

FINAL JEE-MAIN EXAMINATION – JUNE, 2022

Held On Sunday 26th June, 2022 TIME: 3:00 PM to 06:00 PM

SECTION-A

- 1. The dimension of mutual inductance is:
 - (A) $[ML^2 T^{-2} A^{-1}]$

∜Saral

- (B) $[ML^2T^{-3}A^{-1}]$
- (C) $[ML^2T^{-2}A^{-2}]$
- (D) $[ML^2T^{-3}A^{-2}]$

Official Ans. by NTA (C)

Ans. (C)

Sol. e_2 : induced emf in secondary coil

i₁: Current in primary coil

M: Mutual inductance

$$\mathbf{e}_2 = -\mathbf{M} \frac{\mathbf{d}\mathbf{i}_1}{\mathbf{d}\mathbf{t}}$$

$$M = -\frac{e_2}{\frac{di_1}{dt}}$$

$$[M] = \frac{\begin{bmatrix} e_2 \end{bmatrix}}{\begin{bmatrix} di_1 \\ dt \end{bmatrix}} = \frac{\begin{bmatrix} \frac{W}{q} \end{bmatrix}}{\begin{bmatrix} \frac{di_1}{dt} \end{bmatrix}} = \frac{\begin{bmatrix} ML^2T^{-2} \\ AT \end{bmatrix}}{\begin{bmatrix} AT^{-1} \end{bmatrix}}$$

$$= [ML^2T^{-2}A^{-2}]$$

2. In the arrangement shown in figure a₁,a₂, a₃ and a₄ are the accelerations of masses m₁,m₂,m₃ and m₄ respectively. Which of the following relation is true for this arrangement?

(A)
$$4a_1 + 2a_2 + a_3 + a_4 = 0$$

(B)
$$a_1 + 4a_2 + 3a_3 + a_4 = 0$$

(C)
$$a_1 + 4a_2 + 3a_3 + 2a_4 = 0$$

(D)
$$2a_1 + 2a_2 + 3a_3 + a_4 = 0$$

Official Ans. by NTA (A)

Ans. (A)

Sol.

Using costraint

$$\sum \vec{T} \cdot \vec{a} = 0$$

$$-4Ta_1 - 2Ta_2 - Ta_3 - Ta_4 = 0$$

$$4a_1 + 2a_2 + a_3 + a_4 = 0$$

3. Arrange the four graphs in descending order of total work done; where W₁, W₂, W₃ and W₄ are the work done corresponding to figure a, b, c and d respectively.

- (A) $W_3 > W_2 > W_1 > W_4$
- (B) $W_3 > W_2 > W_4 > W_1$
- (C) $W_2 > W_3 > W_4 > W_1$
- (D) $W_2 > W_3 > W_1 > W_4$

Official Ans. by NTA (A)

Ans. (A)

Sol. Work done = area under F - x curve. Area below x-axis is negative & area above x-axis is positive.

∜Saral

$$W_3 > W_2 > W_1 > W_4$$

4. Solid spherical ball is rolling on a frictionless horizontal plane surface about its axis of symmetry. The ratio of rotational kinetic energy of the ball to its total kinetic energy is :-

(A) $\frac{2}{5}$ (B) $\frac{2}{7}$ (C) $\frac{1}{5}$

(B)
$$\frac{2}{7}$$

(C)
$$\frac{1}{5}$$

(D)
$$\frac{7}{10}$$

Official Ans. by NTA (B)

Ans. (B)

Sol. $K_{total} = K_{rotational} + K_{Translational}$

$$K_{total} = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}mV_{cm}^2$$

 $v_{cm} = R\omega$ for pure rolling

$$I_{cm} = \frac{2}{5}mR^2$$

$$K_{Rot} = \frac{1}{2}I_{cm}\omega^2 = \frac{1}{2} \times \frac{2}{5}mR^2 \times \frac{v_{cm}^2}{R^2} = \frac{1}{5}mv_{cm}^2$$

$$K_{Total} = \frac{1}{5} m v_{cm}^2 + \frac{1}{2} m v_{cm}^2 = \frac{7}{10} m v_{cm}^2$$

$$\frac{K_{Rot}}{K_{Total}} \frac{\frac{1}{5} m v_{cm}^2}{\frac{7}{10} m v_{cm}^2} = \frac{2}{7}$$

5. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

> Assertion A: If we move from poles to equator, the direction of acceleration due to gravity of earth always points towards the center of earth without any variation in its magnitude.

> Reason R: At equator, the direction of acceleration due to the gravity is towards the center of earth.

> In the light of above statements, choose the correct answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true but R is NOT the correct explanation of A.
- (C) A is true but R is false
- (D) A is false but R is true

Official Ans. by NTA (D)

Ans. (D)

Sol.

Effective acceleration due to gravity is the resultant of g & rw2 whose direction & magnitude depends upon θ . Hence assertion is false.

When $\theta = 0^{\circ}$ (at equator), effective acceleration is radially inward.

If ρ is the density and η is coefficient of viscosity of fluid which flows with a speed v in the pipe of diameter d, the correct formula for Reynolds number R_e is:

$$R_e = \frac{\eta d}{\rho v}$$

(B)
$$R_e = \frac{\rho v}{\eta d}$$

$$R_e = \frac{\rho vd}{\eta}$$

(D)
$$R_e = \frac{\eta}{\rho v d}$$

Official Ans. by NTA (C)

Ans. (C)

Reynold's number is given by $\frac{\rho vd}{n}$

A flask contains argon and oxygen in the ratio of 3:2 in mass and the mixture is kept at 27°C. The ratio of their average kinetic energy per molecule respectively will be:

(A) 3:2

(B) 9:4

(C) 2:3

(D) 1:1

Official Ans. by NTA (D)

Ans. (Bonus)

Sol. Average K.E./molecule = $\frac{f}{2}kT$

So,
$$\frac{K_{Ar}}{K_{O_2}} = \frac{\frac{3}{2}kT}{\frac{5}{2}kT} = \frac{3}{5}$$

8. The charge on capacitor of capacitance $15\mu F$ in the figure given below is :

(A) 60μc (B) 130μc (C) 260 μc (D) 585 μc Official Ans. by NTA (A)

Ans. (A)

Sol.

∜Saral

$$\frac{1}{C_{eq}} = \frac{1}{10} + \frac{1}{15} + \frac{1}{20} = \frac{12 + 8 + 6}{120} = \frac{26}{120}$$

$$C_{eq} = \frac{60}{13} \mu F$$

$$Q = \frac{13 \times 60}{13} = 60 \mu C$$

Charge on each capacitor is same

- : they are in series.
- 9. A parallel plate capacitor with plate area A and plate separation d=2 m has a capacitance of 4 μF. The new capacitance of the system if half of the space between them is filled with a dielectric material of dielectric constant K=3 (as shown in figure) will be:

 $(A) 2\mu F$

(B) 32μF

 $(C) 6\mu F$

(D) 8µF

Official Ans. by NTA (C)

Ans. (C)

Sol.
$$C_{\text{original}} = \frac{A\epsilon_0}{d}$$

$$C_1 = \frac{A\epsilon_0}{d/2} = \frac{2A\epsilon_0}{d} = C$$

$$C_2 = \frac{KA\varepsilon_0}{d/2} = \frac{2KA\varepsilon_0}{d} = \frac{6A\varepsilon_0}{d} = 3C$$

C₁ & C₂ are in series

$$C_{\text{new}} = \frac{C_1 C_2}{C_1 + C_2} = \frac{C \times 3C}{C + 3C} = \frac{3C}{4}$$

$$= \frac{3}{4} \times \frac{2A\varepsilon_0}{d} = \frac{3}{2} \times \frac{A\varepsilon_0}{d}$$

$$C_{\text{new}} = \frac{3}{2} C_{\text{original}}$$

$$=\frac{3}{2}\times4=6\mu\text{F}$$

10. Sixty four conducting drops each of radius 0.02 m and each carrying a charge of 5 μC are combined to form a bigger drop. The ratio of surface density of bigger drop to the smaller drop will be:

(D) 8:

Official Ans. by NTA (B)

Ans. (B)

- **Sol.** Let R = radius of combined drop
 - r = radius of smaller drop

Volume will remain same

$$\frac{4}{3}\pi R^3 = 64 \times \frac{4}{3}\pi r^3$$

$$R = 4r$$

$$Q = 64q$$
;

q: charge of smaller drop

Q : Charge of combined drop

$$\frac{\sigma_{\text{bigger}}}{\sigma_{\text{smaller}}} = \frac{\frac{Q}{4\pi R^2}}{\frac{q}{4\pi r^2}} = \frac{Q}{q} \cdot \frac{r^2}{R^2}$$

$$=64\frac{r^2}{16r^2}=4$$

$$\frac{\sigma_{bigger}}{\sigma_{smaller}} = \frac{4}{1}$$

The equivalent resistance between points A and B | 13. in the given network is:

- $(A) 65\Omega$
- $(B) 20\Omega$
- (C) 5Ω
- (D) 2Ω

Official Ans. by NTA (C)

Ans. (C)

Sol.

∜Saral

 $R_{AB} = 5\Omega$

- A bar magnet having a magnetic moment of 2.0 × 10⁵ JT⁻¹, is placed along the direction of uniform magnetic field of magnitude B= 14×10^{-5} T. The work done in rotating the magnet slowly through 60° from the direction of field is:
 - (A) 14 J
- (B) 8.4 J
- (D) 1.4 J

Official Ans. by NTA (A)

Ans. (A)

Sol. Work done = MB ($\cos \theta_1 - \cos \theta_2$)

$$\theta_1 = 0^{\circ}, \, \theta_2 = 60^{\circ}$$

$$= 2 \times 10^5 \times 14 \times 10^{-5} \, (1 - 1/2)$$

$$= 14 \,\text{J}$$

Two coils of self inductance L₁ and L₂ are connected in series combination having mutual inductance of the coils as M. The equivalent self inductance of the combination will be:

- (A) $\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{M}$ (B) $L_1 + L_2 + M$
- (C) $L_1 + L_2 + 2M$ (D) $L_1 + L_2 2M$

Official Ans. by NTA (D)

Ans. (D)

Sol. Current on both the inductor is in opposite direction.

Hence:

$$L_{eq} = L_1 + L_2 - 2M$$

- A metallic conductor of length 1m rotates in a vertical plane parallel to east-west direction about one of its end with angular velocity 5 rad/s. If the horizontal component of earth's magnetic field is 0.2×10^{-4} T, then emf induced between the two ends of the conductor is:
 - (A) $5\mu V$ (B) $50\mu V$ (C) 5mV

- (D) 50mV

Official Ans. by NTA (B)

Ans. (B)

emf induced between the two ends = $\frac{B_H \omega l^2}{2}$ $\frac{0.2 \times 10^{-4} \times 5 \times 1}{2} = 0.5 \times 10^{-4} = 50 \times 10^{-6} \text{ V} = 50 \mu\text{V}$

- Which is the correct ascending order of 15. wavelengths?
 - (A) $\lambda_{visible} < \lambda_{X-ray} < \lambda_{gamma-ray} < \lambda_{microwave}$
 - (B) $\lambda_{gamma-ray} < \lambda_{X-ray} < \lambda_{visible} < \lambda_{microwave}$
 - (C) $\lambda_{X-ray} < \lambda_{gamma-ray} < \lambda_{visible} < \lambda_{microwave}$
 - (D) $\lambda_{\text{microwave}} < \lambda_{\text{visible}} < \lambda_{\text{gamma-ray}} < \lambda_{\text{X-ray}}$

Official Ans. by NTA (B)

Ans. (B)

Sol. From electromagnetic wave spectrum.

 λ increases \longrightarrow

γ-ray	x-rays	ultra	visible	infrared	microwave	Radio
		violet				wave

 $\lambda_{\text{gamma-ray}} < \lambda_{\text{X-ray}} < \lambda_{\text{visible}} < \lambda_{\text{microwave}}$

16. For a specific wavelength 670 nm of light coming from a galaxy moving with velocity v, the observed wavelength is 670.7 nm.

The value of v is:

(A)
$$3 \times 10^8 \, \text{ms}^{-1}$$

(B)
$$3 \times 10^{10} \text{ ms}^{-1}$$

(C)
$$3.13 \times 10^5 \text{ ms}^{-1}$$

(D)
$$4.48 \times 10^5 \,\mathrm{ms}^{-1}$$

Official Ans. by NTA (C)

Ans. (C)

Sol.
$$\lambda_{emitted} = 670 \text{ nm}$$

$$\lambda_{obs} = 670.7 \text{ nm}$$

$$v = ?$$

$$c = 3 \times 10^8 \text{ m/s}$$

If
$$v \ll c$$

$$\frac{\lambda_{obs} - \lambda_{emitted}}{\lambda_{emitted}} = \frac{v}{c}$$

$$\frac{670.7 - 670}{670} = \frac{\mathbf{v}}{\mathbf{c}}$$

$$V = 3.13 \times 10^5 \text{ m/s}$$

- 17. A metal surface is illuminated by a radiation of wavelength 4500 Å. The ejected photo-electron enters a constant magnetic field of 2 mT making an angle of 90° with the magnetic field. If it starts revolving in a circular path of radius 2 mm, the work function of the metal is approximately:
 - (A) 1.36 eV (B) 1.69 eV (C) 2.78 eV (D) 2.23 eV

Official Ans. by NTA (A)

Ans. (A)

Sol.
$$\lambda = 4500 \text{ Å}$$

$$B = 2mT$$
, $R = 2mm$

$$R = \frac{\sqrt{2Km}}{qB}$$

$$\frac{\left(qBR\right)^2}{2m} = K$$

$$\frac{\left(1.6 \times 10^{-19} \times 2 \times 10^{-3} \times 2 \times 10^{-3}\right)^2}{2 \times 9.1 \times 10^{-31}} = K$$

$$\frac{\left(6.4\right)^2}{2 \times 9.1} \times \frac{10^{-50}}{10^{-31}} = K$$

$$K = 2.25 \times 10^{-19} \text{ J}$$

$$= \frac{2.25 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV} = 1.40 \text{ eV}$$

$$E = \frac{12400}{4500} = 2.76 \,\text{eV}$$

$$\phi = E - K = (2.76 - 1.40) \text{ eV} = 1.36 \text{ eV}$$

18. A radioactive nucleus can decay by two different processes. Half-life for the first process is 3.0 hours while it is 4.5 hours for the second process.

The effective half-life of the nucleus will be:

(A) 3.75 hours

(B) 0.56 hours

(C) 0.26 hours

(D) 1.80 hours

Official Ans. by NTA (D)

Sol.
$$\lambda_{eq} = \lambda_1 + \lambda_2$$

$$\frac{\ln 2}{\left(t_{1/2}\right)_{eq}} = \frac{\ln 2}{\left(t_{1/2}\right)_{1}} + \frac{\ln 2}{\left(t_{1/2}\right)_{2}}$$

$$(t_{1/2})_{eq} = \frac{(t_{1/2})_1 \times (t_{1/2})_2}{(t_{1/2})_1 + (t_{1/2})_2}$$

$$= \frac{3 \times 4.5}{3 + 4.5} = \frac{3 \times 4.5}{7.5} = \frac{3 \times 3}{5} = 1.8 \text{ hr}$$

- **19.** The positive feedback is required by an amplifier to act an oscillator. The feedback here means:
 - (A) External input is necessary to sustain ac signal in output.
 - (B) A portion of the output power is returned back to the input.
 - (C) Feedback can be achieved by LR network.
 - (D) The base-collector junction must be forward biased.

Official Ans. by NTA (B)

Sol. When the amplifier connects with positive feedback, it acts as the oscillator the feedback here is positive feedback which means some amount of voltage is given to the input.

- **20.** A sinusoidal wave $y(t) = 40\sin(10 \text{ x } 10^6 \text{ mt})$ is amplitude modulated by another sinusoidal wave $x(t) = 20\sin(1000\pi t)$. The amplitude of minimum frequency component of modulated signal is:
 - (A) 0.5

∜Saral

- (B) 0.25
- (C) 20 (D) 10

Official Ans. by NTA (D)

Ans. (D)

Sol.
$$y(t) = 40 \sin(10 \times 10^6 \pi t)$$

$$x(t) = 20\sin(1000\pi t)$$

$$\Rightarrow \omega_c = 10^7 \,\pi$$

$$\omega_{\rm m} = 10^3 \ \pi$$

$$A_{\rm C} = 40$$

$$A_m = 20$$

Equation of modulated wave = $(A_C + A_m \sin \omega_m t)$ $\sin \omega_c t$

$$\begin{split} &=A_{c}\left(1+\frac{A_{m}}{A_{c}}\sin\omega_{m}t\right)\sin\omega_{c}t\\ &=A_{c}\left(1+\mu\sin\omega_{m}t\right)\sin\omega_{c}t, \qquad \qquad \mu=\frac{A_{m}}{A}. \end{split}$$

$$=A_{_{c}}\sin\omega_{_{c}}t+\frac{\mu A_{_{c}}}{2}\Big[\cos\big(\omega_{_{c}}-\omega_{_{m}}\big)t-\cos\big(\omega_{_{c}}+\omega_{_{m}}\big)t\Big]$$

Amplitude of minimum frequency

$$\frac{\mu A_c}{2} = \frac{A_m}{A_c} \times \frac{A_c}{2} = \frac{A_m}{2} = 10$$

SECTION-B

1. A ball is projected vertically upward with an initial velocity of 50 ms⁻¹ at t = 0s. At t = 2s. another ball is projected vertically upward with same velocity. At $t = ____s$, second ball will meet the first ball (g =10 ms⁻²).

Official Ans. by NTA (6)

Sol. Let they meet at t = t

So first ball gets t sec.

& 2^{nd} gets (t-2) sec. & they will meet at same height

$$h_1 = 50t - \frac{1}{2}gt^2$$

$$h_2 = 50(t-2) - \frac{1}{2}g(t-2)^2$$

$$h_1 = h_2$$

$$50t - \frac{1}{2}gt^2 = 50(t-2) - \frac{1}{2}g(t-2)^2$$

$$100 = \frac{1}{2} g \left[t^2 - (t - 2)^2 \right]$$

$$100 = \frac{10}{2} [4t - 4]$$

$$5 = t - 1$$

$$t = 6 \text{ sec.}$$

2. A batsman hits back a ball of mass 0.4 kg straight in the direction of the bowler without changing its initial speed of 15 ms⁻¹. The impulse imparted to the ball is

Ns.

Official Ans. by NTA (12)

Sol. Impulse = change in momentum

=
$$m[v - (-v)] = 2 mv$$

= $2 \times 0.4 \times 15 = 12 Ns$

3. A system to 10 balls each of mass 2 kg are connected via massless and unstretchable string. The system is allowed to slip over the edge of a smooth table as shown in figure. Tension on the string between the 7th and 8th ball is ______N when 6th ball just leaves the table.

Official Ans. by NTA (36)

Cal

∜Saral

$$a = \frac{6mg}{10m} = \frac{6g}{10} = \frac{3g}{5}$$

taking 8,9,10 together \longrightarrow

$$T = 3 \text{ ma}$$

$$=3m\times\frac{3g}{5}$$

$$= 36 \text{ N}$$

4. A geyser heats water flowing at a rate of 2.0 kg per minute from 30°C to 70°C. If geyser operates on a gas burner, the rate of combustion of fuel will be g min⁻¹

[Heat of combustion = $8 \times 10^3 \text{ Jg}^{-1}$

Specific heat of water = $4.2 \text{ Jg}^{-1} \, ^{\circ}\text{C}^{-1}$]

Official Ans. by NTA (42)

Sol. m = 2000 gm/min

Heat required by water/min = $mS\Delta T$

$$= (2000) \times 4.2 \times 40 \text{ J/min}$$

= 336000 J/min

The rate of combustion = $\left(\frac{dm}{dt}L\right)$ = 336000J / min

$$\frac{dm}{dt} = \frac{336000}{8 \times 10^3} g / min$$

- = 42 gm/min
- **5.** A heat engine operates with the cold reservoir at temperature 324 K.

The minimum temperature of the hot reservoir, if the heat engine takes 300 J heat from the hot reservoir and delivers 180 J heat to the cold reservoir per cycle, is ______ K.

Official Ans. by NTA (540)

Sol.
$$T_c = 324 \text{ k}$$

$$T_H = ?$$

$$Q_{\rm H} = 300 \, {\rm J}$$

$$Q_{L} = 180 \text{ J}$$

$$1 - \frac{Q_{L}}{Q_{H}} = 1 - \frac{T_{L}}{T_{H}}$$

$$\frac{Q_{L}}{Q_{H}} = \frac{T_{L}}{T_{H}}$$

$$T_{\rm H} = \frac{Q_{\rm H}}{Q_{\rm L}} \times T_{\rm L} = \frac{300}{180} \times 324 = 540 \,\rm K$$

6. A set of 20 tuning forks is arranged in a series of increasing frequencies. If each fork gives 4 beats with respect to the preceding fork and the frequency of the last fork is twice the frequency of the first, then the frequency of last fork is

Hz.

Official Ans. by NTA (152)

Sol.
$$f_1 = f$$

$$f_2 = f + 4$$

$$f_3 = f + 2 \times 4$$

$$f_4 = f + 3 \times 4$$

$$f_{20} = f + 19 \times 4$$

$$f + (19 \times 4) = 2 \times f$$

$$f = 76 \text{ Hz}.$$

Frequency of last tuning forks = 2f

$$= 152 \text{ Hz}$$

7. Two 10 cm long, straight wires, each carrying a current of 5A are kept parallel to each other. If each wire experienced a force of 10⁻⁵ N, then separation between the wires is _____ cm.

Official Ans. by NTA (5)

Sol. It should be mentioned, 10 cm wire is part of long wire

Force experienced by unit length of wire

$$=\frac{\mu_0 I_1 I_2}{2\pi d}, \ I_1 = I_2 = 5A$$

∜Saral

Force experienced by wires of length 10 cm

$$= \frac{\mu_0 I_1 I_2}{2\pi d} \times 10 \times 10^{-2}$$

$$10^{-5} = \frac{2 \times 10^{-7} \times 5 \times 5}{d} \times 10 \times 10^{-2}$$

$$d = 50 \times 10^{-3} \text{ m}$$

$$d = 50 \times 10^{-1} \text{ cm} = 5 \text{ cm}.$$

8. A small bulb is placed at the bottom of a tank containing water to a depth of $\sqrt{7}$ m. The $\frac{4}{7}$

refractive index of water is 3 . The area of the surface of water through which light from the bulb can emerge out is $x\pi$ m². The value of x is _____.

Official Ans. by NTA (9)

Ans. (9)

Sol. C: Criticle angle

$$\tan C = \frac{r}{h}$$

$$r = h tan C$$

$$\sin C = \frac{1}{\mu} = \frac{3}{4}$$

$$\tan C = \frac{3}{\sqrt{7}}$$

$$r = \sqrt{7} \times \frac{3}{\sqrt{7}} = 3$$

Area of surface = $\pi r^2 = 9\pi m^2$

9. A travelling microscope is used to determine the refractive index of a glass slab. If 40 divisions are there in 1 cm on main scale and 50 Vernier scale divisions are equal to 49 main scale divisions, then least count of the travelling microscope is $\times 10^{-6}$ m.

Official Ans. by NTA (5)

Ans. (5)

Sol.
$$50 \text{ VSD} = 49 \text{ MSD}$$

$$1VSD = \frac{49}{50}MSD$$

Least count =
$$1 \text{ MSD} - 1 \text{ VSD}$$

$$= \left(1 - \frac{49}{50}\right) MSD = \frac{1}{50} MSD$$

$$1MSD = \frac{1}{40}cm$$

Least count =
$$\frac{1}{50 \times 40}$$
 cm

$$= \frac{1}{2000} \text{ cm} = \frac{1}{2} \times 10^{-5} \text{ m}$$

$$= 0.5 \times 10^{-5} \,\mathrm{m}$$

$$= 5 \times 10^{-6} \,\mathrm{m}$$

10. The stopping potential for photoelectrons emitted from a surface illuminated by light of wavelength 6630 Å is 0.42 V. If the threshold frequency is $x \times 10^{13}$ /s, where x is _____ (nearest integer).

(Given, speed light = 3×10^8 m/s, Planck's constant = 6.63×10^{-34} Js)

Official Ans. by NTA (35)

Ans. (35)

Sol. Stopping potential
$$V_0 = 0.42 \text{ V}$$

$$\lambda = 6630 \text{ Å}$$

$$E = \phi + eV_0$$

E: energy of incident photon

V₀: Stopping potential

$$\phi = E - eV_0$$

$$E = \frac{12400}{6630} \text{ eV} = 1.87 \text{ eV}$$

$$\phi = (1.87 - 0.42) = 1.45 \text{ eV}$$

$$\phi = hv_0$$
; v_0 : threshold frequency

$$1.45 \times 1.6 \times 10^{-19} = 6.63 \times 10^{-34} \times v_0$$

$$v_0 = 0.35 \times 10^{15}$$

$$=35 \times 10^{13} \text{ sec}^{-1}$$

$$= 35$$