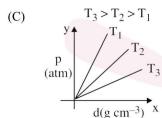
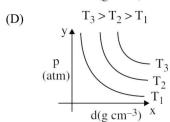

FINAL JEE-MAIN EXAMINATION - JUNE, 2022


Held On Monday, 27 June 2022 TIME: 3: 00 PM to 6: 00 PM


SECTION-A

1. Which amongst the given plots is the correct plot for pressure (p) vs density (d) for an ideal gas?

(A) $T_3 > T_2 > T_1$ p (atm) T_1 T_2 T_3 T_3 T_3

Official Ans. by NTA (B)

Ans. (B)

Sol. P vs d:

$$P = \left(\frac{RT}{M}\right) d$$

$$T_3 > T_2 > T_1$$

- **2.** Identify the **incorrect** statement for PCl₅ from the following.
 - (A) In this molecule, orbitals of phosphorous are assumed to undergo sp³d hybridization.
 - (B) The geometry of PCl₅ is trigonal bipyramidal.
 - (C) PCl₅ has two axial bonds stronger than three equatorial bonds.
 - (D) The three equatorial bonds of PCl₅ lie in a plane.

Official Ans. by NTA (C)

Ans. (C)

- **Sol.** In PCl₅, axial bonds are weaker than equatorial.
- 3. Statement I: Leaching of gold with cyanide ion in absence of air / O₂ leads to cyano complex of Au(III).

Statement II: Zinc is oxidized during the displacement reaction carried out for gold extraction.

In the light of the above statements, choose the correct answer from the options given below.

- (A) Both Statement I and Statement II are correct
- (B) Both Statement I and Statement II are incorrect
- (C) Statement I is correct but Statement II is incorrect
- (D) Statement I is incorrect but Statement II is correct

Official Ans. by NTA (D)

Ans. (D)

Sol. Statement-1: wrong, Au⁺ is correct, not Au⁺³ Statement-2: correct

- 4. The correct order of increasing intermolecular hydrogen bond strength is
 - (A) $HCN \le H_2O \le NH_3$
 - (B) $HCN < CH_4 < NH_3$
 - (C) $CH_4 < HCN < NH_3$
 - (D) $CH_4 < NH_3 < HCN$

Official Ans. by NTA (C)

Ans. (C)

- Sol. Order of H-Bonding
 - $CH_4 < HCN < NH_3$

NCH ... NCH

 $H_2NH \dots NH_3$

- 5. The correct order of increasing ionic radii is
 - (A) $Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$
 - (B) $N^{3-} < O^{2-} < F^{-} < Na^{+} < Mg^{2+}$
 - (C) $F^- < Na^+ < O^{2-} < Mg^{2+} < N^{3-}$
 - (D) $Na^+ < F^- < Mg^{2+} < O^{2-} < N^{3-}$

Official Ans. by NTA (A)

Ans. (A)

Sol. $N^{-3} > O^{-2} > F^{-} > Na^{+} > Mg^{+2}$ (Radii)

(Isoelectronic species)

- **6.** The gas produced by treating an aqueous solution of ammonium chloride with sodium nitrite is
 - (A) NH₃
- (B) N₂
- (C) N₂O
- (D) Cl₂

Official Ans. by NTA (B)

Ans. (B)

Sol. $NH_4Cl + NaNO_2 \rightarrow NH_4NO_2 + NaCl$

1

 $N_2 + 2H_2O$

7. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Flourine forms one oxoacid.

Reason R : Flourine has smallest size amongst all halogens and is highly electronegative

In the light of the above statements, choose the most appropriate answer from the options given below.

- (A) Both A and R are correct and R is the correct explanation of A.
- (B) Both A and R are correct but R is NOT the correct explanation of A.
- (C) A is correct but R is not correct.
- (D) A is not correct but R is correct

Official Ans. by NTA (A)

Ans. (A)

- **Sol.** Both A and R are correct and R is the correct explanation of A.
- 8. In 3d series, the metal having the highest M^{2+}/M standard electrode potential is
 - (A) Cr
- (B) Fe
- (C) Cu
- (D) Zn

Official Ans. by NTA (C)

Ans. (C)

Sol. $Cr^{+2}/Cr \rightarrow -0.90 \text{ V}$

$$Fe^{+2}/Fe \rightarrow -0.44 \text{ V}$$

$$Cu^{+2}/Cu \rightarrow +0.34 \text{ V}$$

$$Zn^{+2}/Zn \rightarrow -0.76 \text{ V}$$

So Ans. Cu⁺²/Cu

9. The 'f' orbitals are half and completely filled, respectively in lanthanide ions

(Given: Atomic no. Eu, 63; Sm, 62; Tm, 69; Tb,

65; Yb, 70; Dy, 66]

- (A) Eu²⁺ and Tm²⁺
- (B) Sm²⁺ and Tm³⁺
- (C) Tb^{4+} and Yb^{2+}
- (D) Dy³⁺ and Yb³⁺

Official Ans. by NTA (C)

Ans. (C)

Sol. Tb
$$\rightarrow$$
 4f⁹6s²

∜Saral

$$Tb^{+4} \rightarrow 4f^7$$

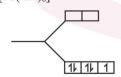
$$Yb \rightarrow 4f^{14}6s^2$$

$$Yb^{+2} \rightarrow 4f^{14}$$

- 10. Arrange the following coordination compounds in the increasing order of magnetic moments.

 (Atomic numbers: Mn = 25; Fe = 26)
 - (A) $[FeF_6]^{3-}$
 - (B) $[Fe(CN)_6]^{3-}$
 - (C) $[MnCl_6]^{3-}$ (high spin)
 - (D) $[Mn(CN)_6]^{3-}$
 - (A) A < B < D < C
- (B) B < D < C < A
- (C) A < C < D < B
- (D) B < D < A < C

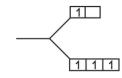
Official Ans. by NTA (B)


Ans. (B)

Sol. (A) $[FeF_6]^{3-}$

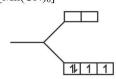
$$Fe^{+3} \rightarrow 3d^5 4s^0$$

$$n = 5$$


(B) $[Fe(CN)_6]^{3-}$

$$Fe^{+3} \rightarrow 3d^5 4s^0$$

$$n = 1$$


(C) $[MnCl_6]^{3-}$

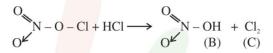
$$Mn^{+3} \rightarrow 3d^4 4s^0$$

$$n = 4$$

(D) $[Mn(CN)_6]^{3-}$

$$Mn^{+3} \rightarrow 3d^4 4s^0$$

$$n = 2$$


$$\mu \Rightarrow A > C > D > B$$

- 11. On the surface of polar stratospheric clouds, hydrolysis of chlorine nitrate gives A and B while its reaction with HCl produces B and C. A, B and C are, respectively
 - (A) HOCl, HNO₃, Cl₂
 - (B) Cl₂, HNO₃, HOCl
 - (C) HClO₂, HNO₂, HOCl
 - (D) HOCl, HNO₂, Cl₂O

Official Ans. by NTA (A)

Ans. (A)

Sol. O^{\times} $N - O - Cl + H_2O \longrightarrow O^{\times}$ O^{\times} $O^{$

- **12.** Which of the following is most stable?
 - (A)

(B)

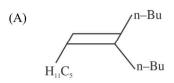
(C)

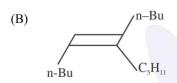
(D)

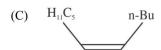
Official Ans. by NTA (A)

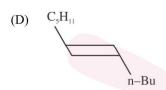
Ans. (A)

In the last of th






13. What will be the major product of following sequence of reactions?

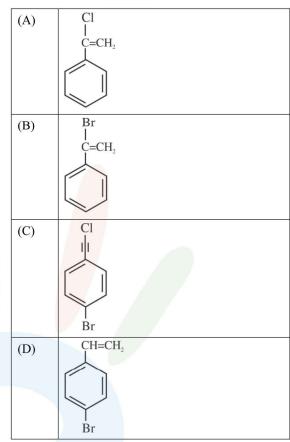

$$n - Bu - \equiv \frac{(i) n - BuLi,}{(ii) Lindlar cat, H_2}$$

&Saral

Official Ans. by NTA (C)
Ans. (C)

Sol.
$$n-Bu-C \equiv CH$$

$$\frac{\text{nBuLi}}{\text{(acid base reaction)}}$$


n-Bu-C
$$\equiv$$
 C⁻Li⁺

$$n-C_5H_{11}Cl \downarrow \text{(SN reaction)}$$
n-Bu C₅H₁₁

 $\frac{H_2}{\text{Lindlar's}} \quad n - Bu - C \equiv C - C_5 H_{11}$

Product 'A' of following sequence of reactions is

Ethylbenzene $\xrightarrow{\text{(a) Br}_2.Fe}_{\text{(b) Cl}_2, \Delta}$ 'A'(Major product) (c) alc. KOH

Official Ans. by NTA (D)

Ans. (D)

Sol. $\begin{array}{c}
CH_2-CH_3 \\
\hline
O \\
\end{array}$ $\begin{array}{c}
Br_2, Fe \\
\hline
EAS reaction
\end{array}$ $\begin{array}{c}
CH_2-CH_3 \\
\hline
O \\
Br
\end{array}$

$$\begin{array}{c}
Cl_2, \Delta \\
\hline
benzylic \\
halogenation
\end{array}$$

$$\begin{array}{c}
CH - CH_3 \\
\hline
O \\
Br \\
CH = CH_2
\end{array}$$

$$\begin{array}{c}
alc. KOH \\
(elimination \\
reaction)
\end{array}$$

$$\begin{array}{c}
Br \\
CH = CH_2
\end{array}$$

15. Match List I with List II

∜Saral

List I	List II
A.	I. Br ₂ in CS ₂
ОН ОН СНО	
B.	II. $Na_2Cr_2O_7/H_2SO_4$
OH 	
C.	III. Zn
OH O	
D.	IV. CHCl ₃ /NaOH
$\bigcup_{\mathrm{Br}}^{\mathrm{OH}} \longrightarrow \bigcup_{\mathrm{Br}}^{\mathrm{OH}}$	

Choose the correct answer from the options given below:

- (A) A-IV, B-III, C-II, D-I
- (B) A-IV, B-III, C-I, D-II
- (C) A-II, B-III, C-I, D-IV
- (D) A-IV, B-II, C-III, D-I

Official Ans. by NTA (A)

Ans. (A)

Sol. (A)

$$\begin{array}{c}
\text{OH} \\
\text{OH} \\
\text{CHCI}_3, \text{NaOH}
\end{array}$$

$$\begin{array}{c}
\text{OH} \\
\text{CHO}$$

$$(C)$$

$$OH$$

$$Na_2Cr_2O_7/H_2SO_4$$

$$Oxiation$$

$$Oxiation$$

(D)
$$OH \qquad OH$$

$$EAS reaction \qquad OH$$

$$Rr_2 in CS_2 \qquad O$$

$$EAS reaction \qquad OH$$

16. Decarboxylation of all six possible forms of diaminobenzoic acids C₆H₃(NH₂)₂COOH yields three products A, B and C. Three acids give a product 'A', two acids gives a product 'B' and one acid give a product 'C'. The melting point of product 'C' is

- (A) 63°C
- (B) 90°C
- (C) 104°C
- (D) 142°C

Official Ans. by NTA (D)

Ans. (D)

Sol.

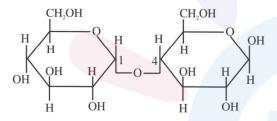
- **17.** Which is true about Buna-N?
 - (A) It is a linear polymer of 1, 3-butadiene.
 - (B) It is obtained by copolymerization of 1, 3-butadiene and styrene.
 - (C) It is obtained by copolymerization of 1, 3-butadiene and acrylonitrile.
 - (D) The suffix N in Buna-N stands for its natural occurrence

Official Ans. by NTA (C)
Ans. (C)

- **Sol.** It is copolymerization of 1, 3-butadiene and acrylonitrile.
- **18.** Given below are two statements.

Statments I: Maltose has two α -D-glucose units linked at C_1 and C_4 and is a reducing sugar.

Statement II: Maltose has two monosaccharides: α -D-glucose and β -D-glucose linked at C_1 and C_6 and it is a non-reducing sugar.


In the light of the above statements, choose the correct answer from the options given below.

- (A) Both Statement I and Statement II are true
- (B) Both Statement I and Statement II are false
- (C) Statement I is true but Statement II is false
- (D) Statement I is false but Statement II is true

Official Ans. by NTA (C)

Ans. (C)

Sol.

Maltose

19. Match List I with List Ii

List I	List II
A. Antipyretic	I. Reduces pain
B. Analgesic	II. Reduces stress
C. Tranquilizer	III. Reduces fever
D. Antacid	IV. Reduces acidity
	(Stomach)

Choose the correct answer from the options given below:

- (A) A-III, B-I, C-II, D-IV
- (B) A-III, B-I, C-IV, D-II
- (C) A-I, B-IV, C-II, D-III
- (D) A-I, B-III, C-II, D-IV

Official Ans. by NTA (A)

Ans. (A)

Sol.

A. Antipyretic	Reduces fever
B. Analgesic	Reduces pain
C. Tranquilizer	Reduces stress
D. Antacid	Reduces acidity (Stomach)

20. Match List I with List II

List I	List II	
(Anion)	(Gas evolved on reaction with dil.	
	$H_2SO_4)$	
A. CO ₃ ²⁻	I. Colourless gas which turns lead	
	acetate paper black	
B. S ²⁻	II. Colourless gas which turns	
	acidified potassium dichromate	
	solution green.	
C. SO ₃ ² -	III. Brown fumes which turns	
	acidified KI solution containing	
	starch blue.	
D. NO ₂	IV. Colourless gas evolved with	
	brisk effervescence, which turns	
	lime water milky.	

Choose the correct answer from the options given below:

- (A) A-III, B-I, C-II, D-IV
- (B) A-II, B-I, C-IV, D-III
- (C) A-IV, B-I, C-III, D-II
- (D) A-IV, B-I, C-II, D-III

Official Ans. by NTA (D)

Ans. (D)

Sol. CO₃²⁻ will give CO₂(g) which will turns lime water milky.

 $S^{2\text{-}}$ will give H_2S (g), will turns lead acetate paper black

SO₃²⁻ will give SO₂ (g), which will turns acidified potassium dichromate solution green.

 NO_2^- will give brown $NO_2(g)$ will turn KI solution blue.

SECTION-B

- 1. 116 g of a substance upon dissociation reaction, yields 7.5 g of hydrogen, 60g of oxygen and 48.5 g of carbon. Given that the atomic masses of H, O and C are 1, 16 and 12 respectively. The data agrees with how many formulae of the following?
 - (A) CH₃COOH

∜Saral

- (B) HCHO
- (C) CH₃OOCH₃
- (D) CH₃CHO

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\%H = \frac{7.5}{116} \times 100 = 6.5$$

$$\%O = \frac{60}{116} \times 100 = 51.7$$

$$%C = \frac{48.5}{116} \times 100 = 41.8$$

Relative atomicities = $H \Rightarrow 6.5$

$$O \Rightarrow \frac{51.7}{16} = 3.25$$

$$C \Rightarrow \frac{41.8}{12} = 3.5$$

Emperically formula is approx.. CH₂O

- (A) C₂H₄O₂ (B) CH₂O relate to this formula.
- **2.** Consider the following set of quantum numbers

	n	1	m_l
A.	3	3	-3
B.	3	2	-2
C.	2	1	+1
D.	2	2	+2

The number of correct sets of quantum numbers is

Official Ans. by NTA (2)

Ans. (2)

Sol. Quantum no. of set (B) and (C) can be correct.

(A) and (D) are wrong as $n = \ell$ is not possible.

3. BeO reacts with HF in presence of ammonia to give [A] which on thermal decomposition produces[B] and ammonium fluoride. Oxidation state of Be in [A] is

Official Ans. by NTA (2)

Ans. (2)

Sol.

4. When 5 moles of He gas expand isothermally and reversibly at 300 K from 10 litre to 20 litre, the magnitude of the maximum work obtained is ______ J. [nearest integer] (Given: R = 8.3 J K⁻¹mol⁻¹ and log 2 = 0.3010)

Official Ans. by NTA (8630)

Ans. (8630)

Sol. n = 5 mol

T = 300 K

 $V_1 = 10 L$

 $V_2 = 20 L$

$$w = -nRT \ell n \frac{V_2}{V_1}$$

$$= -5 \times 8.3 \times 300 \times \ell \, \text{n} \frac{20}{10}$$

= -8630.38 J

5. A solution containing 2.5 × 10⁻³ kg of a solute dissolved in 75 × 10⁻³ kg of water boils at 373.535 K. The molar mass of the solute is _____ g mol⁻¹. [nearest integer] (Given: K_b (H₂O) = 0.52 K Kg mol⁻¹, boiling point of water = 373.15K)

Official Ans. by NTA (45)

Ans. (45)

Sol.
$$w = 2.5 g$$

∜Saral

$$K_b = 0.52$$

$$W_{\text{solvent}} = 75 \text{ g}$$

M = Mol. Wt. of solute

$$T'_{B} = 373.535 \text{ K}$$

$$T_{\rm B}^{\rm o} = 373.15 \, {\rm K}$$

$$\Delta T_B = 0.385 = K_b \text{ molality}$$

$$0.385 = 0.52 \times \left(\frac{2.5}{M} \times \frac{1000}{75}\right)$$

$$M = 45 \text{ g mol}^{-1}$$

6. pH value of 0.001 M NaOH solution is

Official Ans. by NTA (11)

Ans. (11)

Sol. 0.001 M NaOH

$$[OH^{-}] = 10^{-3}$$

$$pOH = 3$$

$$pH = 11$$

7. For the reaction taking place in the cell:

$$Pt(s) | H_2(g) | H^+(aq) || Ag^+(aq) | Ag(s)$$

$$E_{Cell}^{o} = +0.5332 \text{ V}.$$

The value of $\Delta_f G^0$ is _____ kJ mol⁻¹. (in nearest integer)

Official Ans. by NTA (51)

Ans. (51 or 103)

Sol.
$$\frac{1}{2}H_2 + Ag^+ \to H^+ + Ag$$

$$\Delta G^{\circ} = - nE^{\circ} F$$

$$= -1 \times 0.5332 \times 96500 \text{ J}$$

$$= -51.35 \text{ kJ}$$

$$(n = 2 \text{ for } H_2 + 2Ag^+ \rightarrow 2H^+ + 2Ag)$$

8. It has been found that for a chemical reaction with rise in temperature by 9K the rate constant gets doubled. Assuming a reaction to be occurring at 300 K, the value of activation energy is found to be kJ mol⁻¹. [nearest integer]

(Given $\ln 10 = 2.3$, R = 8.3 $JK^{-1}mol^{-1}$, $\log 2 = 0.30$)

Official Ans. by NTA (59)

Ans. (59)

Sol.
$$\log_{10} \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left(\frac{1}{300} - \frac{1}{309} \right)$$


$$0.3 = \frac{E_a}{2.303 \times 8.3} \left(\frac{9}{300 \times 309} \right)$$

$$E_a = \frac{0.3 \times 2.303 \times 8.3 \times 300 \times 309}{9}$$

$$= 59065.04 J$$

$$E_a = 59.06 \text{ kJ}$$

9.

If the initial pressure of a gas is 0.03 atm, the mass of the gas adsorbed per gram of the adsorbent is $\times 10^{-2}$ g.

Official Ans. by NTA (12)

Ans. (12)

Sol.

$$\frac{x}{m} = kP^{\frac{1}{n}}$$

$$\log \frac{x}{m} = \frac{\log x}{\log x} + \frac{1}{n} \log P$$

From graph

Slope
$$=\frac{1}{n}=1 \Rightarrow n=1$$

Intercept = $\log k = 0.602$

$$c = 4$$

$$\frac{x}{m} = 4 \times (0.03)^{\frac{1}{1}}$$

$$\frac{x}{m} = 12 \times 10^{-2}$$

10. 0.25 g of an organic compound containing chlorine gave 0.40 g of silver chloride in Carius estimation.

The percentage of chlorine present in the compound is . [in nearest integer]

(Given: Molar mass of Ag is 108 g mol^{-1} and that of Cl is 35.5 g mol^{-1})

Official Ans. by NTA (40)

Ans. (40)

Sol. wt. of organic compound = 0.25 g

mass of CI =
$$\frac{35.5}{143.5} \times 0.4g$$

mass % of Cl in the organic compound

$$= \frac{35.5 \times 0.4}{143.5 \times 0.25} \times 100$$

$$=39.58\%$$