E $>$ A
(3) E $>$ D $>$ B $>$ A $>$ C
(4) B $>$ C $>$ D $<$ E $>$ A

Sol. 2

Acidity α stability of conjugate base
Stability order
$\mathrm{F}_{3} \mathrm{C}-\mathrm{COO}^{-}>\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COO}^{-}>\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COO}^{-}>\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{COO}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$

Topic :

Sub Topic :

Level :

74. In Hall-Heroult process, the following is used for reducing $\mathrm{Al}_{2} \mathrm{O}_{3}$:-
(1) Magnesium
(2) Graphite
(3) $\mathrm{Na}_{3} \mathrm{AlF}_{6}$
(4) CaF_{2}

Sol. 2
In case of Hall's process, reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to Al can be done using graphite.

Topicp: Real gas

Sub: Vanderwals costant

Level: M

75. Arrange the following gases in increasing order of van der waals constant ' a '
A. Ar
B. CH_{4}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{6} \mathrm{H}_{6}$

Choose the correct options from the following
(1) A, B, C and D
(2) B , C, D and A
(3) C, D, B and A
(4) D, C, B and A

Sol. 1
A α force of attraction vanderwaal force depends on molecular size and molecular mass and there is H -bonding in water, so correct option will be $\mathrm{A}<\mathrm{B}<\mathrm{C}<\mathrm{D}$.

Topic: Stoichiometry-II

Sub: titration

Level: M

76. Given below are two statement :

Statement I : In redox titration, the indicators used are sensitive to change in pH of the solution.
Statement II : In acid-base titration, the indicators used are sensitive to change in oxidation potential.
In the light of the above statement, choose the most appropriate answer from the options given below
(1) Both statement I and Statement II are incorrect
(2) Statement I is incorrect but Statement II is correct
(3) Statement I is correct but Statement II is incorrect
(4) Both Statement I and Statement II are correct

Sol. 1
Fact

Topic :

Sub Topic :

Level :

77. Which of the following can reduce decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ on exposure to light
(1) Dust
(2) Urea
(3) Glass containers
(4) Alkali

Sol. 2

Urea acts as a stabilizer in the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$

Topic: Alkyl Halide

Level: M

78. The correct order of reactivity of following haloarenes towards nucleophilic substitution with aqueous NaOH is
A.

B.

C.

D.

Choose the correct answer from the options given below:
(1) D $>$ B $>$ A $>$ C
(2) A $>$ B $>$ D $>$ C
(3) $\mathrm{C}>\mathrm{A}>\mathrm{D}>\mathrm{B}$
(4) D $>\mathrm{C}>\mathrm{B}>\mathrm{A}$

Sol. 1

Rate $\alpha E W G \alpha \frac{1}{\text { EDG }}$
$\mathrm{NO}_{2} \rightarrow-$ Meffect
$\mathrm{OMe} \rightarrow+\mathrm{M}$ effect

Topic :

Sub Topic :

Level :

79. A compound ' X ' when treated with phthalic anhydride in presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ yields ' Y '. ' Y ' is used as an acid/base indicator. ' X ' and ' Y ' are respectively:
(1) Anisole, methyl orange
(2) Toludine, Phenolphthalein
(3) Carbolic acid, Phenolphthalein
(4) Salicylaldehyde, Phenolphthalein

Sol. 3

Topic: Nitrogen containg compound

Level: M

80. The product (P) formed from the following multistep reaction is :

(1)

(2)

(3)

(4)

Sol. 4

SECTION - B

Topic :
Sub Topic :

Level :

81. The observed magnetic moment of the complex $\left[\mathrm{Mn}(\underline{\mathrm{NCS}})_{6}\right]^{\mathrm{x}}$ is 6.06 BM . The numerical value of x is \qquad
Sol. 4
$\left[\mathrm{Mn}(\mathrm{NCS})_{6}\right]^{\mathrm{x}}$
Number of unpaired electron $=5$
So, Mn must be in +2 oxidation state $\left(\mathrm{Mn}^{+2}\right)$
$\Rightarrow 2+(-6)=-x \quad \Rightarrow-4=-x \quad \Rightarrow x=4$

Topic: Thermochemistry

Sub: bomb calorimetery

Level: M

82. For complete combustion of ethane,

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The amount of heat produced as measured in bomb calorimeter is $1406 \mathrm{KJ} \mathrm{mol}^{-1}$ at 300 K . The minimum value of $\mathrm{T} \Delta \mathrm{S}$ needed to reach equilibrium is $(-)$ \qquad KJ (Nearest integer)
Given : $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Sol. 1411
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ at equilibrium:-
$\Delta \mathrm{G}=0$
$\mathrm{T} \Delta \mathrm{S}=\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ngRT}=-1406+(-2) \times 8.3 \times 300 \times 10^{-3}=-1410.98 \approx 1411$

Topic: Ionic equilibrium

Sub: solubility produce

Level: Easy

83. The solubility product of BaSO_{4} is 1×10^{-10} at 298 K . The solubility of BaSO_{4} in $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ solut is \qquad $\times 10^{-9} \mathrm{~g} \mathrm{~L}^{-1}$ (Nearest integer)
Given: Molar mass of BaSO_{4} is $233 \mathrm{~g} \mathrm{~mol}^{-1}$
Sol. 233
$\mathrm{K}_{\text {sp }}=\mathrm{x}(\mathrm{x}+0.1)=10^{-10}$
$0.1 \mathrm{x}=10^{-10}$
$\mathrm{x}=10^{-9} \mathrm{M}$
$x($ in $g / l)=233 \times 10^{-9}$

Topic: Atomic Structure

Sub: wave mechanical model

Level: Easy

84. The number of atomic orbitals from the following having 5 radial nodes is \qquad
7s, 7p, 6s, 8p, 8d
Sol. 3
No. of radial node
$=\mathrm{n}-\ell-1$
For $6 \mathrm{~S} \rightarrow 6-0-1=5$,
$7 \mathrm{P} \rightarrow 7-1-1=5$
$8 \mathrm{~d} \rightarrow 8-2-1=5$

Topic: Electrochemistry

Sub: Thermodynamics of cell

Level: T

85. The number of incorrect statement from the following is \qquad -
(1) The electrical work that a reaction can perform at constant pressure and temperature is equal to the reaction

Gibbs energy
(2) $\mathrm{E}_{\text {cell }}^{0}$ is dependent on the pressure
(3) $\frac{\mathrm{dE}_{\text {cell }}^{\mathrm{o}}}{\mathrm{dT}}=\frac{\Delta_{\mathrm{r}} \mathrm{S}^{\circ}}{\mathrm{nF}}$
(4) A cell is operating reversibly if the cell potential is exactly balanced by an opposing source of potential difference
Sol. 1
$\mathrm{dG}=\mathrm{vdp}-\mathrm{sdT}$
$\mathrm{dG}=-\mathrm{sdT}$
$\frac{\mathrm{dG}}{\mathrm{dT}}=-\mathrm{S} \Rightarrow \frac{\mathrm{d} \Delta \mathrm{G}}{\mathrm{dT}}=-\Delta \mathrm{S}$
$\frac{\mathrm{dE}^{\mathrm{o}}}{\mathrm{dT}}=\frac{-\Delta \mathrm{S}}{-\mathrm{nF}}$

Topic: Surface chemi.

Sub: coagulation

Level:E

86. Coagulating value of the electrolytes AlCl_{3} and NaCl for $\mathrm{As}_{2} \mathrm{~S}_{3}$ are 0.09 and 50.04 respectively. The coagulating power of AlCl_{3} is x times the coagulating power of NaCl . The value of x is \qquad

Sol. 556

Coagulating power $\propto \frac{1}{\text { coagulation value }}$

$$
\frac{(\mathrm{CP})_{\mathrm{AlCl}_{3}}}{(\mathrm{CP})_{\mathrm{NaCl}}}=\frac{50.04}{0.09}=556
$$

Topic:Liquid solution

Sub: elvation ir boiling point

Level:E

87. If the boiling points of two solvents X and Y (having same molecular weights) are in the ratio $2: 1$ and their enthalpy of vaporizations are in the ratio $1: 2$, then the boiling point elevation constant of X is m times the boiling point elevation constant of Y. The value of m is \qquad (nearest integer)

Sol. 8

$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{RT}_{\mathrm{b}}^{2} \mathrm{~m}}{1000 \Delta \mathrm{H}_{\text {vap }}}$
$\frac{\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{x}}}{\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{y}}}=\frac{\left(\mathrm{T}_{\mathrm{b}}^{2} \mathrm{M}\right)_{\mathrm{x}}}{\left(\mathrm{T}_{\mathrm{b}}^{2} \mathrm{M}\right)_{\mathrm{y}}} \times \frac{(\Delta \mathrm{H})_{\mathrm{y}}}{(\Delta \mathrm{H})_{\mathrm{x}}}=\left(\frac{2}{1}\right)^{2} \times\left(\frac{2}{1}\right)=\frac{8}{1}$

Topic :

Sub Topic :

Level :
88. The number of species from the following carrying a single lone pair on central atom Xenon is \qquad $\mathrm{XeF}_{5}{ }^{+}, \mathrm{XeO}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{XeF}_{5}^{-}, \mathrm{XeO}_{3} \mathrm{~F}_{2}, \mathrm{XeOF}_{4}, \mathrm{XeF}_{4}$

Sol. 4
$\mathrm{XeF}_{5}{ }^{+}$

$\mathrm{XeO}_{3} \mathrm{~F}_{2}$

XeO_{3}

XeOF_{4}

$\mathrm{XeO}_{2} \mathrm{~F}_{2}$

XeF_{4}

So, Answer is 4

Topic :
Sub Topic :
Level :
89. The ratio of sigma and π bonds present in pyrophosphoric acid is \qquad
Sol. 6

$\frac{\sigma}{\pi}=\frac{12}{2}=6$
So, Answer is 6
Topic :
Sub Topic :
Level :
90. The sum of oxidation state of the metals in $\mathrm{Fe}(\mathrm{CO})_{5}, \mathrm{VO}^{2+}$ and WO_{3} is \qquad
Sol. 10
$\stackrel{(0)}{\mathrm{Fe}(\mathrm{CO})_{5}}$
$\stackrel{(+4)}{V} \mathrm{O}^{2+}$
(+6)

So, Sum of oxidation state $=0+4+6=10$

