

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

Held On Wednesday, 2 September 2020

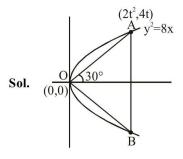
TIME: 3: 00 PM to 6: 00 PM

- The area (in sq. units) of an equilateral triangle 1. inscribed in the parabola $y^2 = 8x$, with one of its vertices on the vertex of this parabola, is:
 - (1) $64\sqrt{3}$

∜Saral

- (2) $256\sqrt{3}$
- (3) $192\sqrt{3}$
- $(4) 128\sqrt{3}$

Official Ans. by NTA (3)



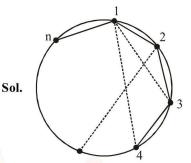
$$\tan 30^\circ = \frac{4t}{2t^2} = \frac{2}{t} \implies t = 2\sqrt{3}$$

$$AB = 8t = 16\sqrt{3}$$

Area =
$$256.3 \cdot \frac{\sqrt{3}}{4} = 192\sqrt{3}$$

- 2. Let n > 2 be an integer. Suppose that there are n Metro stations in a city located along a circular path. Each pair of stations is connected by a straight track only. Further, each pair of nearest stations is connected by blue line, whereas all remaining pairs of stations are connected by red line. If the number of red lines is 99 times the number of blue lines, then the value of n is :-
 - (1) 199
- (2) 101
- (3) 201
- (4) 200

Official Ans. by NTA (3)



Number of blue lines = Number of sides = n Number of red lines = number of diagonals

$$= {}^{n}C_2 - n$$

$${}^{n}C_{2} - n = 99 \text{ n} \Rightarrow \frac{n(n-1)}{2} - n = 99 \text{ n}$$

$$\frac{n-1}{2} - 1 = 99 \implies n = 201$$

3. If the equation $\cos^4\theta + \sin^4\theta + \lambda = 0$ has real solutions for θ , then λ lies in the interval :

(1)
$$\left[-\frac{3}{2}, -\frac{5}{4} \right]$$
 (2) $\left(-\frac{1}{2}, -\frac{1}{4} \right]$

$$(2) \left(-\frac{1}{2}, -\frac{1}{4} \right]$$

$$(3) \left(-\frac{5}{4}, -1\right) \qquad (4) \left[-1, -\frac{1}{2}\right]$$

$$(4) \left[-1, -\frac{1}{2} \right]$$

Official Ans. by NTA (4)

Sol.
$$\lambda = -(\sin^4\theta + \cos^4\theta)$$

$$\lambda = -(\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta$$

$$\lambda = \frac{\sin^2 2\theta}{2} - 1$$

$$\frac{\sin^2 2\theta}{2} \in \left[0, \frac{1}{2}\right]$$

$$\lambda \in \left[-1, -\frac{1}{2}\right]$$

- 4. Let f(x) be a quadratic polynomial such that f(-1) + f(2) = 0. If one of the roots of f(x) = 0 is 3, then its other root lies in :
 - (1) (-3, -1)

- (2)(1,3)
- (3) (-1, 0)
- (4) (0, 1)

Official Ans. by NTA (3)

- **Sol.** $f(x) = a(x 3) (x \alpha)$
 - $f(2) = a(\alpha 2)$
 - $f(-1) = 4a(1 + \alpha)$

$$f(-1) + f(2) = 0 \implies a(\alpha - 2 + 4 + 4\alpha) = 0$$

$$a \neq 0 \implies 5\alpha = -2$$

$$\alpha = -\frac{2}{5} = -0.4$$

$$\alpha \in (-1, 0)$$

5. Let $f: R \to R$ be a function which satisfies $f(x + y) = f(x) + f(y) \forall x, y \in R$. If f(1) = 2 and

$$g(n) = \sum_{k=1}^{(n-1)} f(k), n \in N$$
 then the value of n, for

which g(n) = 20, is:

- (1) 5
- (2) 9
- (3) 20
- $(4) \ 4$

Official Ans. by NTA (1)

Sol.
$$f(x + y) = f(x) + f(y)$$

$$\Rightarrow$$
 f(n) = nf(1)

$$f(n) = 2n$$

$$g(n) = \sum_{k=1}^{n-1} 2n = 2\left(\frac{(n-1)n}{2}\right) = n(n-1)$$

$$g(n) = 20 \implies n(n-1) = 20$$

$$n = 5$$

6. Let a, b, $c \in R$ be all non-zero and satisfy $a^3 + b^3 + c^3 = 2$. If the matrix

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$

satisfies $A^{T}A = I$, then a value of abc can be:

- (1) $\frac{2}{3}$
- $(2) -\frac{1}{3}$
- (3) 3
- (4) $\frac{1}{3}$

Official Ans. by NTA (4)

Sol. $A^TA = I$

$$\Rightarrow$$
 $a^2 + b^2 + c^2 = 1$

and
$$ab + bc + ca = 0$$

Now,
$$(a + b + c)^2 = 1$$

$$\Rightarrow$$
 a + b + c = ± 1

So,
$$a^3 + b^3 + c^3 - 3abc$$

$$= (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

$$= \pm 1 (1 - 0) = \pm 1$$

$$\Rightarrow$$
 3 abc = 2 ± 1 = 3, 1

$$\Rightarrow$$
 abc = 1, $\frac{1}{3}$

7. Let $f: (-1, \infty) \to R$ be defined by f(0) = 1 and

$$f(x) = \frac{1}{x} \log_e(1+x), x \neq 0$$
. Then the function f:

- (1) decreases in $(-1, \infty)$
- (2) decreases in (-1, 0) and increases in $(0, \infty)$
- (3) increases in $(-1, \infty)$
- (4) increases in (-1, 0) and decreases in $(0, \infty)$

Official Ans. by NTA (1)

Sol.
$$f'(x) = \frac{\frac{x}{1+x} - \ell n(1+x)}{x^2}$$
$$= \frac{x - (1+x) \ell n(1+x)}{x^2 (1+x)}$$

Suppose $h(x) = x - (1 + x) \ln(1 + x)$

$$\Rightarrow$$
 h'(x) = 1 - ℓ n(1+x) - 1 = - ℓ n(1+x)

$$h'(x) > 0, \ \forall \ x \in (-1, \ 0)$$

$$h'(x) < 0, \ \forall \ x \in (0, \infty)$$

$$h(0) = 0 \Rightarrow h'(x) < 0 \ \forall \ x \in (-1, \infty)$$

$$\Rightarrow$$
 f'(x) < 0 \forall x \in (-1, \infty)

 \Rightarrow f(x) is a decreasing function for all x \in (-1, ∞)

- 8. If the sum of first 11 terms of an A.P., $a_1 a_2, a_3,...$ is $0 (a_1 \neq 0)$, then the sum of the A.P., $a_1, a_3, a_5,...,a_{23}$ is ka_1 , where k is equal to:
 - (1) $\frac{121}{10}$
- (2) $-\frac{72}{5}$
- (3) $\frac{72}{5}$
- $(4) -\frac{121}{10}$

Official Ans. by NTA (2)

Sol.
$$a_1 + a_2 + a_3 + \dots + a_{11} = 0$$

$$\Rightarrow$$
 (a₁ + a₁₁) $\times \frac{11}{2} = 0$

$$\Rightarrow$$
 $a_1 + a_{11} = 0$

$$\Rightarrow a_1 + a_1 + 10d = 0$$

where d is common difference

$$\Rightarrow a_1 = -5d$$

$$a_1 + a_3 + a_5 + \dots + a_{23}$$

=
$$(a_1 + a_{23}) \times \frac{12}{2} = (a_1 + a_1 + 22d) \times 6$$

$$= \left(2a_1 + 22\left(\frac{-a_1}{5}\right)\right) \times 6$$

$$=-\frac{72}{5}a_1 \Rightarrow K = \frac{-72}{5}$$

9. The imaginary part of

$$(3+2\sqrt{-54})^{1/2} - (3-2\sqrt{-54})^{1/2}$$
 can be:

- $(1) -2\sqrt{6}$
- (2) 6
- (3) $\sqrt{6}$
- $(4) -\sqrt{6}$

Official Ans. by NTA (1)

Sol.
$$(3+2\sqrt{-54}) = 3+2\times 3\times \sqrt{6} i$$

$$= \left(3 + \sqrt{6} i\right)^2$$

$$(3-2\sqrt{54}) = (3-\sqrt{6} i)^2$$

$$(3+2\sqrt{-54})^{1/2}+(3-2\sqrt{-54})^{1/2}$$

$$=\pm(3+\sqrt{6} i)\pm(3-\sqrt{6} i)$$

$$= 6, -6, 2\sqrt{6}i, -2\sqrt{6}i,$$

10.
$$\lim_{x\to 0} \left(\tan \left(\frac{\pi}{4} + x \right) \right)^{1/x}$$
 is equal to :

- (1) 2
- (2) e
- (3) 1
- $(4) e^{2}$

Official Ans. by NTA (4)

Sol.
$$\lim_{x\to 0} \left\{ \tan \left(\frac{\pi}{4} + x \right) \right\}^{1/x}$$

$$= \lim_{x\to 0} \frac{1}{x} \left\{ \tan \left(\frac{\pi}{4} + x \right) - 1 \right\}$$

$$= e^{\lim_{x\to 0} \left(\frac{1+\tan x - 1 + \tan x}{x(1-\tan x)}\right)}$$

$$= e^{\lim_{x\to 0} \frac{2\tan x}{x(1-\tan x)}}$$

$$= e^2$$

- 11. The equation of the normal to the curve $y = (1+x)^{2y} + \cos^2(\sin^{-1}x)$ at x = 0 is :
 - (1) y = 4x + 2

- (2) x + 4y = 8
- (3) y + 4x = 2
- (4) 2y + x = 4

Official Ans. by NTA (2)

Sol. Given equation of curve

$$y = (1 + x)^{2y} + \cos^2(\sin^{-1}x)$$

at
$$x = 0$$

$$y = (1 + 0)^{2y} + \cos^2(\sin^{-1}0)$$

$$y = 1 + 1$$

$$y = 2$$

So we have to find the normal at (0, 2)

Now
$$y = e^{2y \ln(1+x)} + \cos^2(\cos^{-1} \sqrt{1-x^2})$$

$$y = e^{2y \ln(1+x)} + \left(\sqrt{1-x^2}\right)^2$$

$$y = e^{2y\ln(1+x)} + (1-x^2)$$
 ...(1)

Now differentiate w.r.t. x

$$y' = e^{2y \ln(1+x)} \left[2y \cdot \left(\frac{1}{1+x} \right) + \ln(1+x) \cdot 2y' \right] - 2x$$

Put
$$x = 0 & y = 2$$

$$y' = e^{2 \times 2l \ln 1} \left[2 \times 2 \left(\frac{1}{1+0} \right) + \ln(1+0).2y' \right] - 2 \times 0$$

$$y' = e^0[4 + 0] - 0$$

y' = 4 = slope of tangent to the curve

so slope of normal to the curve = $-\frac{1}{4} \{m_1 m_2 = -1\}$

Hence equation of normal at (0, 2) is

$$y - 2 = -\frac{1}{4}(x - 0)$$

$$\Rightarrow 4y - 8 = -x$$

$$\Rightarrow x + 4y = 8$$

12. For some $\theta \in \left(0, \frac{\pi}{2}\right)$, if the eccentricity of the

hyperbola, $x^2-y^2\sec^2\theta = 10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^2\sec^2\theta + y^2 = 5$, then the length of the latus rectum of the ellipse, is:

- (1) $\sqrt{30}$
- (2) $\frac{4\sqrt{5}}{3}$
- (3) $2\sqrt{6}$
- (4) $\frac{2\sqrt{5}}{3}$

Official Ans. by NTA (2)

Sol. Given $\theta \in \left(0, \frac{\pi}{2}\right)$

equation of hyperbola $\Rightarrow x^2 - y^2 \sec^2 \theta = 10$

$$\Rightarrow \frac{x^2}{10} - \frac{y^2}{10\cos^2\theta} = 1$$

Hence eccentricity of hyperbola

$$(e_{\rm H}) = \sqrt{1 + \frac{10\cos^2\theta}{10}}$$
 ...(1)

$$\left\{e = \sqrt{1 + \frac{b^2}{a^2}}\right\}$$

Now equation of ellipse $\Rightarrow x^2 \sec^2 \theta + y^2 = 5$

$$\Rightarrow \frac{x^2}{5\cos^2\theta} + \frac{y^2}{5} = 1 \qquad \left\{ e = \sqrt{1 - \frac{a^2}{b^2}} \right\}$$

Hence eccenticity of ellipse

$$(e_{\rm E}) = \sqrt{1 - \frac{5\cos^2\theta}{5}}$$

$$(e_{E}) = \sqrt{1 - \cos^2 \theta} = |\sin \theta| = \sin \theta \qquad \dots (2)$$

$$\left\{ \because \theta \in \left(0, \frac{\pi}{2}\right) \right\}$$

given
$$\Rightarrow$$
 e_H = $\sqrt{5}$ e_e

Hence
$$1 + \cos^2\theta = 5\sin^2\theta$$

$$1 + \cos^2\theta = 5(1 - \cos^2\theta)$$

$$1 + \cos^2\theta = 5 - 5\cos^2\theta$$

$$6\cos^2\theta = 4$$

$$\cos^2\theta = \frac{2}{3} \qquad \dots(3)$$

Now length of latus rectum of ellipse

$$=\frac{2a^2}{b}=\frac{10\cos^2\theta}{\sqrt{5}}=\frac{20}{3\sqrt{5}}=\frac{4\sqrt{5}}{3}$$

- Which of the following is a tautology? 13.

 - (1) $(\sim p) \land (p \lor q) \rightarrow q$ (2) $(q \rightarrow p) \lor \sim (p \rightarrow q)$
 - $(3) (p \rightarrow q) \land (q \rightarrow p)$
- $(4) (\sim q) \lor (p \land q) \rightarrow q$

Official Ans. by NTA (1)

- **Sol.** Option (1) is
 - $\sim p \land (p \lor q) \rightarrow q$
 - $\equiv (\sim p \land p) \lor (\sim p \land q) \rightarrow q$
 - $\equiv C \lor (\sim p \land q) \rightarrow q$
 - $\equiv (\sim p \land q) \rightarrow q$
 - $\equiv \sim (\sim p \land q) \lor q$
 - $\equiv (p \lor \sim q) \lor q$
 - $\equiv (p \lor q) \lor (\sim q \lor q)$
 - $\equiv (p \lor q) \lor t$
 - so $\sim p \land (p \lor q) \rightarrow q$ is a tautology
- 14. A plane passing through the point (3, 1,1)contains two lines whose direction ratios are 1, -2, 2 and 2, 3, -1 respectively. If this plane also passes through the point $(\alpha, -3, 5)$, then α is equal to:
 - (1) -10
- (2) 5
- (3) 10
- (4) -5

Official Ans. by NTA (2)

Sol. Hence normal is \perp^r to both the lines so normal vector to the plane is

$$\vec{n} = (\hat{i} - 2\hat{j} + 2\hat{k}) \times (2\hat{i} + 3\hat{j} - \hat{k})$$

$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 2 & 3 & -1 \end{vmatrix} = \hat{i}(2-6) - \hat{j}(-1-4) + \hat{k}(3+4)$$

$$\vec{n} = -4\hat{i} + 5\hat{j} + 7\hat{k}$$

Now equation of plane passing through (3,1,1) is

$$\Rightarrow -4(x-3) + 5(y-1) + 7(z-1) = 0$$

$$\Rightarrow$$
 -4x + 12 + 5y - 5 + 7z - 7 = 0

$$\Rightarrow -4x + 5y + 7z = 0 \qquad \dots (1)$$

Plane is also passing through $(\alpha, -3, 5)$ so this point satisfies the equation of plane so put in equation (1)

$$-4\alpha + 5 \times (-3) + 7 \times (5) = 0$$

$$\Rightarrow$$
 -4α $-15 + 35 = 0$

$$\Rightarrow \alpha = 5$$

15. Let E^C denote the complement of an event E. Let E₁, E₂ and E₃ be any pairwise independent events with $P(E_1) > 0$ and $P(E_1 \cap E_2 \cap E_3) = 0$.

Then $P(E_2^C \cap E_3^C / E_1)$ is equal to :

- (1) $P(E_3^C) P(E_2)$ (2) $P(E_2^C) + P(E_3)$
- (3) $P(E_3^C) P(E_2^C)$ (4) $P(E_3) P(E_2^C)$

Official Ans. by NTA (1)

Sol. Given E_1 , E_2 , E_3 are pairwise indepedent events so $P(E_1 \cap E_2) = P(E_1).P(E_2)$

and
$$P(E_2 \cap E_3) = P(E_2).P(E_3)$$

and
$$P(E_3 \cap E_1) = P(E_3).P(E_1)$$

&
$$P(E_1 \cap E_2 \cap E_3) = 0$$

Now
$$P\left(\frac{\overline{E}_2 \cap \overline{E}_3}{E_1}\right) = \frac{P\left[E_1 \cap (\overline{E}_2 \cap \overline{E}_3)\right]}{P(E_1)}$$

$$=\frac{P(E_{_{1}})-\left[P(E_{_{1}}\cap E_{_{2}})+P(E_{_{1}}\cap E_{_{3}})-P(E_{_{1}}\cap E_{_{2}}\cap E_{_{3}})\right]}{P(E_{_{1}})}$$

$$= \frac{P(E_1) - P(E_1) \cdot P(E_2) - P(E_1)P(E_3) - 0}{P(E_1)}$$

$$= 1 - P(E_2) - P(E_3)$$
$$= [1 - P(E_3)] - P(E_2)$$

$$= P(E_3^C) - P(E_2)$$

16. Let
$$A = \{X = (x, y, z)^T : PX = 0 \text{ and } \}$$

$$x^{2} + y^{2} + z^{2} = 1$$
 where $P = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1 \end{bmatrix}$,

then the set A:

- (1) is a singleton
- (2) contains exactly two elements
- (3) contains more than two elements
- (4) is an empty set

Official Ans. by NTA (2)

Sol. Given
$$P = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & 1 \end{bmatrix}$$
, Here $|P| = 0$ & also

given PX = 0

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

$$x + 2y + z = 0$$

$$\Rightarrow -2x + 3y - 4z = 0$$

$$x + 9y - z = 0$$
D = 0, so system have

infinite many solutions,

By solving these equation

we get
$$x = \frac{-11\lambda}{2}$$
; $y = \lambda$; $z = \frac{7\lambda}{2}$

Also given, $x^2 + y^2 + z^2 = 1$

$$\Rightarrow \left(\frac{-11\lambda}{2}\right)^2 + (\lambda)^2 + \left(\frac{7\lambda}{2}\right)^2 = 1$$

$$\Rightarrow \lambda = \pm \frac{1}{\sqrt{\frac{121}{4} + 1 + \frac{49}{4}}}$$

so, there are 2 values of λ .

 \therefore so, there are 2 solution set of (x,y,z).

Consider a region $R = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 2x\}.$ If a line $y = \alpha$ divides the area of region R into two equal parts, then which of the following is

(1)
$$\alpha^3 - 6\alpha^2 + 16 = 0$$

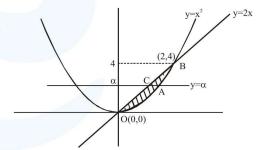
(1)
$$\alpha^3 - 6\alpha^2 + 16 = 0$$
 (2) $3\alpha^2 - 8\alpha + 8 = 0$

(3)
$$\alpha^3 - 6\alpha^{3/2} - 16 = 0$$
 (4) $3\alpha^2 - 8\alpha^{3/2} + 8 = 0$

(4)
$$3\alpha^2 - 8\alpha^{3/2} + 8 = 0$$

Official Ans. by NTA (4)

Sol.



* $y \ge x^2 \Rightarrow$ upper region of $y = x^2$

$$y \le 2x \Rightarrow$$
 lower region of $y = 2x$

According to ques, area of OABC = 2 area of OAC

$$\Rightarrow \int_{0}^{4} \left(\sqrt{y} - \frac{y}{2} \right) dy = 2 \int_{0}^{\alpha} \left(\sqrt{y} - \frac{y}{2} \right) dy$$

$$\Rightarrow \frac{4}{3} = 2 \left[\frac{2}{3} \alpha^{3/2} - \frac{1}{4} \cdot \alpha^2 \right]$$

$$\Rightarrow \left[3\alpha^2 - 8\alpha^{3/2} + 8 = 0\right]$$

18. If a curve y = f(x), passing through the point (1,2), is the solution of the differential equation,

 $2x^2dy = (2xy + y^2)dx$, then $f\left(\frac{1}{2}\right)$ is equal to :

(1)
$$\frac{1}{1 - \log_e 2}$$
 (2) $\frac{1}{1 + \log_e 2}$

(2)
$$\frac{1}{1 + \log_e 2}$$

(3)
$$\frac{-1}{1 + \log_e 2}$$
 (4) $1 + \log_e 2$

$$(4) 1 + \log_{e} 2$$

Official Ans. by NTA (2)

Sol.
$$2x^2dy = (2xy + y^2) dx$$

 $\Rightarrow \frac{dy}{dx} = \frac{2xy + y^2}{2x^2}$ {Homogeneous D.E.}

$$\begin{cases} let \ y = xt \\ \Rightarrow \frac{dy}{dx} = t + x \frac{dt}{dx} \end{cases}$$

$$\Rightarrow t + x \frac{dt}{dx} = \frac{2x^2t + x^2t^2}{2x^2}$$

$$\Rightarrow t + x \frac{dt}{dx} = t + \frac{t^2}{2}$$

$$\Rightarrow x \frac{dt}{dx} = \frac{t^2}{2}$$

$$\Rightarrow 2 \int \frac{dt}{t^2} = \int \frac{dx}{x}$$

$$\Rightarrow 2\left(-\frac{1}{t}\right) = \ell \, n(x) + C \left\{ \text{Put } t = \frac{y}{x} \right\}$$

$$\Rightarrow -\frac{2x}{y} = \ell \, n \, x + C \quad \begin{cases} \text{Put } x = 1 \, \& \, y = 2 \\ \text{then we get } C = -1 \end{cases}$$

$$\Rightarrow \frac{-2x}{y} = \ell \, n(x) - 1$$

$$\Rightarrow y = \frac{2x}{1 - \ell n x}$$

$$\Rightarrow f(x) = \frac{2x}{1 - \log_e x}$$

so,
$$f\left(\frac{1}{2}\right) = \frac{1}{1 + \log_e 2}$$

19. Let S be the sum of the first 9 terms of the series:

 $\{x + ka\} + \{x^2 + (k + 2)a\} + \{x^3 + (k+4)a\} +$ $\{x^4 + (k + 6)a\} +$ where $a \ne 0$ and $x \ne 1$. If

$$S = \frac{x^{10} - x + 45a(x - 1)}{x - 1}$$
, then k is equal to :

$$(1) -5$$

(2) 1

$$(3) -3$$

(4) 3

Official Ans. by NTA (3)

Sol. $S = [x + ka + 0] + [x^2 + ka + 2a] + [x^3 + ka + 2a]$ 4a] + [x^4 + ka + 6a] +.....9 terms \Rightarrow S = (x + x² + x³ + x⁴+.....9 terms) + (ka + ka $+ ka + ka + \dots 9 terms + (0 + 2a + 4a + 6a +$9 terms)

$$\Rightarrow S = x \left[\frac{x^9 - 1}{x - 1} \right] + 9ka + 72a$$

$$\Rightarrow S = \frac{(x^{10} - x) + (9k + 72)a(x - 1)}{(x - 1)}$$

Compare with given sum, then we get, (9k + 72) = 45

$$\Rightarrow k = -3$$

- 20. The set of all possible values of θ in the interval $(0, \pi)$ for which the points (1, 2) and $(\sin \theta,$ $\cos\theta$) lie on the same side of the line x + y = 1 is:
 - (1) $\left(0,\frac{\pi}{4}\right)$

- $(2) \left(0, \frac{3\pi}{4}\right)$
- $(3) \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \qquad (4) \left(0, \frac{\pi}{2}\right)$

Official Ans. by NTA (4)

Sol. Given that both points (1, 2) & $(\sin\theta, \cos\theta)$ lie on same side of the line x + y - 1 = 0

So,
$$\left(\begin{array}{c} \text{Put } (1,2) \text{ in} \\ \text{given line} \end{array}\right) \left(\begin{array}{c} \text{Put } (\sin \theta, \cos \theta \text{ in} \\ \text{given line} \end{array}\right) > 0$$

$$\Rightarrow (1+2-1)(\sin\theta+\cos\theta-1)>0$$

$$\Rightarrow \sin \theta + \cos \theta > 1 \left\{ \div by\sqrt{2} \right\}$$

$$\Rightarrow \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta > \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) > \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{\pi}{4} < \theta + \frac{\pi}{4} < \frac{3\pi}{4}$$

$$\Rightarrow \left[0 < \theta < \frac{\pi}{2}\right]$$

21. If the variance of the terms in an increasing A.P., b_1 , b_2 , b_3 ,.... b_{11} is 90, then the common difference of this A.P. is_

Official Ans. by NTA (3.00)

Sol. Let a be the first term and d be the common difference of the given A.P. Where d > 0

$$\overline{X} = a + \frac{0+d+2d+...+10d}{11}$$

$$= a + 5d$$

$$\Rightarrow$$
 varience = $\frac{\Sigma(\overline{X} - x_i)^2}{11}$

$$\Rightarrow$$
 90 × 11 = (25d² + 16d² + 9d² + 4d²) × 2

$$\Rightarrow$$
 d = $\pm 3 \Rightarrow$ d = 3

22. If
$$y = \sum_{k=1}^{6} k \cos^{-1} \left\{ \frac{3}{5} \cos kx - \frac{4}{5} \sin kx \right\}$$
,

then
$$\frac{dy}{dx}$$
 at $x = 0$ is_____.

Official Ans. by NTA (91)

Sol. Put
$$\cos \alpha = \frac{3}{5}, \sin \alpha = \frac{4}{5}$$
 $0 < \alpha < \frac{\pi}{2}$

Now
$$\frac{3}{5}\cos kx - \frac{4}{5}\sin kx$$

$$=\cos \alpha \cdot \cos kx - \sin \alpha \cdot \sin kx$$

$$= \cos(\alpha + kx)$$

As we have to find derivate at x = 0

We have
$$\cos^{-1}(\cos(\alpha + kx))$$

$$= (\alpha + kx)$$

$$\Rightarrow y = \sum_{k=1}^{6} (\alpha + kx)$$

$$\Rightarrow \frac{dy}{dx}\bigg|_{x=0} = \sum_{k=1}^{6} k = \frac{6 \times 7 \times 13}{6} = 91$$

23. Let the position vectors of points 'A' and 'B' be $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + 3\hat{k}$, respectively. A point 'P' divides the line segment AB internally in the ratio λ : 1 (λ > 0). If O is the origin and $\overrightarrow{OB} \cdot \overrightarrow{OP} - 3 | \overrightarrow{OA} \times \overrightarrow{OP}|^2 = 6$, then λ is equal to_

Official Ans. by NTA (0.8)

Sol.
$$\begin{array}{c|c} \lambda & 1 \\ \hline A(\hat{i}+\hat{j}+\hat{k}) & B(2\hat{i}+\hat{j}+3\hat{k}) \end{array}$$

Using section formula we get

$$\overline{OP} = \frac{2\lambda + 1}{\lambda + 1}\hat{i} + \frac{\lambda + 1}{\lambda + 1}\hat{j} + \frac{3\lambda + 1}{\lambda + 1}\hat{k}$$

Now
$$\overline{OB} \cdot \overline{OP} = \frac{4\lambda + 2 + \lambda + 1 + 9\lambda + 3}{\lambda + 1}$$

$$= \frac{14\lambda + 6}{\lambda + 1}$$

$$\overline{OA} \times \overline{OP} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ \frac{2\lambda + 1}{\lambda + 1} & 1 & \frac{3\lambda + 1}{\lambda + 1} \end{vmatrix}$$

$$=\frac{2\lambda+1}{\lambda+1}\hat{\mathbf{i}} + \frac{-\lambda}{\lambda+1}\hat{\mathbf{j}} + \frac{-\lambda}{\lambda+1}\hat{\mathbf{k}}$$

$$|\overline{OA} \times \overline{OP}|^2 = \frac{(2\lambda + 1)^2 + \lambda^2 + \lambda^2}{(\lambda + 1)^2}$$

$$=\frac{6\lambda^2+1}{(\lambda+1)^2}$$

$$\Rightarrow \frac{14\lambda+6}{\lambda+1} - 3 \times \frac{(6\lambda^2+1)}{(\lambda+1)^2} = 6$$

$$\Rightarrow 10\lambda^2 - 8\lambda = 0$$

$$\Rightarrow \lambda = 0, \frac{8}{10} = 0.8$$

$$\Rightarrow \lambda = 0.8$$

24. For a positive integer n,
$$\left(1 + \frac{1}{x}\right)^n$$
 is expanded in increasing powers of x. If three consecutive

coefficients in this expansion are in the ratio, 2:5:12, then n is equal to_

Official Ans. by NTA (118)

Sol.
$${}^{n}C_{r-1} : {}^{n}C_{r} : {}^{n}C_{r+1} = 2:5:12$$

Now
$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{2}{5}$$

$$\Rightarrow 7r = 2n + 2 \qquad \dots (1)$$

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{5}{12}$$

$$\Rightarrow 17r = 5n - 12 \qquad \dots (2)$$

On solving (1) & (2)

$$\Rightarrow$$
 n = 118

25. Let [t] denote the greatest integer less than or equal to t. Then the value of $\int_{1}^{2} |2x - [3x]| dx$

Official Ans. by NTA (1.0)

Sol.
$$3 < 3x < 6$$

Take cases when 3 < 3x < 4, 4 < 3x < 5, 5 < 3x < 6:

Now
$$\int_{1}^{2} |2x - [3x]| dx$$

$$= \int_{1}^{4/3} (3-2x)dx + \int_{4/3}^{5/3} (4-2x) dx + \int_{5/3}^{2} (5-2x)dx$$

$$=\frac{2}{9}+\frac{3}{9}+\frac{4}{9}=1$$