Held On Monday 10th April, 2023
TIME : 03:00 PM to 06:00 PM

SECTION - A

Solid State Easy

61. The correct relationships between unit cell edge length ' a ' and radius of sphere ' r ' for face-centred and bodycentred cubic structures respectively are:
(1) $2 \sqrt{2} r=a$ and $\sqrt{3} r=4 a$
(2) $r=2 \sqrt{2} a$ and $4 r=\sqrt{3} a$
(3) $r=2 \sqrt{2} a$ and $\sqrt{3} r=4 a$
(4) $2 \sqrt{2} r=a$ and $4 r=\sqrt{3} a$

Sol. 4

$$
\begin{array}{ll}
\text { FCC } & \text { BCC } \\
\sqrt{2} a=4 r & \sqrt{3} a=4 r \\
a=\frac{4 r}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} & \\
a=2 \sqrt{2} r &
\end{array}
$$

Chemistry in Everyday life Medium

62. The reaction used for preparation of soap from fat is :
(1) an addition reaction
(2) an oxidation reaction
(3) alkaline hydrolysis reaction
(4) reduction reaction

Sol. 3
The process of making is soap is saponification.
Ester + Base \longrightarrow Alcohol + Soap
In saponification, triglycerides are combine with strong base and form fatty acid so this is alkaline Hydrolysis reaction.

Mole
Easy
63.

Match List I with List II

LIST I		LIST II	
A	16 g of $\mathrm{CH}_{4}(\mathrm{~g})$	I.	Weight 28 g
B	1 g of $\mathrm{H}_{2}(\mathrm{~g})$	II	60.2×10^{23} electrons
C	1 mole of $\mathrm{N}_{2}(\mathrm{~g})$	III	Weight 32 g
D	0.5 mol of $\mathrm{SO}_{2}(\mathrm{~g})$	IV	Occupies 11.4 L volume at STP

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-II, B-IV, C-III, D-I
(3) A-II, B-III, C-IV, D-I
(4) A-I, B-III, C-II, D-IV

Sol. 1
$16 \mathrm{~g} \mathrm{CH}_{4}=$ mole $=1$
$\mathrm{e}-=60.0 \times 10^{23}$
$19 \mathrm{~Hz}=0.5 \mathrm{~mole}=11.4(\mathrm{~L}) \mathrm{STP}$
1 mole $\mathrm{N}_{2}=2 \mathrm{rg}$
$0.5 \mathrm{~mol} \mathrm{SO}_{2}=$ weights 32 g .

Periodic Table
 Medium

64. The correct order of metallic character is $=$
(1) $\mathrm{K}>\mathrm{Be}>\mathrm{Ca}$
(2) $\mathrm{Be}>\mathrm{Ca}>\mathrm{K}$
(3) $\mathrm{K}>\mathrm{Ca}>\mathrm{Be}$
(4) $\mathrm{Ca}>\mathrm{K}>\mathrm{Be}$

Sol. 3

Metallic character decreases

GOC Medium

65. The correct order for acidity of the following hydroxyl compound is :
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
C.

D.

Choose the correct answer from the options given below:
(1) E $>$ C $>$ D $>$ A $>$ B
(2) D $>$ E $>$ C $>$ A $>$ B
(3) $\mathrm{E}>\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$
(4) $\mathrm{C}>$ E $>\mathrm{D}>\mathrm{B}>\mathrm{A}$

Sol. 1
Acidity \propto stability of conjugate base
Stability order

Activity $\rightarrow \mathrm{E}>\mathrm{C}>\mathrm{D}>\mathrm{A}>\mathrm{B}$

Coordination Compound Medium

66. Match List I with List II

LIST I Complex		LIST II Crystal Field splitting energy $\left(\Delta_{0}\right)$	
A	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	I.	-1.2
B	$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	II	-0.6
C	$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	III	0
D	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	IV	-0.8

Choose the correct answer from the options given below:
(1) A-IV, B-I, C-II, D-III
(2) A-IV, B-I, C-III, D-II
(3) A-II, B-IV, C-III, D-I
(4) A-II, B-IV, C-I, D-III

Sol. 1

$$
\begin{array}{cccc}
{\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}} & {\left[\mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}} & {\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}} \\
\downarrow & & \\
\mathrm{Ti}^{+2} & \mathrm{~V}^{+2} & \mathrm{Mn}^{+3} & \mathrm{Fe}^{+3} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
3 \mathrm{~d}^{2} & 3 \mathrm{~d}^{3} & 3 \mathrm{~d}^{4} & 3 \mathrm{~d}^{5}
\end{array}
$$

CFSE $=-0.4 \times \mathrm{t}_{2 \mathrm{~g}}+0.6 \times \mathrm{eg}+\mathrm{xp}$
$=-0.4 \times 2+0.6 \times 0+\mathrm{xp}$
(A) $=-0.8 \rightarrow \mathrm{Ti}^{+2}$
(B) $\mathrm{V}^{+2} \rightarrow 3 \mathrm{~d}^{3}$

$$
\begin{aligned}
\text { CFSE } & =-0.4 \times \mathrm{t}_{2 \mathrm{~g}}+0.6 \times \mathrm{eg}+\mathrm{xp} \\
& =-0.4 \times 3+0.6 \times 0+\mathrm{xp} \\
& =-1.2
\end{aligned}
$$

(C)

$$
\begin{aligned}
\text { CFSE }= & -0.4 \times \mathrm{t}_{2 \mathrm{~g}}+0.6 \times \mathrm{eg}+\mathrm{xp} \\
& -0.4 \times 3+0.6 \times 1+\mathrm{xp} \\
= & -1.2+0.6=0.6
\end{aligned}
$$

(D)

$$
\begin{aligned}
\text { CFSE } & =-0.4 \times \mathrm{t}_{2 g}+0.6 \times \mathrm{eg}+\mathrm{xp} \\
& =-0.4 \times 3+0.6 \times 2 \\
& =-1.2+1.2 \\
& =0
\end{aligned}
$$

Qualitative analysis

Medium

67. In Carius tube, an organic compound ' X ' is treated with sodium peroxide to form a mineral acid ' Y '.The solution of BaCl_{2} is added to ' Y ' to form a precipitate ' Z '.' Z ' is used for the quantitative estimation of an extra element. ' X ' could be
(1) Chloroxylenol
(2) Methionine
(3) A nucleotide
(4) Cytosine

Sol. 2
Carious method is used for quantitative analysis of sulfur

(i) $\mathrm{Na}_{2} \mathrm{O}_{2} \quad \mathrm{BaSO}_{4}$
(i) BaCl_{2} (White PPt)

So Methionine is correct answer

S-block Medium

68. Number of water molecules in washing soda and soda ash respectively are:
(1) 1 and 0
(2) 1 and 10
(3) 10 and 0
(4) 10 and 1

Sol. 3
Washing Soda $\rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3} . \underline{10 \mathrm{H}_{2} \mathrm{O}}$
0.2

Soda Ash $\rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}$
No. of water $=10+0=(10)$

Metallurgy

Medium

69. Gibbs energy vs T plot for the formation of oxides is given below.

For the given diagram, the correct statement is -
(1) At $600{ }^{\circ} \mathrm{C}, \mathrm{C}$ can reduce ZnO
(2) At $600{ }^{\circ} \mathrm{C}, \mathrm{C}$ can reduce FeO
(3) At $600^{\circ} \mathrm{C}, \mathrm{CO}$ cannot reduce FeO
(4) At $600{ }^{\circ} \mathrm{C}$, CO can reduce ZnO

Sol. 2
$\mathrm{FeO}+\mathrm{C} \longrightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
At $600^{\circ} \mathrm{C} \Delta \mathrm{G}$ of Reaction is -Ve
70. Buna-S can be represented as:
(1)

(2)

Sol. 2

Hydrogen

Medium

71. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason \mathbf{R}

Assertion A : Physical properties of isotopes of hydrogen are different.
Reason : Mass difference between isotopes of hydrogen is very large.
In the light of the above statements, choose the correct answer from the options given below:
(1) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(2) A is false but \mathbf{R} is true
(3) A is true but \mathbf{R} is false
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Sol. Correct - (4)
The Physical properties of isotope of Hydrogen are different due to Large mass difference

Coordination Compound Medium

72. The correct order of the number of unpaired electrons in the given complexes is
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{FeF}_{6}\right]^{3-}$
C. $\left[\mathrm{CoFF}_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}(\text { oxalate })_{3}\right]^{3-}$
E. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

Choose the correct answer from the options given below:
(1) E $<$ A $<$ D $<$ C $<$ B
(2) A $<$ E $<$ C $<$ B $<$ D
(3) A $<$ E $<$ D $<$ C $<$ B
(4) E $<$ A $<$ B $<$ D $<$ C

Sol. 1

Topic : GOC

Medium

73. The decreasing order of hydride affinity for following carbonations is:
A.

B.

C.

D.

Choose the correct answer from the options given below:
(1) C, A, D, B
(2) A, C, B, D
(3) A, C, D, B
(4) C, A, B, D

Sol. 4
Stability of carbocation $\propto \frac{1}{\text { Hydride affinity }}$

Chapter: carbonyl

Level : Med.

74. Incorrect method of preparation for alcohols from the following is:
(1) Ozonolysis of alkene.
(2) Hydroboration-oxidation of alkene.
(3) Reaction of alkyl halide with aqueous NaOH .
(4) Reaction of Ketone with RMgBr followed by hydrolysis.

Sol. 1

1) Ozonolysis of alkene-

2) Hydroboration - oxidation of alkene

3) $\mathrm{R}-\mathrm{X}+\mathrm{NaOH} \longrightarrow \mathrm{R}-\mathrm{OH}+\mathrm{NaX}$

\{Chap - Aldehyele, ketone, SO - Med \}
75. In the reaction given below:

The product ' X ' is:
(1)

(2)

(3)

(4)

Sol. 4

s-block Medium
76. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason \mathbf{R}

Assertion A : The energy required to form Mg^{2+} from Mg is much higher than that required to produce Mg^{+}
Reason R: Mg^{2+} is small ion and carry more charge than Mg^{+}
In the light of the above statements, choose the correct answer from the options given below.
(1) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(2) \mathbf{A} is true but \mathbf{R} is false
(3) \mathbf{A} is false but \mathbf{R} is true
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}

Sol. Correct - (1)

In formation of $\mathrm{Mg}^{2+} \mathrm{IE}_{1}+\mathrm{IE}_{2}$ is required while in formation of $\mathrm{Mg}^{+} \mathrm{IE}_{1}$ is required
(R) $\quad \mathrm{Mg}^{2+}$ is small ion and carry more change than Mg^{\oplus}
77. The major product ' P ' formed in the given reaction is:

(1)

(2)

(3)

(4)

Sol. 1

78. Ferric chloride is applied to stop bleeding because -
(1) Blood absorbs FeCl_{3} and forms a complex.
(2) FeCl_{3} reacts with the constituents of blood which is a positively charged sol.
(3) Fe^{3+} ions coagulate blood which is a negatively charged sol.
(4) Cl^{-}ions cause coagulation of blood.

Sol. 3
Fe^{3+} coagulation negatively charged sol blood.

Environmental Chemistry

Easy

79. The delicate balance of CO_{2} and O_{2} is NOT disturbed by
(1) Burning of Coal
(2) Deforestation
(3) Burning of petroleum
(4) Respiration

Sol. Correct - (4)
The balance of carbon dioxide and oxygen in atmosphere is mainly maintained by the oxygen released and carbon dioxide consumed during photosynthesis by plants.
80. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason \mathbf{R}

Assertion A : 3.1500 g of hydrated oxalic acid dissolved in water to make 250.0 mL solution will result in 0.1 M oxalic acid solution.
Reason R : Molar mass of hydrated oxalic acid is $126 \mathrm{~g} \mathrm{~mol}^{-1}$
In the light of the above statements, choose the correct answer from the options given below:
(1) \mathbf{A} is false but \mathbf{R} is true
(2) \mathbf{A} is true but \mathbf{R} is false
(3) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Sol. 4
Assertion is correct.
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{M}=\frac{3.15 \times 1000}{126 \times 250}$
$=\frac{12.6}{126}=0.1$
Reason is correct. It is used as a fact in explanation of assertion.

SECTION - B

Chemical bonding

Medium

81. The number of molecules from the following which contain only two lone pair of electrons is \qquad
$\mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{CO}, \mathrm{XeF}_{4}, \mathrm{NH}_{3}, \mathrm{NO}, \mathrm{CO}_{2}, \mathrm{~F}_{2}$
Sol. 4

	lp
	2
$: N \equiv N:$	2
$: \mathrm{C} \equiv \mathrm{O}:$	2
	2
$\stackrel{\circ}{\mathrm{N}} \mathrm{H}_{3}$	1
. $\mathrm{N} \equiv \stackrel{\square}{\mathrm{O}}$	3

82. The specific conductance of 0.0025 M acetic acid is $5 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ at a certain temperature. The dissociation constant of acetic acid is \qquad $\times 10^{-7}$. (Nearest integer)
Consider limiting molar conductivity of $\mathrm{CH}_{3} \mathrm{COOH}$ as $400 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Sol. 66
$\Lambda_{\mathrm{m}}=\frac{\mathrm{k}}{\mathrm{C}} \times 1000$
Given $\mathrm{k}=5 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$
$\mathrm{C}=0.0025 \mathrm{M}$
$\Lambda_{\mathrm{m}}=\frac{5 \times 10^{-5} \times 10^{3}}{0.0025}=\frac{5 \times 10^{-2}}{2.5 \times 10^{-3}}$
$=20 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\alpha=\frac{20}{400}=\frac{1}{20}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}=\frac{0.0025 \times \frac{1}{20} \times \frac{1}{20}}{\frac{19}{20}}$
$=\frac{0.0025}{19 \times 20}=6.6 \times 10^{-6}$
$=66 \times 10^{-7}$
83. An aqueous solution of volume $300 \mathrm{~cm}^{3}$ contains 0.63 g of protein. The osmotic pressure of the solution at 300

K is 1.29 mbar . The molar mass of the protein is \qquad $\mathrm{g} \mathrm{mol}^{-1}$
Given : $\mathrm{R}=0.083 \mathrm{~L}^{\text {bar }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Sol. 40535
$\because \pi=$ CRT
$\pi=\frac{\mathrm{n}}{\mathrm{V}} \mathrm{RT}$
$\pi=\frac{\omega}{\mathrm{V}} \frac{\mathrm{RT}}{\mathrm{M}}$
$\mathrm{M}=\frac{\omega \mathrm{RT}}{\pi \times \mathrm{V}}$
$\mathrm{M}=\frac{0.63 \times 0.083 \times 300}{1.29 \times 10^{-3} \times 300 \times 10^{-3}}$
$\mathrm{M}=40535 \mathrm{gm} / \mathrm{moL}$

p-block Medium

84. The difference in the oxidation state of Xe between the oxidised product of Xe formed on complete hydrolysis of XeF_{4} and XeF_{4} is \qquad
Sol. 2

$$
\stackrel{+4}{\mathrm{XeF}_{4}}+\stackrel{+\mathrm{H}}{2} \mathrm{O} \longrightarrow \mathrm{Xe}+\stackrel{+6}{\mathrm{XeO}}{ }_{3}+\mathrm{O}_{2}+\mathrm{HF}
$$

Difference $=6-4=$ (2)
85. The number of endothermic process/es from the following is
A. $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$
B. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
E. Dissolution of ammonium chloride in water

Sol. 4
$\mathrm{A} \rightarrow$ Endothermic (Atomisation) $\quad \mathrm{B} \rightarrow$ Endothermic (Atomisation)
$\mathrm{C} \rightarrow$ Endothermic (Vapourisation) $\quad \mathrm{D} \rightarrow$ Exothermic (Combustion)
$\mathrm{E} \rightarrow$ Endothermic (Dissolution)
86. The number of incorrect statement/s from the following is
A. The successive half lives of zero order reactions decreases with time.
B. A substance appearing as reactant in the chemical equation may not affect the rate of reaction
C. Order and molecularity of a chemical reaction can be a fractional number
D. The rate constant units of zero and second order reaction are mol L $\mathrm{L}^{-1} \mathrm{~s}^{-1}$ and $\mathrm{mol}^{-1} \mathrm{Ls}^{-1}$ respectively.

Sol. 1
(A) For zero order $\mathrm{t}_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 \mathrm{~K}}$ as concentration decreases half life decreases (Correct statement)
(B) If order w.r.t. that reactant is zero then it will not affect rate of reaction. (Correct statement)
(C) Order can be fractional but molecularity can not be (Incorrect statement)
(D) For zero order reaction unit is $\mathrm{mol}^{-1-\mathrm{s}^{-1}}$ and for second order reaction unit is $\mathrm{mol}^{-1} \mathrm{Ls}^{-1}$ (Correct statement)
87.

The electron in the nth orbit of Li^{2+} is excited to $(\mathrm{n}+1)$ orbit using the radiation of energy $1.47 \times 10^{-17} \mathrm{~J}$ (as shown in the diagram). The value of n is \qquad
Given: $\mathrm{R}_{\mathrm{H}}=2.18 \times 10^{-18} \mathrm{~J}$
Sol. 1
$\Delta \mathrm{E}=\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$1.47 \times 10^{-17}=2.18 \times 10^{-18} \times 9\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{(\mathrm{n}+1)^{2}}\right)$
$\frac{1.47}{1.96}=\frac{3}{4}=\frac{1}{\mathrm{n}^{2}}-\frac{1}{(\mathrm{n}+1)^{2}}$
So, $\mathrm{n}=1$

d-block Medium

88. For a metal ion, the calculated magnetic moment is 4.90BM. This metal ion has \qquad number of unpaired electrons.
Sol. 4
$\mu=4.90 \mathrm{BM}$.
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
So, $n=4$
89. In alkaline medium, the reduction of permanganate anion involves a gain of - electrons.

Sol. 3

(3)
90. $\quad \mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$

For the given reaction, if the initial pressure is 450 mmHg and the pressure at time t is 720 mmHg at a constant temperature T and constant volume V . The fraction of $\mathrm{A}(\mathrm{g})$ decomposed under these conditions is $\mathrm{x} \times 10^{-1}$. The value of x is \qquad (nearest integer)
Sol. 3
$\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$\mathrm{t}=0$
450
time t $450-\mathrm{x} \quad 2 \mathrm{x} \quad \mathrm{x}$
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}$
$720=450-\mathrm{x}+2 \mathrm{x}+\mathrm{x}$
$2 \mathrm{x}=270$
$\mathrm{x}=135$
Fraction of A decomposed $=\frac{135}{450}=0.3=3 \times 10^{-1}$
So, $x=3$

