FINAL JEE-MAIN EXAMINATION - JULY, 2022
Held On Friday 29 July,2022
TIME :3:00 PM to 06:00 PM

SECTION-A

1. If $\mathrm{z} \neq 0$ be a complex number such that $\left|\mathrm{z}-\frac{1}{\mathrm{z}}\right|=2$, then the maximum value of Izl is:
(A) $\sqrt{2}$
(B) 1
(C) $\sqrt{2}-1$
(D) $\sqrt{2}+1$

Official Ans. by NTA (D)
Ans. (D)
Sol. $|z-1 / z|=2$
$\left||z|-\frac{1}{|z|}\right| \leq\left|z-\frac{1}{z}\right| \leq|z|+\frac{1}{|z|} \quad$ Let $|z|=r$
$\left|r-\frac{1}{r}\right| \leq 2 \leq r+\frac{1}{r}$
$\left|\mathrm{r}-\frac{1}{\mathrm{r}}\right| \leq 2 \& \mathrm{r}+\frac{1}{\mathrm{r}} \geq 2$ always true
$r-\frac{1}{r} \geq-2 \& r-\frac{1}{r} \leq 2$
$\mathrm{r}^{2}-1 \leq 2 \mathrm{r}$
$\mathrm{r}^{2}-2 \mathrm{r} \leq 1$
$(\mathrm{r}-1)^{2} \leq 2$
$\mathrm{r}-1 \leq \sqrt{2}$
$\therefore|\mathrm{z}|_{\text {max }}=1+\sqrt{2}$
2. Which of the following matrices can NOT be obtained from the matrix $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ by a single elementary row operation?
(A) $\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$
(C) $\left[\begin{array}{ll}-1 & 2 \\ -2 & 7\end{array}\right]$
(D) $\left[\begin{array}{ll}-1 & 2 \\ -1 & 3\end{array}\right]$

Official Ans. by NTA (C)
Ans. (C)

Sol. $\quad A=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$
(1) $R_{1} \rightarrow R_{1}+R_{2} ;\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]$ possible
(2) $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2} ;\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$ possible
(3) Option is not possible
(4) $R_{2} \rightarrow R_{2}+2 R_{1} ;\left[\begin{array}{ll}-1 & 2 \\ -1 & 3\end{array}\right]$ possible
3. If the system of equations
$x+y+z=6$
$2 x+5 y+\alpha z=\beta$
$x+2 y+3 z=14$
has infinitely many solutions, then $\alpha+\beta$ is equal to :
(A) 8
(B) 36
(C) 44
(D) 48

Official Ans. by NTA (C)
Ans. (C)
Sol. $\mathrm{x}+\mathrm{y}+\mathrm{z}=6$ \qquad
$2 x+5 y+\alpha z=\beta$
$x+2 y+3 z=14$ \qquad
$x+y=6-z$
$x+2 y=14-3 z$
On solving
$\mathrm{x}=\mathrm{z}-2 \Rightarrow \mathrm{y}=8-2 \mathrm{z}$ in (2)
$2(z-2)+5(8-2 z)+\alpha z=\beta$
$(\alpha-8) \mathrm{z}=\beta-36$ For having infinite solutions
$\alpha-8=0 \quad \& \quad \beta-36=0$
$\alpha=8, \beta=36$
$(\alpha+\beta=44)$
4. Let the function
$f(x)=\left\{\begin{array}{cl}\frac{\log _{e}(1+5 x)-\log _{e}(1+\alpha x)}{x} & ; \text { if } x \neq 0 \\ 10 & \text { if } x=0\end{array}\right.$
be continuous at $\mathrm{x}=0$.
The α is equal to :
(A) 10
(B) -10
(C) 5
(D) -5

Official Ans. by NTA (D)
Ans. (D)
Sol. $f(x)=\left\{\begin{array}{cl}\frac{\ln (1+5 x)-\ln (1+\alpha x)}{x} & ; x \neq 0 \\ 10 & ; x=0\end{array}\right.$
$\lim _{x \rightarrow 0} \frac{\ln (1+5 x)-\ln (1+\alpha x)}{x}=10$
Using expension
$\lim _{x \rightarrow 0} \frac{(5 x+\ldots \ldots)-(\alpha x+\ldots \ldots)}{x}=10$
$5-\alpha=10 \Rightarrow \alpha=-5$
5. If [t$]$ denotes the greatest integer $\leq \mathrm{t}$, then the value of $\int_{0}^{1}\left[2 x-\left|3 x^{2}-5 x+2\right|+1\right] d x$ is:
(A) $\frac{\sqrt{37}+\sqrt{13}-4}{6}$
(B) $\frac{\sqrt{37}-\sqrt{13}-4}{6}$
(C) $\frac{-\sqrt{37}-\sqrt{13}+4}{6}$
(D) $\frac{-\sqrt{37}+\sqrt{13}+4}{6}$

Official Ans. by NTA (A)
Ans. (A)
Sol. $I=\int_{0}^{1}\left[2 x-\left|3 x^{2}-3 x-2 x+2\right|+1\right] d x$
$I=\int_{0}^{1}[2 x-|(3 x-2)(x-1)|] d x+\int_{0}^{1} 1 d x$
$I=\int_{0}^{2 / 3}\left[\left(2 x-\left(3 x^{2}-5 x+2\right)\right)\right] d x+\int_{2 / 3}^{1}\left(2 x+\left(3 x^{2}-5 x+2\right)\right) d x+1$
$I=\int_{0}^{2 / 3}\left[-3 x^{2}+7 x-2\right] d x+\int_{2 / 3}^{1}\left(3 x^{2}-3 x+2\right) d x+1$

When $\mathrm{x} \in\left(\frac{2}{3}, 1\right)$
$3 \mathrm{x}^{2}-3 \mathrm{x}+2 \in\left(\frac{4}{3}, 2\right)$
$\left[3 x^{2}-3 x+2\right]=1$
$\therefore \int_{2 / 3}^{1}\left[3 \mathrm{x}^{2}-3 \mathrm{x}+2\right] \mathrm{dx}=1\left(1-\frac{2}{3}\right)=\frac{1}{3}$
Hence $I=\left(\frac{1}{3}-(\alpha+\beta)\right)+\left(\frac{1}{3}\right)+1$
$=\frac{5}{3}-\left(\frac{7-\sqrt{37}}{6}+\frac{7-\sqrt{13}}{6}\right)$
$=\frac{-2}{3}+\frac{\sqrt{37}+\sqrt{13}}{6}$
$=\frac{\sqrt{37}+\sqrt{13}-4}{6}$
6. Let $\left\{a_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty}$ be a sequence such that $a_{0}=a_{1}=0$ and $a_{\mathrm{n}+2}=3 a_{\mathrm{n}+1}-2 a_{\mathrm{n}}+1, \forall \mathrm{n} \geq 0$.

Then $a_{25} a_{23}-2 a_{25} a_{22}-2 a_{23} a_{24}+4 a_{22} a_{24}$ is equal to:
(A) 483
(B) 528
(C) 575
(D) 624

Official Ans. by NTA (B)
Ans. (B)
Sol. $a_{0}=0, a_{1}=0$
$a_{\mathrm{n}+2}=3 a_{\mathrm{n}+1}-2 a_{\mathrm{n}+1}: \mathrm{n} \geq 0$
$a_{\mathrm{n}+2}-a_{\mathrm{n}+1}=2\left(a_{\mathrm{n}+1}-\mathrm{a}_{\mathrm{n}}\right)+1$
$\mathrm{n}=0 \quad a_{2}-a_{1}=2\left(a_{1}-a_{0}\right)+1$
$\mathrm{n}=1 \quad a_{3}-a_{2}=2\left(a_{2}-a_{1}\right)+1$
$\mathrm{n}=2 \quad a_{4}-a_{3}=2\left(a_{3}-a_{2}\right)+1$
$\mathrm{n}=\mathrm{n} \quad a_{\mathrm{n}+2}-a_{\mathrm{n}+1}=2\left(a_{\mathrm{n}+1}-a_{\mathrm{n}}\right)+1$
$\left(a_{\mathrm{n}+2}-a_{\mathrm{r}}\right)-2\left(a_{\mathrm{n}+1}-a_{0}\right)-(\mathrm{n}+1)=0$
$a_{\mathrm{n}+2}=2 a_{\mathrm{n}+1}+(\mathrm{n}+1)$
$\mathrm{n} \rightarrow \mathrm{n}-2$
$a_{\mathrm{n}}-2 a_{\mathrm{n}-1}=\mathrm{n}-1$
Now $\mathrm{a}_{25} \mathrm{a}_{23}-2 \mathrm{a}_{25} \mathrm{a}_{22}-2 \mathrm{a}_{23} \mathrm{a}_{24}+4 \mathrm{a}_{22} \mathrm{a}_{24}$
$=\left(a_{25}-2 a_{24}\right)\left(a_{23}-2 a_{22}\right)=(24)(22)=528$
7. $\quad \sum_{\mathrm{r}=1}^{20}\left(\mathrm{r}^{2}+1\right)(\mathrm{r}!)$ is equal to:
(A) $22!-21$!
(B) $22!-2(21!)$
(C) $21!-2(20!)$
(D) 21 ! -20 !

Official Ans. by NTA (B)

Ans. (B)

Sol. $\sum_{x=1}^{20}\left(r^{2}+1\right) r$!
$\sum_{x=1}^{20}\left((r+1)^{2}-2 r\right) r!$
$\sum_{x=1}^{20}((r+1)(r+1)!-r . r!)-\sum_{r=1}^{20} r . r!$
$\sum_{\mathrm{x}=1}^{20}((\mathrm{r}+1)(\mathrm{r}+1)!-\mathrm{r} . \mathrm{r}!)-\sum_{\mathrm{r}=1}^{20}((\mathrm{r}+1)!-\mathrm{r}!)$
$=(21 . \mid 21-1)-(\mid 21-1)$
$=20.21!=22!-2.21!$
8. For $\mathrm{I}(\mathrm{x})=\int \frac{\sec ^{2} \mathrm{x}-2022}{\sin ^{2022} \mathrm{x}} \mathrm{dx}$, if $\mathrm{I}\left(\frac{\pi}{4}\right)=2^{1011}$, then
(A) $3^{1010} \mathrm{I}\left(\frac{\pi}{3}\right)-\mathrm{I}\left(\frac{\pi}{6}\right)=0$
(B) $3^{1010} \mathrm{I}\left(\frac{\pi}{6}\right)-\mathrm{I}\left(\frac{\pi}{3}\right)=0$
(C) $3^{1011} \mathrm{I}\left(\frac{\pi}{3}\right)-\mathrm{I}\left(\frac{\pi}{6}\right)=0$
(D) $3^{1011} \mathrm{I}\left(\frac{\pi}{6}\right)-\mathrm{I}\left(\frac{\pi}{3}\right)=0$

Official Ans. by NTA (A)

Ans. (A)
Sol. $I(x)=\int \sec ^{2} x \cdot \sin ^{-2022} \mathrm{xdx}-2022 \int \sin ^{-2022} \mathrm{x} d \mathrm{x}$
$=\tan x \cdot(\sin x)^{-2022}+\int^{\text {I }}(2022) \tan x .(\sin x)^{-2023} \cos x d x$
$-2022 \int(\sin x)^{-2022} d x$
$\mathrm{I}(\mathrm{x})=(\tan \mathrm{x})(\sin \mathrm{x})^{-2022}+\mathrm{C}$
At $\mathrm{X}=\pi / 4, \quad 2^{1011}=\left(\frac{1}{\sqrt{2}}\right)^{-2022}+\mathrm{C} \therefore \mathrm{C}=0$
Hence $I(x)=\frac{\tan x}{(\sin x)^{2022}}$

$$
\mathrm{I}(\pi / 6)=\frac{1}{\sqrt{3}\left(\frac{1}{2}\right)^{2022}}=\frac{2^{2022}}{\sqrt{3}}
$$

$$
\mathrm{I}(\pi / 3)=\frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)^{2022}}=\frac{2^{2022}}{(\sqrt{3})^{2021}}=\frac{1}{3^{1010}} \mathrm{I}\left(\frac{\pi}{6}\right)
$$

$3^{1010} \mathrm{I}(\pi / 3)=\mathrm{I}(\pi / 6)$
9. If the solution curve of the differential equation $\frac{d y}{d x}=\frac{x+y-2}{x-y}$ passes through the point $(2,1)$ and $(k+1,2), k>0$, then
(A) $2 \tan ^{-1}\left(\frac{1}{k}\right)=\log _{e}\left(k^{2}+1\right)$
(B) $\tan ^{-1}\left(\frac{1}{\mathrm{k}}\right)=\log _{\mathrm{e}}\left(\mathrm{k}^{2}+1\right)$
(C) $2 \tan ^{-1}\left(\frac{1}{k+1}\right)=\log _{e}\left(k^{2}+2 k+2\right)$
(D) $2 \tan ^{-1}\left(\frac{1}{\mathrm{k}}\right)=\log _{\mathrm{e}}\left(\frac{\mathrm{k}^{2}+1}{\mathrm{k}^{2}}\right)$

Official Ans. by NTA (A)
Ans. (A)

Sol. $\frac{d y}{d x}=\frac{x+y-2}{x-y}=\frac{(x-1)+(y-1)}{(x-1)-(y-1)}$
$\mathrm{x}-1=\mathrm{X}, \mathrm{y}-1=\mathrm{Y}$
$\frac{d Y}{d X}=\frac{X+Y}{X-Y}$
$Y=V X \quad \frac{d Y}{d X}=V+X \frac{d V}{d X}$
$V+X \frac{d V}{d X}=\frac{1+V}{1-V} \quad X \frac{d V}{d X}=\frac{V^{2}+1}{1-V}$
$\int \frac{1-V}{1+V^{2}} d V=\int \frac{d X}{X}$
$\int \frac{d V}{1+\mathrm{V}^{2}}-\frac{1}{2} \int \frac{2 \mathrm{VdV}}{1+\mathrm{V}^{2}}=\int \frac{\mathrm{dX}}{\mathrm{X}}$
$\tan ^{-1} \mathrm{~V}-\frac{1}{2} \ln \left(1+\mathrm{V}^{2}\right)=\ln \mathrm{X}+\mathrm{c}$
$\tan ^{-1}\left(\frac{\mathrm{Y}}{\mathrm{X}}\right)-\frac{1}{2} \ln \left(1+\frac{\mathrm{Y}^{2}}{\mathrm{X}^{2}}\right)=\ln (\mathrm{X})+\mathrm{c}$
$\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{2} \ln \left(1+\frac{(y-1)^{2}}{(x-1)^{2}}\right)=\ln (x-1)+c$
Passes through $(2,1)$
$0-\frac{1}{2} \ln 1=\ln 1+\mathrm{c} \therefore \mathrm{c}=0$
Passes through $(\mathrm{k}+1,2)$
$\therefore \tan ^{-1}\left(\frac{1}{\mathrm{k}}\right)-\frac{1}{2} \operatorname{In}\left(1+\frac{1}{\mathrm{k}^{2}}\right)=\ln \mathrm{k}$
$2 \tan ^{-1}\left(\frac{1}{\mathrm{k}}\right)=\operatorname{In}\left(\frac{1+\mathrm{k}^{2}}{\mathrm{k}^{2}}\right)+2 \ln \mathrm{k}$
$2 \tan ^{-1}\left(\frac{1}{\mathrm{k}}\right)=\operatorname{In}\left(1+\mathrm{k}^{2}\right)$
10. Let $y=y(x)$ be the solution curve of the differential equation $\frac{d y}{d x}+\left(\frac{2 x^{2}+11 x+13}{x^{3}+6 x^{2}+11 x+6}\right)$ $y=\frac{(x+3)}{x+1}, x>-1$, which passes through the point $(0,1)$. Then $y(1)$ is equal to:
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) $\frac{5}{2}$
(D) $\frac{7}{2}$

Official Ans. by NTA (B)
Ans. (B)

Sol. $\frac{d y}{d x}+\left(\frac{2 x^{2}+11 x+13}{x^{3}+6 x^{2}+11 x+6}\right) y=\frac{x+3}{x+1}$
$\int p(x) d x$
I.F. $=e^{\int p(x) d x}$
$\int p(x) d x=\int \frac{\left(2 x^{2}+11 x+13\right) d x}{(x+1)(x+2)(x+3)}$
Using partial fraction
$\frac{2 x^{2}+11 x+13}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3}$
$\mathrm{A}=\frac{4}{2}=2$
$\mathrm{B}=1$
$C=-1$
$\because \int \mathrm{p}(\mathrm{x}) \mathrm{dx}=\mathrm{A} \ln (\mathrm{x}+1)+\mathrm{B} \ln (\mathrm{x}+2)+\mathrm{c} \ln (\mathrm{x}+3)$
$=\ln \left(\frac{(\mathrm{x}+1)^{2}(\mathrm{x}+2)}{\mathrm{x}+3}\right)$
I.F. $=\mathrm{e}^{\int \mathrm{p}(\mathrm{x}) \mathrm{dx}}=\frac{(\mathrm{x}+1)^{2}(\mathrm{x}+2)}{(\mathrm{x}+3)}$

Solution $y(I F)=\int Q .(I F) d x$
$y\left(\frac{(x+1)^{2}(x+2)}{x+3}\right)=\int\left(\frac{x+3}{x+1}\right) \frac{(x+1) \not)^{2}(x+2)}{(x+3)} d x$
$y\left(\frac{(x+1)^{2}(x+2)}{x+3}\right)=\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+2 x+c$
Passes through $(0,1) \mathrm{C}=\frac{2}{3}$
Now put $\mathrm{x}=1$
$\Rightarrow \mathrm{y}(1)=\frac{3}{2}$
11. Let m_{1}, m_{2} be the slopes of two adjacent sides of a square of side a such that $\mathrm{a}^{2}+11 \mathrm{a}+3\left(\mathrm{~m}_{2}^{2}+\mathrm{m}_{2}^{2}\right)=220$. If one vertex of the square is $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$, where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal is $(\cos \alpha-\sin \alpha) x+(\sin \alpha+\cos \alpha) y=10$, then 72 $\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$ is equal to:
(A) 119
(B) 128
(C) 145
(D) 155

Official Ans. by NTA (B)

Ans. (B)

Sol. $m_{1} m_{2}=-1$
$\mathrm{a}^{2}+11 a+3\left(\mathrm{~m}_{1}^{2}+\frac{1}{\mathrm{~m}_{1}^{2}}\right)=220$

Eq. of AC
$A C=(\cos \alpha-\sin \alpha)+(\sin \alpha+\cos \alpha) y=10$
$B D=(\sin \alpha-\cos \alpha) x+(\sin \alpha-\cos \alpha) y=0$
$(10(\cos \alpha-\sin \alpha), 10(\sin \alpha-\cos \alpha))$
Slope of $A C=\left(\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}\right)=\tan \theta=M$
Eq. of line making an angle π_{4} with AC
$\mathrm{m}_{1}, \mathrm{~m}_{2}=\frac{\mathrm{m} \pm \tan \frac{\pi}{4}}{1 \pm \mathrm{m} \tan \frac{\pi}{4}}$
$=\frac{m+1}{1-m}$ or $\frac{m-1}{1+m}$
$\frac{\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}+1}{1-\left(\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}\right)}, \frac{\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}-1}{1+\frac{\sin \alpha-\cos \alpha}{\sin \alpha+\cos \alpha}}$
$\mathrm{m}_{1}, \mathrm{~m}_{2}=\tan \alpha, \cot \alpha$
mid point of AC \& BD
$=M(5(\cos \alpha-\sin \alpha), 5(\cos \alpha+\sin \alpha))$
B $(10(\cos \alpha-\sin \alpha), 10(\cos \alpha+\sin \alpha))$
$\mathrm{a}=\mathrm{AB}=\sqrt{2} \mathrm{BM}=\sqrt{2}(5 \sqrt{2})=10$
$\mathrm{a}=10$
$\because a^{2}+11 a+3\left(m_{1}^{2}+\frac{1}{m_{1} 2}\right)=220$
$100+110+3\left(\tan ^{2} \alpha+\cot ^{2} \alpha\right)=220$
Hence $\tan ^{2} \alpha=3, \tan ^{2} \alpha=\frac{1}{3} \Rightarrow \alpha=\frac{\pi}{3}$ or $\frac{\pi}{6}$
Now $72\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$
$=72\left(\frac{9}{16}+\frac{1}{16}\right)+100-30+13$
$=72\left(\frac{5}{8}\right)+83=45+83=128$
12. The number of elements in the set $S=\left\{x \in \mathbb{R}: 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$ is:
(A) 1
(B) 3
(C) 0
(D) infinite

Official Ans. by NTA (A)
Ans. (A)
Sol. $\quad 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}$
L.H.S $\leq 2 . \&$ R.H.S. ≥ 2

Hence L.H.S = 2 \& R.H.S = 2

$$
2 \cos \left(\frac{x^{2}+x}{6}\right)=2 \quad 4^{x}+4^{-x}=2
$$

Check $\mathrm{x}=0$ Possible hence only one solution.
13. Let $\mathrm{A}(\alpha,-2), \mathrm{B}(\alpha, 6)$ and $\mathrm{C}\left(\frac{\alpha}{4},-2\right)$ be vertices of a $\triangle \mathrm{ABC}$. If $\left(5, \frac{\alpha}{4}\right)$ is the circumcentre of $\triangle \mathrm{ABC}$, then which of the following is NOT correct about $\triangle \mathrm{ABC}$:
(A) ares is 24
(B) perimeter is 25
(C) circumradius is 5
(D) inradius is 2

Official Ans. by NTA (B)
Ans. (B)
Sol. $\mathrm{A}(\alpha,-2): \mathrm{B}(\alpha, 6): \mathrm{C}\left(\frac{\alpha}{4},-2\right)$
since $A C$ is perpendicular to $A B$.
So, $\triangle \mathrm{ABC}$ is right angled at A .
Circumcentre $=$ mid point of BC. $=\left(\frac{5 \alpha}{8}, 2\right)$
$\therefore \frac{5 \alpha}{8}=5 \& \frac{\alpha}{4}=2$
$\alpha=8$
(8,6)

Area $=\frac{1}{2}(6)(8)=24$
Perimeter $=24$
Circumradius $=5$
Inradius $=\frac{\Delta}{\mathrm{s}}=\frac{24}{12}=2$
14. Let Q be the foot of perpendicular drawn from the point $P(1,2,3)$ to the plane $x+2 y+z=14$. If R is a point on the plane such that $\angle \mathrm{PRQ}=60^{\circ}$, then the area of $\triangle \mathrm{PQR}$ is equal to:
(A) $\frac{\sqrt{3}}{2}$
(B) $\sqrt{3}$
(C) $2 \sqrt{3}$
(D) 3

Official Ans. by NTA (B)

Ans. (B)

Length of perpendicular

$$
\mathrm{PQ}=\left|\frac{1+4+3-14}{\sqrt{6}}\right|=\sqrt{6}
$$

$\mathrm{QR}=(\mathrm{PQ}) \cot 60^{\circ}=\sqrt{2}$
\therefore Area of $\triangle \mathrm{PQR}=\frac{1}{2}(\mathrm{PQ})(\mathrm{QR})=\sqrt{3}$
15. If $(2,3,9),(5,2,1),(1, \lambda, 8)$ and $(\lambda, 2,3)$ are coplanar, then the product of all possible values of λ is:
(A) $\frac{21}{2}$
(B) $\frac{59}{8}$
(C) $\frac{57}{8}$
(D) $\frac{95}{8}$

Official Ans. by NTA (D)
Ans. (D)

Sol. $\mathrm{A}(2,3,9) ; \mathrm{B}(5,2,1) ; \mathrm{C}(1, \lambda, 8) ; \mathrm{D}(\lambda, 2,3)$
$\left[\begin{array}{lll}\overrightarrow{\mathrm{AB}} & \overrightarrow{\mathrm{AC}} & \overrightarrow{\mathrm{AD}}\end{array}\right]=0$

$$
\left|\begin{array}{ccc}
3 & -1 & -8 \\
-1 & \lambda-3 & -1 \\
\lambda-2 & -1 & -6
\end{array}\right|=0
$$

$$
\Rightarrow[-6(\lambda-3)-1]-8(1-(\lambda-3)(\lambda-2))+(6+(\lambda
$$

$$
-2)=0
$$

$$
3(-6 \lambda+17)-8\left(-\lambda^{2}+5 \lambda-5\right)+(\lambda+4)=8
$$

$$
8 \lambda^{2}-57 \lambda+95=0
$$

$\lambda_{1} \lambda_{2}=\frac{95}{8}$
16. Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is:
(A) $\frac{4}{9}$
(B) $\frac{5}{18}$
(C)
(D) $\frac{3}{10}$

Official Ans. by NTA (B)
Ans. (B)

Sol.

A : Drown ball from boy II is black
B : Red ball transferred
$\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$
$=\frac{\frac{3}{9} \times \frac{5}{10}}{\frac{3}{9} \times \frac{5}{10}+\frac{4}{9} \times \frac{6}{10}+\frac{3}{9} \times \frac{5}{10}}$
$=\frac{15}{15+24+15}=\frac{15}{54}=\frac{5}{18}$
17. Let $S=\{z=x+i y:|z-1+i| \geq|z|,|z|<2,|z+i|=$ $|z-1|\}$. Then the set of all values of x, for which $w=2 x+i y \in S$ for some $y \in \mathbb{R}$, is
(A) $\left(-\sqrt{2}, \frac{1}{2 \sqrt{2}}\right]$
(B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{4}\right]$
(C) $\left(-\sqrt{2}, \frac{1}{2}\right]$
(D) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}}\right]$

Official Ans. by NTA (B)

Ans. (B)

Sol. $|z-1+i| \geq|z| ;|z|<2 ;|z+i|=|z-1|$

Hence
$w=2 x+i y \in S$
$2 \mathrm{x} \leq \frac{1}{2} \quad \therefore \mathrm{x} \leq \frac{1}{4}$
Now
$(2 \mathrm{x})^{2}+(2 \mathrm{x})^{2}<4$
$x^{2}<\frac{1}{2} \Rightarrow x \in\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\therefore \mathrm{x} \in\left(\frac{-1}{\sqrt{2}}, \frac{1}{4}\right]$
18. Let $\vec{a}, \vec{b}, \vec{c}$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=168$ then $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is equal to:
(A) 10
(B) 14
(C) 16
(D) 18

Official Ans. by NTA (C)
Ans. (C)
Sol. $\quad|\vec{a}||\vec{b}||\vec{c}|=14$
$\vec{a}^{\wedge} \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}}^{\wedge} \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}}^{\wedge} \overrightarrow{\mathrm{a}}=\theta=\frac{2 \pi}{3}$
So, $\vec{a} \cdot \vec{b}=-\frac{1}{2} a b, \vec{b} \cdot \vec{c}=-\frac{1}{2} b c, \vec{a} \cdot \vec{c} .=-\frac{1}{2} a c$
(let)
$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})-(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b})$
$=\frac{1}{4} a b^{2} c+\frac{1}{2} a b^{2} c=\frac{3}{4} a b^{2} c$
Similarly
$(\vec{b} \times \overrightarrow{\mathrm{c}}) .(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})=\frac{3}{4} \mathrm{abc}^{2}$
$(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=\frac{3}{4} a^{2} b c$
$168=\frac{3}{4} \mathrm{abc}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
So, $(a+b+c)=16$
19. The domain of the function $f(x)=\sin ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}+2 x+7}\right)$ is :
(A) $[1, \infty)$
(B) $(-1,2]$
(C) $[-1, \infty)$
(D) $(-\infty, 2]$

Official Ans. by NTA (C)

Ans. (C)

Sol. $f(x)=\sin ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}+2 x+7}\right)$ Domain
$\frac{x^{2}-3 x+2}{x^{2}+2 x+7} \geq-1$ and $\frac{x^{2}-3 x+2}{x^{2}+2 x+7} \leq 1$
$2 x^{2}-x+9 \geq 0$ and $5 x \geq-5 \Rightarrow x \geq-1$
$x \in R$
Hence Domain $\mathrm{x} \in[-1, \infty)$
20. The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to:
(A) $(\mathrm{p} \wedge(\sim \mathrm{r})) \Rightarrow \mathrm{q}$
(B) $(\sim q) \Rightarrow((\sim r) \vee p)$
(C) $\mathrm{p} \Rightarrow(\mathrm{q} \vee \mathrm{r})$
(D) $(\mathrm{p} \wedge(\sim \mathrm{q})) \Rightarrow \mathrm{r}$

Official Ans. by NTA (B)
Ans. (B)
Sol. $\quad(p \rightarrow q) \vee(p \rightarrow r)$
$(\sim p \vee q) \vee(\sim p \vee r)$
$=\sim p \vee(q \vee r)$
$=p \rightarrow(q \vee r) \equiv(3)$ is true.
Now (1) $(\mathrm{p} \wedge \sim \mathrm{r}) \rightarrow \mathrm{q}$
$\sim(\mathrm{p} \wedge \sim \mathrm{r}) \vee \mathrm{q}=(\sim \mathrm{p} \vee \mathrm{r}) \vee \mathrm{q}$
$=\sim p \vee(r \vee q)=p \rightarrow(q \vee r)$
(4) $(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow \mathrm{r}=\mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{r})$

SECTION-B

1. The sum and product of the mean and variance of a binomial distribution are 82.5 and 1350 respectively. They the number of trials in the binomial distribution is:

Official Ans. by NTA (96)
Ans. (96)
Sol. Let, mean $=\mathrm{m}=\mathrm{np}$
\& variance $=\mathrm{v}=\mathrm{npq}, \mathrm{p}+\mathrm{q}=1$
Sum $=m+v=\frac{165}{2}$
Product $=\mathrm{mv}=1350$
On solving,
$\mathrm{m}=\mathrm{np}=60 \& \mathrm{v}=\mathrm{npq}=\frac{45}{2} \quad \therefore \mathrm{q}=\frac{3}{8} \quad \therefore \mathrm{P}=\frac{5}{8}$
Hence $\mathrm{n}=96$
2. Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x^{2}-x-4=0$. If $P_{n}=\alpha^{n}-\beta^{n}, n \in \mathbb{N}$, then $\frac{P_{15} P_{16}-P_{14} P_{16}-P_{15}^{2}+P_{14} P_{15}}{P_{13} P_{14}}$ is equal to \qquad .

Official Ans. by NTA (16)
Ans. (16)

Sol. $\quad \mathrm{Pn}=\alpha^{\mathrm{n}}-\beta^{\mathrm{n}} \quad \mathrm{x}^{2}-\mathrm{x}-4=0$
$\frac{P_{15} P_{16}-P_{14} P_{16}-P_{15}^{2}+P_{14} P_{15}}{P_{13} \mathrm{P}_{14}}$
As $P_{n}-P_{n-1}=\left(\alpha^{n}-\beta^{n}\right)-\left(\alpha^{n-1}-\beta^{n-1}\right)$
$=\alpha^{n-2}\left(\alpha^{2}-\alpha\right)-\beta^{n-2}\left(\beta^{2}-\beta\right)$
$=4\left(\alpha^{n-2}-\beta^{n-2}\right)$
$P_{n}-P_{n-1}=4 P_{n-2}$
Hence Expression (1)
$\frac{\mathrm{P}_{16}\left(\mathrm{P}_{15}-\mathrm{P}_{14}\right)-\mathrm{P}_{15}\left(\mathrm{P}_{15}-\mathrm{P}_{14}\right)}{\mathrm{P}_{13} \mathrm{P}_{14}}$
$=\frac{\left(\mathrm{P}_{15}-\mathrm{P}_{14}\right)\left(\mathrm{P}_{16}-\mathrm{P}_{15}\right)}{\mathrm{P}_{13} \mathrm{P}_{14}}=\frac{\left(4 \mathrm{P}_{13}\right)\left(4 \mathrm{P}_{14}\right)}{\mathrm{P}_{13} \mathrm{P}_{14}}=16$
3. Let $\mathrm{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$. For $\mathrm{k} \in \mathbb{N}$, if $\mathrm{X}^{\prime} \mathrm{A}^{k} \mathrm{X}=33$, then k is equal to:

Official Ans. by NTA (10)
Ans. (Dropped or 10)
Sol. $\quad \mathrm{X}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] ; \mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$
$X^{T} A^{K} X=33$
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]^{\mathrm{k}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33$
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33$
As $A^{2}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A^{4}=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1\end{array} 0\right.$
$\mathrm{A}^{8}=\left[\begin{array}{lll}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A^{10}=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 30 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
for $K \rightarrow$ Even $A^{K}=\left[\begin{array}{lll}1 & 0 & 3 \mathrm{~K} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$X^{T} A^{K} X=33$ (This is not correct)
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 3 \mathrm{~K} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$=\left[\begin{array}{lll}1 & 1 & 3 \mathrm{~K}+1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{ll}3 \mathrm{~K}+3\end{array}\right]$
$\therefore 3 \mathrm{~K}+3=33 \therefore \mathrm{~K}=10$
But it should be dropped as 33 is not matrix
If K is odd
$\mathrm{X}^{\mathrm{T}} \mathrm{A}^{\mathrm{K}} \mathrm{X}=33$
$\mathrm{X}^{\mathrm{T}} \mathrm{AA}^{\mathrm{K}-1} \mathrm{X}=33$
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 3 \mathrm{k}-3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33$
$\left[\begin{array}{lll}-1 & 3 & 8\end{array}\right]\left[\begin{array}{l}3 \mathrm{k}-2 \\ 1 \\ 1\end{array}\right]=[33]$
$[-3 \mathrm{k}+13]=[33]$
$\mathrm{k}=20 / 3$ (not possible)
4. The number of natural numbers lying between 1012 and 23421 that can be formed using the digits $2,3,4,5,6$ (repetition of digits is not allowed) and divisible by 55 is \qquad _,

Official Ans. by NTA (6)
Ans. (6) Sol. 4
digit numbers For
divisibility
by 55 , no. should be
div. by 5 and 11 both

Also, for divisibility by 11
$a+c=b+5$
for $b=1 \quad a=2, c=4$
$\mathrm{a}=4, \quad \mathrm{c}=2$
for $b=2 \quad a=3, \quad c=4$
$\mathrm{a}=4, \quad \mathrm{c}=3$
for $b=3 \quad a=6, \quad c=2$
$a=2, \quad c=6$
$\therefore 6$ possible four digit no.s are div. by 55
(II) 5 digit number is not possible

(Not possible)
5. If $\sum_{\mathrm{k}=1}^{10} \mathrm{~K}^{2}\left(10_{\mathrm{C}_{\mathrm{K}}}\right)^{2}=22000 \mathrm{~L}$, then L is equal to \qquad -

Official Ans. by NTA (221)
Ans. (221)
Sol. $\sum_{\mathrm{K}=1}^{10} \mathrm{~K}^{2}\left({ }^{10} \mathrm{C}_{\mathrm{K}}\right)^{2}$
$\sum_{\mathrm{K}=1}^{10}\left(\mathrm{~K} \cdot{ }^{10} \mathrm{C}_{\mathrm{K}}\right)^{2}=\sum_{\mathrm{K}=1}^{10}\left(10 .{ }^{9} \mathrm{C}_{\mathrm{K}-1}\right)^{2}$
$=100 \sum_{\mathrm{K}=1}^{10}{ }^{9} \mathrm{C}_{\mathrm{K}-1} \cdot{ }^{9} \mathrm{C}_{10-\mathrm{K}}$
$=100\left({ }^{18} \mathrm{C}_{9}\right)=100\left(\frac{18!}{9!9!}\right)$
$\Rightarrow 4862000=22000 \mathrm{~L}$
Hence $L=221$
6. If [t] denotes the greatest integer $\leq \mathrm{t}$, then number of points, at which the function $f(x)=4|2 x+3|+$ $9\left[x+\frac{1}{2}\right]-12[x+20]$ is not differentiable in the open interval $(-20,20)$, is \qquad —.

Official Ans. by NTA (79)
Ans. (79)
Sol. $f(x)=4|2 x+3|+9\left[x+\frac{1}{2}\right]-12[x+20]$
$x \in(-20,20)$
$\mathrm{f}(\mathrm{x})$ is not Diff. at $\mathrm{x}=\mathrm{I} \in\{-19,-18, \ldots .0, \ldots 19\}=39$ at $\mathrm{x}=\mathrm{I}+\frac{1}{2}, \mathrm{f}(\mathrm{x})$ Non diff. at 39 points

Check at $\mathrm{x}=\frac{-3}{2}$ Discount at $\mathrm{x}=\frac{-3}{2} \therefore \mathrm{~N}$. $\mathrm{R}(1)$
No. of point of non-differentiabilty
$=39+39+1=79$
7. If the tangent to the curve $y=x^{3}-x^{2}+x$ at the point (a, b) is also tangent to the curve $y=5 x^{2}+$ $2 \mathrm{x}-25$ at the point $(2,-1)$, then $\mid 2 \mathrm{a}+9 \mathrm{bl}$ is equal to \qquad .

Official Ans. by NTA (195)

Ans. (195)
Sol. $\mathrm{y}=5 \mathrm{x}^{2}+2 \mathrm{x}-25 \quad \mathrm{P}(2,-1)$
$y^{\prime}=10 x+2$
$y_{P}^{\prime}=22$
\therefore tangent to curve at P
$y+1=22(x-2)$
$y=22 x-45$
$\underbrace{y=x^{3}-x^{2}+x}_{Q(a, b)}$
$\left.\frac{d y}{d x}\right|_{C_{2}}=3 x^{2}-2 x+1$
$\left.\frac{d y}{d x}\right|_{Q}=3 a^{2}-2 a+1$
Hence $3 a^{2}-2 a+1=22$
$\therefore 3 a^{2}-2 a-21=0$
$3 a^{2}-9 a+7 a-21=0$
$(3 a+7)(a-3)=0<a=3$
from curve $b=a^{3}-a^{2}+a$
$\mathrm{a}=3$
$b=21 \quad|2 a+9 b|=195$
at $\mathrm{a}=-7 / 3$ tangent will be parallel
Hence it is rejected
8. Let AB be a chord of length 12 of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$.

If tangents drawn to the circle at points A and B intersect at the point P , then five times the distance of point P from chord $A B$ is equal to \qquad .

Official Ans. by NTA (72)

Ans. (72)

Sol.

$\cos \theta=\frac{6}{\frac{13}{2}}=\frac{12}{13}$
$\sin \theta=\frac{5}{13}$
$\mathrm{PM}=\mathrm{AM} \cot \theta$
$P M=6\left(\frac{12}{5}\right) \therefore 5(\mathrm{PM})=72$
9. Let \vec{a} and \vec{b} be two vectors such that $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2|\vec{b}|^{2}, \vec{a} \cdot \vec{b}=3$ and $|\vec{a} \times \vec{b}|^{2}=75$. Then $|\vec{a}|^{2}$ is equal to \qquad -.

Official Ans. by NTA (14)

Ans. (14)

Sol. $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2|\vec{b}|^{2} ; \vec{a} \cdot \vec{b}=3$

As $|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=|\vec{a}|^{2}+2|\vec{b}|^{2}$
$|\vec{b}|^{2}=2 \vec{a} \cdot \vec{b}=6$
$|\vec{a} \times \vec{b}|^{2}=75$
$|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}=75$
$6|\vec{a}|^{2}-9=75 \Rightarrow|\vec{a}|^{2}=14$
10. Let
$S=\left\{(x, y) \in \mathbb{N} \times \mathbb{N}: 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$
and $\quad \mathrm{T}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R} \times \mathbb{R}:(\mathrm{x}-7)^{2}+(\mathrm{y}-4)^{2} \leq 36\right\}$.
The $\mathrm{n}(\mathrm{S} \cap \mathrm{T})$ is equal to \qquad .

Official Ans. by NTA (27)
Ans. (27)
Sol. $S: \frac{(x-3)^{2}}{16}+\frac{(y-4)^{2}}{9} \leq 1 ; x, y \in\{1,2,3, \ldots \ldots$.
$T:(x-7)^{2}+(y-4)^{2} \leq 36 x, y \in R$
Let $\mathrm{x}-3=\mathrm{x}: \mathrm{y}-4=\mathrm{y}$
$S: \frac{x^{2}}{16}+\frac{y^{2}}{9} \leq 1 ; x \in\{-2,-1,0,1, \ldots \ldots$.
$\mathrm{T}:(\mathrm{x}-4)^{2}+\mathrm{y}^{2} \leq 36 ; \mathrm{y} \in\{-3,-2,-1,0, \ldots \ldots .$.

$\mathrm{S} \cap \mathrm{T}=(-2,0),(-1,0), \ldots . .(4,0) \rightarrow(7)$
$(-1,1),(0,1), \ldots \ldots . .(3,1) \rightarrow(5)$
$(-1,-1),(0,-1), \ldots \ldots . .(3,-1) \rightarrow(5)$
$(-1,2),(0,2),(1,2),(2,2) \rightarrow(4)$
$(-1,-2),(0,-2),(1,-2),(2,-2) \rightarrow(4)$
$(0,3)(0,-3) \rightarrow(2)$

