Å



1. The complex that can show optical activity is: (1) trans-[Fe(NH<sub>3</sub>)<sub>2</sub>(CN)<sub>4</sub>]<sup>-</sup> (2) cis-[Fe(NH<sub>3</sub>)<sub>2</sub>(CN)<sub>4</sub>]<sup>-</sup> (3) cis-[CrCl<sub>2</sub>(ox)<sub>2</sub>]<sup>3-</sup> (ox = oxalate) (4) trans-[Cr(Cl<sub>2</sub>)(ox)<sub>2</sub>]<sup>3-</sup> Official Ans. by NTA (3)

Sol. (1) 
$$\begin{bmatrix} NC & NH_{3} \\ NC & I \\ NC & I \\ NC & NH_{3} \end{bmatrix}^{\Theta}$$
 optically inactive

(2) 
$$\begin{bmatrix} NC \\ Fe \\ NC \\ CN \end{bmatrix}$$
 optically inactive

An organic compound [A], molecular formula C<sub>10</sub>H<sub>20</sub>O<sub>2</sub> was hydrolyzed with dilute sulphuric acid to give a carboxylic acid [B] and alcohol [C]. Oxidation of [C] with CrO<sub>3</sub> – H<sub>2</sub>SO<sub>4</sub> produced [B]. Which of the following structures are not possible for [A] ?

(1)  $(CH_3)_3$ -C-COOCH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>

(2) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub>

(3) 
$$\begin{array}{c} CH_3 - CH_2 - CH_{-}OCOCH_2CH_{-}CH_2CH_3 \\ \downarrow \\ CH_3 \end{array}$$

(4) 
$$\begin{array}{c} CH_3 \\ | \\ CH_3 - CH_2 - CH - COOCH_2 - CH - CH_2CH_3 \\ | \\ CH_3 \end{array}$$

Official Ans. by NTA (3)

Sol. (1) 
$$\underset{m_{e}}{\overset{m_{e}}{\longrightarrow}} C - \overset{0}{\underset{(A)}{\overset{H}{\longrightarrow}}} O - CH_{2} - C \underset{m_{e}}{\overset{m_{e}}{\longleftarrow}} \xrightarrow{\overset{W'}{\underset{m_{e}}{\overset{H'/H_{2}O}{\longrightarrow}}} \overset{O}{\underset{C}{\overset{H'}{\longrightarrow}}} \overset{(B)}{\underset{HO-CH_{2}}{\overset{H'}{\longleftarrow}}} O - CH_{2}$$

Total 8 'C'  $\rightarrow$  so molecular formula not matched.

(3) 
$$m_e - CH_2 - CH - O - C - CH_2 - CH - Et$$
  
 $m_e$   
 $m_e - CH_2 - CH - Et$   
 $m_e - CH_2 - CH - OH + C - CH_2 - CH$   
 $m_e - CH_2 - CH - OH + C - CH_2 - CH$   
 $m_e - CH_2 - CH - OH + C - CH_2 - CH$   
 $m_e - CH_2 - CH - OH + C - CH_2 - CH$   
 $m_e - CH_2 - CH - OH + C - CH_2 - CH$ 

(4) 
$$m_e - CH_2 - CH - CH - CH_2 - CH - Et$$
 (A)  
 $m_e - CH_2 - CH - CH_2 - CH - Et$  (A)  
 $m_e - CH_2 - CH - Et$  (A)  
 $m_e - CH_2 - CH - Et$  (B)  
 $m_e - CH_2 - CH - CH_2 - CH - Et$   
(B)  $m_e - CH_2 - CH - Et$  (C)

- 3. If the boiling point of H<sub>2</sub>O is 373 K, the boiling point of H<sub>2</sub>S will be :
  (1) Greater than 300 K but less than 373 K
  - (2) Less than 300 K
  - (3) Equal to 373 K
  - (4) More than 373 K
  - Official Ans. by NTA (2)

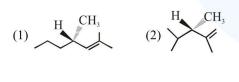
**Sol.** Boiling point of 
$$H_2S < Boiling point of  $H_2O$$$

(213 K) (373 K)

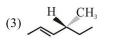


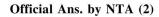
- In a molecule of pyrophosphoric acid, the number of P-OH, P=O and P-O-P bonds/ moiety(ies) respectivey are :
  - (1) 3, 3 and 3 (2) 2, 4 and 1
  - (3) 4, 2 and 0 (4) 4, 2 and 1

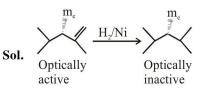
### Official Ans. by NTA (4)


Sol. Pyrophosphoric acid.

P - OH linkages = 4


- P = O linkages = 2
- P-O-P linkages = 1
- 5. It is true that :
  - (1) A zero order reaction is a single step reaction
  - (2) A second order reaction is always a multistep reaction
  - (3) A first order reaction is always a single step reaction
  - (4) A zero order reaction is a multistep reaction


### Official Ans. by NTA (4)


- Sol. Zero order reaction is multiple step reaction.
- 6. Which of the following compounds produces an optically inactive compound on hydrogenation ?



(4)







Henry's constant (in kbar) for four gases  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  in water at 298 K is given below :

(density of water =  $10^3$  kg m<sup>-3</sup> at 298 K) This table implies that :

- (1) The pressure of a 55.5 molal solution of  $\gamma$ 
  - is 1 bar

7.

- (2) The pressure of a 55.5 molal solution of  $\delta$  is 250 bar
- (3) Solubility of  $\gamma$  at 308 K is lower than at 298 K
- (4) α has the highest solubility in water at a given pressure

Official Ans. by NTA (2)

Sol. (1) 
$$P_{\gamma} = K_H X_Y$$

$$P_{\gamma} = 2 \times 10^{-15} \times \frac{55.5}{55.5 + \frac{1000}{18}} = 2 \times 10^{-5} \text{ K bar}$$

$$= 2 \times 10^{-2} \text{ bar}$$

(2) 
$$P_{\delta} = K_H X_{\delta}$$

$$P_{\delta} = 0.5 \times \frac{55.5}{55.5 + \frac{1000}{18}} = .249 \text{ K bar} = 249 \text{ bar}$$

(3) On increasing temperature solubility of gases decreases

(4)  $K_H \downarrow$  solubility  $\uparrow$  and lowest  $K_H$  is for  $\gamma$ . Tyndall effect of observed when :

- (1) The diameter of dispersed particles is much smaller than the wavelength of light used
- (2) The diameter of dispersed particles is much larger than the wavelength of light used
- (3) The diameter of dispersed particles is similar to the wavelength of light used
- (4) The refractive index of dispersed phase is greater than that of the dispersion medium

Official Ans. by NTA (3)

**Sol.** The diameter of disperseed particles is similar to wavelength of light used.

8.



- 9. Thermal power plants can lead to :
  - (1) Ozone layer depletion
  - (2) Eutrophication
  - (3) Acid rain
  - (4) Blue baby syndrome

Official Ans. by NTA (3)

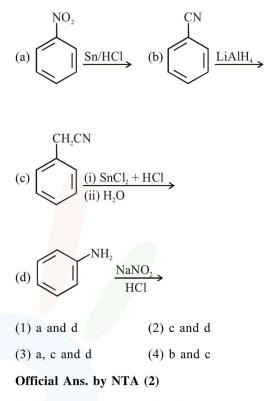
Sol. Thermal power plants lead to acid rain.

- The electronic spectrum of [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> shows a single broad peak with a maximum at 20,300 cm<sup>-1</sup>. The crystal field stabilization energy (CFSE) of the complex ion, in kJ mol<sup>-1</sup>, is :
  - (1) 242.5
  - (2) 83.7
  - (3) 145.5
  - (4) 97

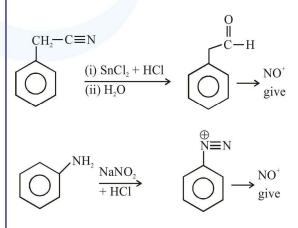
Official Ans. by NTA (4)

**Sol.** CFSE = 0.4  $\Delta_0$ 

$$= 0.4 \times \frac{20300}{83.7}$$


= 97 kJ/mol

- 11. Aqua regia is used for dissolving noble metals (Au, Pt, etc). The gas evolved in this process is :
  - (1)  $N_2$
  - (2) N<sub>2</sub>O<sub>3</sub>
  - (3) NO
  - (4)  $N_2O_5$


Official Ans. by NTA (3)

**Sol.** Au + HNO<sub>3</sub> + 4HCl  $\rightarrow$  HAuCl<sub>4</sub> + NO + 2H<sub>2</sub>O

**12.** The Kjeldahl method of Nitrogen estimation fails for which of the following reaction products ?



Sol. Kjeldahl method is used for N estimation But not given by 'Diazo' compounds



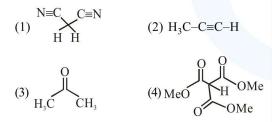


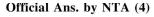
The mechanism of  $S_N^1$  reaction is given as : 13.

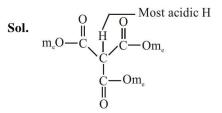
$$\begin{array}{c} R - X \rightarrow R^{\oplus} X^{\Theta} \rightarrow R^{\oplus} || X^{\Theta} \xrightarrow{Y^{\Theta}} R - Y + X^{\Theta} \\ Ion & Solvent \\ pair & separated ion \\ pair \end{array}$$

A student writes general characteristics based on the given mechanism as :

- (a) The reaction is favoured by weak nucleophiles
- (b)  $R^{\oplus}$  would be easily formed if the substituents are bulky
- (c) The reaction is accompained by recemization
- (d) The reaction is favoured by non-polar solvents.


Which observations are correct ?


- (1) b and d (2) a and c
- (3) a, b and c (4) a and b


#### Official Ans. by NTA (2)

**Sol.**  $S_N^1$  favours

- (a) The reaction is favoured by weak nucleophiles
- (b) R<sup>⊕</sup> would be easily formed if the substituents are bulky
- (c) The reaction is accompained by recemization
- Which one of the following compounds 14. possesses the most acidic hydrogen ?







Due to presence of 3 (-R) groups

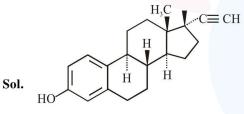
| 15.        | Glycerol is separated in soap industries by :                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------|
|            | (1) Steam distillation                                                                                            |
|            | (2) Differential extraction                                                                                       |
|            | (3) Distillation under reduced pressure                                                                           |
|            | (4) Fractional distillation                                                                                       |
|            | Official Ans. by NTA (3)                                                                                          |
| Sol.       | Glycerol is separated by reduced pressure                                                                         |
|            | distillation in soap industries.                                                                                  |
| 16.        | Of the species, NO, NO <sup>+</sup> , NO <sup>2+</sup> , NO <sup>-</sup> , the one with minimum hand attempt in . |
|            | with minimum bond strength is :                                                                                   |
|            | (1) $NO^{2+}$ (2) $NO^{+}$ (3) $NO$ (4) $NO^{-}$                                                                  |
| Sol.       | Official Ans. by NTA (4)<br>Bond order of $NO^{2+} = 2.5$                                                         |
| 501.       | Bond order of $NO^+ = 3$                                                                                          |
|            | Bond order of NO = $2.5$                                                                                          |
|            | Bond order of NO <sup>-</sup> = 2                                                                                 |
|            | Bond order $\alpha$ bond strength.                                                                                |
| 17.        | The atomic number of the element unnilennium                                                                      |
|            | is :                                                                                                              |
|            | (1) 119 (2) 108 (3) 102 (4) 109                                                                                   |
| ~ •        | Official Ans. by NTA (4)                                                                                          |
| Sol.       | 1 0 9<br>un nil enn                                                                                               |
|            | Hence correct name $\rightarrow$ unnilennium                                                                      |
| 18.        | An acidic buffer is obtained on mixing :                                                                          |
|            | (1) 100 mL of 0.1 M CH <sub>3</sub> COOH and 200 mL                                                               |
|            | of 0.1 M NaOH                                                                                                     |
|            | (2) 100 mL of 0.1 M CH <sub>3</sub> COOH and 100 mL                                                               |
|            | of 0.1 M NaOH                                                                                                     |
|            | (3) 100 mL of 0.1 M HCl and 200 mL of                                                                             |
|            | 0.1 M CH <sub>3</sub> COONa                                                                                       |
|            | (4) 100 mL of 0.1 M HCl and 200 mL of                                                                             |
|            | 0.1 M NaCl                                                                                                        |
|            | Official Ans. by NTA (3)                                                                                          |
| <b>a</b> • | $\frac{\text{HCl}}{10 \text{ mili mol}} + CH_3COONa \rightarrow CH_3COOH + NaCl_{20 \text{ mili mol}} $           |
| Sol.       | 20 mili mol 10 mili mol                                                                                           |

10 mili mol 10 mili mol

So finaly we get mixture of

10 mili mol

CH<sub>3</sub>COOH + CH<sub>3</sub>COONa that will work like acidic buffer solution.


Å

- 19. Let C<sub>NaCl</sub> and C<sub>BaSO4</sub> be the conductances (in S) measured for saturated aqueous solutions of NaCl and BaSO4, respectively, at a temperature T. Which of the following is false ?
  - (1) Ionic mobilities of ions from both salts increase with T
  - (2)  $C_{NaCl} >> C_{BaSO_4}$  at a given T
  - (3)  $C_{NaCl}(T_2) > C_{NaCl}(T_1)$  for  $T_2 > T_1$
  - (4)  $C_{BaSO_4}(T_2) > C_{BaSO_4}(T_1)$  for  $T_2 > T_1$

Official Ans. by NTA (3)

- Sol. Dissolution of  $BaSO_4$  is an endothermic reaction 50 on increasing temperature number of ions of  $BaSO_4$  decrease so it's conduction also decrease.
- 20. The antifertility drug 'Novestrol" can react with :
  - (1) Br<sub>2</sub>/water; ZnCl<sub>2</sub>/HCl; FeCl<sub>3</sub>
  - (2) Alcoholic HCN; NaOCl; ZnCl<sub>2</sub>/HCl
  - (3) Br<sub>2</sub>/water; ZnCl<sub>2</sub>/HCl; NaOCl
  - (4) ZnCl<sub>2</sub>/HCl; FeCl<sub>3</sub>; Alcoholic HCN

Official Ans. by NTA (1)



Ethynylestradiol (novestrol)

- gives (1)  $Br_2 + H_2O$  test
  - (2) Lucas test with  $ZnCl_2 + HCl$
  - (3)  $FeCl_3$  test of phenolic group.
- 21. The volume strength of 8.9 M  $H_2O_2$  solution calculated at 273 K and 1 atm is \_\_\_\_\_. (R=0.0821 L atm K<sup>-1</sup> mol<sup>-1</sup>) (rounded off to the nearest integer)

### Official Ans. by NTA (100)

Sol. Volume strength of  $H_2O_2$  at 1 atm 273 kelvin = M × 11.2 = 8.9 × 11.2 = 99.68 Ans : 100 22. The mole fraction of glucose  $(C_6H_{12}O_6)$  in an aqueous binary solution is 0.1. The mass percentage of water in it, to the nearest integer, is .

### Official Ans. by NTA (47)

Sol.  $X_{C_6H_{12}O_6} = 0.1$ Let total mole is 1 mol then mole of glucose will be 0.1 and mole of water will be 0.9

so mass % of water = 
$$\frac{0.9 \times 18}{0.1 \times 180 + 0.9 \times 18} \times 100$$

= 47.36

Ans: 47

So

23. The photoelectric current from Na (work function,  $w_0 = 2.3 \text{ eV}$ ) is stopped by the output voltage of the cell

Pt(s)|H<sub>2</sub>(g, 1bar)|HCl(aq., pH = 1)|AgCl(s)|Ag(s) The pH of aq. HCl required to stop the photoelectric current from K(w<sub>0</sub> = 2.25eV), all other conditions remaining the same, is\_\_\_\_\_

 $\times$  10<sup>-2</sup> (to the nearest integer).

Given,  $2.303 \frac{\text{RT}}{\text{F}} = 0.06 \text{V}; \text{E}^{0}_{\text{AgCI}|\text{Ag}|\text{CI}^{-}} = 0.22 \text{V}$ Official Ans. by NTA (58))

$$\frac{1}{2}H_2 \rightarrow H^+ + e^{\Theta}$$

$$\frac{e^{\Theta} + AgCl_{(s)} \rightarrow Ag_{(s)} + Cl^{\Theta}}{\frac{1}{2}H_2 + AgCl_{(s)} \rightarrow H^+_{(aq)} + Ag_{(s)} + Cl^{\Theta}_{(aq)}}$$

$$E = \epsilon^{0} - \frac{.06}{1} log \frac{\left[H^{+}\right] \left[Cl^{\Theta}\right]}{P_{H_{2}}^{\frac{1}{2}}}$$

$$E = 0.22 - .06 \log \frac{(10^{-1})(10^{-1})}{1^{\frac{1}{2}}}$$

$$E = 0.22 + .12 = .34 \text{ volt}$$
  

$$\Rightarrow \text{ total energy of photon will be (for Na)}$$
  

$$= 2.3 + 0.34 = 2.64 \text{ eV}$$



 $\Rightarrow$  stopping potential required for K = 2.64 - 2.25 = 0.39 volt

$$E = \epsilon^0 - \frac{.06}{1} log \frac{\left[H^+\right] \left[Cl^-\right]}{P_{H_2}^{\frac{1}{2}}}$$

as 
$$[H^+] = [Cl^{\odot}]$$
 so

$$0.39 = 0.22 - .06 \log \frac{\left[H^+\right]^2}{1^{\frac{1}{2}}}$$

$$0.17 = + .12 \text{ pH}$$

$$pH = 1.4166 \Rightarrow 1.42$$

24. An element with molar mass  $2.7 \times 10^{-2}$  kgmol<sup>-1</sup> forms a cubic unit cell with edge length 405 pm. If its density is  $2.7 \times 10^3$  kgm<sup>-3</sup>, the radius of the element is approximately \_\_\_\_\_ × 10^{-12} m (to the nearest integer).

Official Ans. by NTA (143)

**Sol.** 
$$d = \frac{z\left(\frac{M}{N_A}\right)}{a^3}$$

$$2.7 \times 10^{3} = z \frac{\left(\frac{2.7 \times 10^{-2}}{6 \times 10^{23}}\right)}{\left(405 \times 10^{-12}\right)^{3}}$$

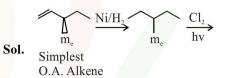
$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \left(4.05 \times 10^{-10}\right)^{3}}$$

$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \times 66.43 \times 10^{-30}}$$

3.98 = z

 $z \approx 4$  structure is fcc

$$\frac{a}{\sqrt{2}} = 2r$$

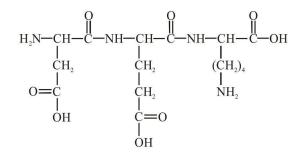

$$r = \frac{a}{2\sqrt{2}} = \frac{\sqrt{2}a}{4} = \frac{1.414 \times 405 \times 10^{-12}}{4}$$

$$r = 143.16 \times 10^{-12}$$

**25.** The total number of monohalogenated organic products in the following (including stereoisomers) reaction is \_\_\_\_\_.

$$( \begin{array}{c} A \\ (simplest optically \\ active alkene \end{array} ) \xrightarrow{(i)H_2/Ni/\Delta} \\ (ii)X_2/\Delta \end{array} \rightarrow$$

Official Ans. by NTA (8)






$$\sim 1$$

Alter

Str. of Tri peptide

