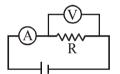
Å

FINAL JEE-MAIN EXAMINATION - JANUARY, 2019 Held On Thursday 10th JANUARY, 2019 TIME: 02:30 PM To 05:30 PM

1. Two forces P and Q of magnitude 2F and 3F, respectively, are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle is : $(1) 30^{\circ}$ $(2) 60^{\circ}$ $(3) 90^{\circ}$ $(4) 120^{\circ}$

Ans. (4)


Sol. $4F^2 + 9F^2 + 12F^2 \cos \theta = R^2$ $4F^2 + 36 F^2 + 24 F^2 \cos \theta = 4R^2$ $4F^2 + 36 F^2 + 24 F^2 \cos \theta$ $= 4(13F^2 + 12F^2\cos\theta) = 52F^2 + 48F^2\cos\theta$

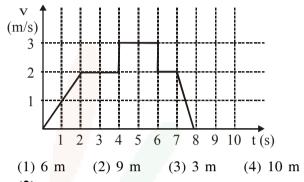
$$\cos \theta = -\frac{12F^2}{24F^2} = -\frac{12F^2}{24F^2}$$

2. The actual value of resistance R, shown in the figure is 30Ω . This is measured in an experiment as shown using the standard

formula $R = \frac{V}{I}$, where V and I are the readings

of the voltmeter and ammeter, respectively. If the measured value of R is 5% less, then the internal resistance of the voltmeter is :

(1) 350Ω (2) 570Ω (3) 35Ω (4) 600Ω Ans. (2)


Sol. 0.95 R = $\frac{RR_{o}}{R+R_{o}}$ $0.95 \times 30 = 0.05 R_{\rm o}$ $R_{\rm m} = 19 \times 30 = 570 \ \Omega$

3. An unknown metal of mass 192 g heated to a temperature of 100°C was immersed into a brass calorimeter of mass 128 g containing 240 g of water a temperature of 8.4°C Calculate the specific heat of the unknown metal if water temperature stabilizes at 21.5°C (Specific heat of brass is 394 J kg⁻¹ K⁻¹)

Ans. (4)

Sol.
$$192 \times S \times (100 - 21.5)$$

= $128 \times 394 \times (21.5 - 8.4)$
+ $240 \times 4200 \times (21.5 - 8.4)$
 $\Rightarrow S = 916$

4. A particle starts from the origin at time t = 0 and moves along the positive x-axis. The graph of velocity with respect to time is shown in figure. What is the position of the particle at time t = 5s?

Ans. (2)

S = Area under graph

$$\frac{1}{2} \times 2 \times 2 + 2 \times 2 + 3 \times 1 = 9 \text{ m}$$

5. The self induced emf of a coil is 25 volts. When the current in it is changed at uniform rate from 10 A to 25 A in 1s, the change in the energy of the inductance is :

$$L\frac{di}{dt} = 25$$
$$L \times \frac{15}{1} = 25$$
$$L = \frac{5}{3} H$$

$$\Delta E = \frac{1}{2} \times \frac{5}{3} \times (25^2 - 10^2) = \frac{5}{6} \times 525 = 437.5 \text{ J}$$

6. A current of 2 mA was passed through an unknown resistor which dissipated a power of 4.4 W. Dissipated power when an ideal power supply of 11V is connected across it is :

(1) $11 \times 10^{-5} \text{ W}$	(2) $11 \times 10^{-4} \text{ W}$
(3) 11×10^5 W	(4) 11 × 10 ⁻³ W

<mark>∛</mark>Saral

A

Å

Ans. (1)

$$P = I^{2}R$$

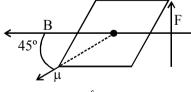
$$4.4 = 4 \times 10^{-6} R$$

$$R = 1.1 \times 10^{6} \Omega$$

$$P' = \frac{11^{2}}{R} = \frac{11^{2}}{1.1} \times 10^{-6} = 11 \times 10^{-5} W$$

7. The diameter and height of a cylinder are measured by a meter scale to be 12.6 ± 0.1 cm and 34.2 ± 0.1 cm, respectively. What will be the value of its volume in appropriate significant figures ?

(1) $4260 \pm 80 \text{ cm}^3$ (2) $4300 \pm 80 \text{ cm}^3$ (3) $4264.4 \pm 81.0 \text{ cm}^3$ (4) $4264 \pm 81 \text{ cm}^3$


Ans. (1)

$$\frac{\Delta V}{V} = 2\frac{\Delta d}{d} + \frac{\Delta h}{h} = 2\left(\frac{0.1}{12.6}\right) + \frac{0.1}{34.2}$$
$$V = 12.6 \times \frac{\pi}{4} \times 314.2$$

8. At some location on earth the horizontal component of earth's magnetic field is 18×10^{-6} T. At this location, magnetic neeedle of length 0.12 m and pole strength 1.8 Am is suspended from its mid-point using a thread, it makes 45° angle with horizontal in equilibrium. To keep this needle horizontal, the vertical force that should be applied at one of its ends is :

(1) 3.6×10^{-5} N (2) 6.5×10^{-5} N (3) 1.3×10^{-5} N (4) 1.8×10^{-5} N

Ans. (2)

$$\mu B \sin 45^\circ = F \frac{\ell}{2} \sin 45^\circ$$
$$F = 2\mu B$$

9. The modulation frequency of an AM radio station is 250 kHz, which is 10% of the carrier wave. If another AM station approaches you for license what broadcast frequency will you allot ?

(1) 2750 kHz	(2) 2000 kHz
(3) 2250 kHz	(4) 2900 kHz

Ans. (2)

$$f_{carrier} = \frac{250}{0.1} = 2500 \text{ KHZ}$$

:. Range of signal = 2250 Hz to 2750 Hz Now check all options : for 2000 KHZ $f_{mod} = 200$ Hz

 \therefore Range = 1800 KHZ to 2200 KHZ

10. A hoop and a solid cylinder of same mass and radius are made of a permanent magnetic material with their magnetic moment parallel to their respective axes. But the magnetic moment of hoop is twice of solid cylinder. They are placed in a uniform magnetic field in such a manner that their magnetic moments make a small angle with the field. If the oscillation periods of hoop and cylinder are T_h and T_c respectively, then :

1)
$$T_h = 0.5 T_c$$
 (2) $T_h = 2 T_c$

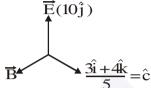
(3)
$$T_h = 1.5 T_c$$
 (4) $T_h = T$

Ans. (4)

$$T = 2\pi \sqrt{\frac{I}{\mu B}}$$
$$T_{h} = 2\pi \sqrt{\frac{mR^{2}}{(2\mu)B}}$$
$$T_{C} = 2\pi \sqrt{\frac{1/2mR^{2}}{\mu B}}$$

11. The electric field of a plane polarized electromagnetic wave in free space at time t= 0 is given by an expression

$$\vec{E}(x,y) = 10\hat{j} \cos [(6x + 8z)]$$


The magnetic field \vec{B} (x, z, t) is given by : (c is the velocity of light)

(1) $\frac{1}{c} (6\hat{k} + 8\hat{i}) \cos[(6x - 8z + 10ct)]$ (2) $\frac{1}{c} (6\hat{k} - 8\hat{i}) \cos[(6x + 8z - 10ct)]$ (3) $\frac{1}{c} (6\hat{k} + 8\hat{i}) \cos[(6x + 8z - 10ct)]$ (4) $\frac{1}{c} (6\hat{k} - 8\hat{i}) \cos[(6x + 8z + 10ct)]$

Д,

Ans. (2)

- $\vec{E} = 10\hat{j}\cos\left[\left(6\hat{i} + 8\hat{k}\right)\cdot\left(x\hat{i} + z\hat{k}\right)\right]$
- $= 10\hat{j}\cos[\vec{K}\cdot\vec{r}]$
- $\vec{K} = 6\hat{i} + 8\hat{k}; \text{ direction of waves travel.}$ i.e. direction of 'c'.

 \therefore Direction of \hat{B} will be along

$$\hat{C} \times \hat{E} = \frac{-4i + 3k}{5}$$

Mag. of \vec{B} will be along $\hat{C} \times \hat{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$

Mag. of
$$\vec{B} = \frac{E}{C} = \frac{10}{C}$$

 $\therefore \vec{B} = \frac{10}{C} \left(\frac{-4\hat{i} + 3\hat{k}}{5} \right) = \frac{\left(-8\hat{i} + 6\hat{k}\right)}{C}$

12. Condiser the nuclear fission $Ne^{20} \rightarrow 2He^4 + C^{12}$

Given that the binding energy/nucleon of Ne^{20} , He^4 and C^{12} are, respectively, 8.03 MeV, 7.07 MeV and 7.86 MeV, identify the correct statement :

- (1) 8.3 MeV energy will be released
- (2) energy of 12.4 MeV will be supplied
- (3) energy of 11.9 MeV has to be supplied
- (4) energy of 3.6 MeV will be released

Ans. (3)

$$\begin{array}{rrrr} \mathrm{Ne}^{20} & \rightarrow & 2\mathrm{He}^{4} + \mathrm{C}^{12} \\ 8.03 \times 20 & & 2 \times 7.07 \times 4 + 7.86 \times 12 \\ \therefore & \mathrm{E}_{\mathrm{B}} = (\mathrm{BE})_{\mathrm{react}} & - (\mathrm{BE})_{\mathrm{product}} = 9.72 \ \mathrm{MeV} \end{array}$$

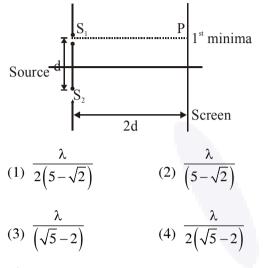
13. Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\vec{A} + \vec{B})$ is 'n' times the magnitude of $(\vec{A} - \vec{B})$. The angle between \vec{A} and \vec{B} is :

(1)
$$\sin^{-1}\left[\frac{n^2-1}{n^2+1}\right]$$
 (2) $\cos^{-1}\left[\frac{n-1}{n+1}\right]$
(3) $\cos^{-1}\left[\frac{n^2-1}{n^2+1}\right]$ (4) $\sin^{-1}\left[\frac{n-1}{n+1}\right]$

Ans. (3)

14. A particle executes simple harmonic motion with an amplitude of 5 cm. When the particle is at 4 cm from the mean position, the magnitude of its velocity in SI units is equal to that of its acceleration. Then, its periodic time in seconds is :

 $\frac{3}{8}\pi$

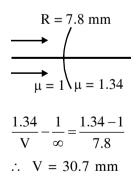

 $\frac{8\pi}{3}$

(1)
$$\frac{7}{3}\pi$$
 (2)
(3) $\frac{4\pi}{3}$ (4)

Ans. (4)

Å

Consider a Young's double slit experiment as 15. shown in figure. What should be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of the slit (S_1) ?


Ans. (4)

∛Saral

- $\sqrt{5}d 2d = \frac{\lambda}{2}$
- 16. The eye can be regarded as a single refracting surface. The radius of curvature of this surface is equal to that of cornea (7.8 mm). This surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus.

(1) 2 cm	(2) 1 cm
(3) 3.1 cm	(4) 4.0 cm

Ans. (3)

17. Half mole of an ideal monoatomic gas is heated at constant pressure of 1atm from 20 °C to 90°C. Work done by gas is close to : (Gas constant R = 8.31 J /mol.K

(1) 73 J (2) 291 J (3) 581 J (4) 146 J Ans. (2)

WD = P
$$\Delta$$
V = nR Δ T = $\frac{1}{2} \times 8.31 \times 70$

18. A metal plate of area 1×10^{-4} m² is illuminated by a radiation of intensity 16 mW/m². The work function of the metal is 5eV. The energy of the incident photons is 10 eV and only 10% of it produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively, will be : $[1 \text{ eV} = 1.6 \times 10^{-19}\text{J}]$

> (1) 10^{10} and 5 eV (2) 10^{14} and 10 eV 5 eV

(3)
$$10^{12}$$
 and 5 eV (4) 10^{11} and

Ans. (4)

$$I = \frac{nE}{At}$$

16×10⁻³ = $\left(\frac{n}{t}\right)_{Photon} \frac{10 \times 1.6 \times 10^{-19}}{10^{-4}} = 10^{12}$

19. Charges -q and +q located at A and B, respectively, constitute an electric dipole. Distance AB = 2a, O is the mid point of the dipole and OP is perpendicular to AB. A charge Q is placed at P where OP = y and y >> 2a. The charge Q experiences and electrostatic force F. If Q is now moved along the equatorial line

to P' such that OP'=
$$\left(\frac{y}{3}\right)$$
, the force on Q will be
close to : $\left(\frac{y}{3} >> 2a\right)$
P
Q
P'
A
-q
(1) $\frac{F}{3}$ (2) 3F (3) 9F (4) 27F

JEE Exam Solution

Å

Sol. Electric field of equitorial plane of dipole

$$=-\frac{K\vec{P}}{r^3}$$

$$\therefore \text{ At P, F} = -\frac{K\vec{P}}{r^3}Q.$$

At P¹, F¹ =
$$-\frac{K\vec{P}Q}{(r/3)^3} = 27 F$$
.

- 20. Two stars of masses 3×10^{31} kg each, and at distance 2×10^{11} m rotate in a plane about their common centre of mass O. A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at O is : (Take Gravitational constant $G = 6.67 \times 10^{-11}$ Nm² kg⁻²)
 - (1) 1.4×10^5 m/s (2) 24×10^4 m/s (3) 3.8×10^4 m/s (4) 2.8×10^5 m/s

Ans. (4)

By energy convervation between 0 & ∞ .

$$-\frac{GMm}{r} + \frac{-GMm}{r} + \frac{1}{2}mV^2 = 0 + 0$$

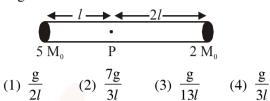
[M is mass of star m is mass of meteroite)

$$\Rightarrow v = \sqrt{\frac{4GM}{r}} = 2.8 \times 10^5 \,\text{m/s}$$

21. A closed organ pipe has a fundamental frequency of 1.5 kHz. The number of overtones that can be distinctly heard by a person with this organ pipe will be : (Assume that the highest frequency a person can hear is 20,000 Hz)

(1) 7 (2) 5 (3) 6 (4) 4

Ans. (1)


Sol. For closed organ pipe, resonate frequency is odd multiple of fundamental frequency.

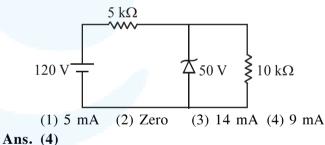
: (2n + 1) $f_0 \le 20,000$

(f_o is fundamental frequency = 1.5 KHz) ∴ n = 6

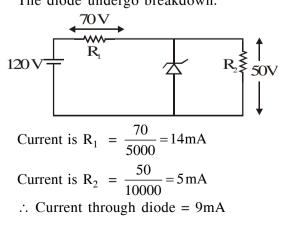
 \therefore Total number of overtone that can be heared is 7. (0 to 6).

22. A rigid massless rod of length 3*l* has two masses attached at each end as shown in the figure. The rod is pivoted at point P on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be :

Ans. (3)


Applying torque equation about point P. $2M_0 (2l) - 5 M_0 gl = I\alpha$

$$I = 2M_0 (2l)^2 + 5M_0 l^2 = 13 M_0 l^2 d$$


$$\alpha = -\frac{M_0 g\ell}{13M_0 \ell^2} \implies \alpha = -\frac{g}{13\ell}$$

$$\alpha = \frac{s}{13\ell}$$
 anticlockwise

23. For the circuit shown below, the current through the Zener diode is :

Assuming zener diode doesnot undergo breakdown, current in circuit = $\frac{120}{15000} = 8 \text{ mA}$ \therefore Voltage drop across diode = 80 V > 50 V. The diode undergo breakdown.

24. Four equal point charges Q each are placed in the xy plane at (0, 2), (4, 2), (4, -2) and (0, -2). The work required to put a fifth charge Q at the origin of the coordinate system will be :

(1)
$$\frac{Q^2}{2\sqrt{2}\pi\epsilon_0}$$
 (2) $\frac{Q^2}{4\pi\epsilon_0}\left(1+\frac{1}{\sqrt{5}}\right)$
(3) $\frac{Q^2}{4\pi\epsilon_0}\left(1+\frac{1}{\sqrt{3}}\right)$ (4) $\frac{Q^2}{4\pi\epsilon_0}$

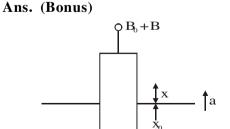
Ans. (2)

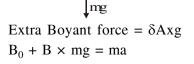
(0.2)•O

Q(4, +2)

- (0,-2)•Q Q(4,-2)
- Potential at origin = $\frac{KQ}{2} + \frac{KQ}{2} + \frac{KQ}{\sqrt{20}} + \frac{KQ}{\sqrt{20}}$ (Potential at $\infty = 0$)
- $= KQ\left(1 + \frac{1}{\sqrt{5}}\right)$

... Work required to put a fifth charge Q at origin


is equal to $\frac{Q^2}{4\pi\epsilon_0}\left(1+\frac{1}{\sqrt{5}}\right)$


25. A cylindrical plastic bottle of negligible mass is filled with 310 ml of water and left floating in a pond with still water. If pressed downward slightly and released, it starts performing simple harmonic motion at angular frequency ω . If the radius of the bottle is 2.5 cm then ω close to : (density of water = 10³ kg / m³) (1) 5.00 rad s⁻¹ (2) 1.25 rad s⁻¹

(4) 2.50 rad s⁻¹

at equilibrium $B_0 = mg$

(3) 3.75 rad s⁻¹

B = ma

$$a = \left(\frac{\delta Ag}{m}\right)^{x}$$

$$w^{2} = \frac{\delta Ag}{m}$$

$$w = \sqrt{\frac{10^{3} \times \pi (2.5)^{2} \times 10^{-4} \times 10}{310 \times 10^{-6} \times 10^{3}}}$$

$$= \sqrt{63.30} = 7.95$$

- 26. A parallel plate capacitor having capacitance 12 pF is charged by a battery to a potential difference of 10 V between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant 6.5 is slipped between the plates the work done by the capacitor on the slab is :
 - (1) 692 pJ (2) 60 pJ (2) 500 J
 - (3) 508 pJ (4) 560 pJ

Ans. (3)

Intial energy of capacitor

$$U_{i} = \frac{1}{2} \frac{v^{2}}{c}$$
$$= \frac{1}{2} \times \frac{120 \times 120}{12} = 600 \text{ J}$$

Since battery is disconnected so charge remain same.

Final energy of capacitor

$$U_{f} = \frac{1}{2} \frac{v^{2}}{c}$$
$$= \frac{1}{2} \times \frac{120 \times 120}{12 \times 6.5} = 92$$
$$W + U_{f} = U_{i}$$
$$W = 508 \text{ J}$$

- 27. Two kg of a monoatomic gas is at a pressure of 4×10^4 N/m². The density of the gas is 8 kg /m³. What is the order of energy of the gas due to its thermal motion ?
 - (1) 10^3 J (2) 10^5 J

(3)
$$10^6 \text{ J}$$
 (4) 10^4 J

Ans. (4)

Thermal energy of N molecule

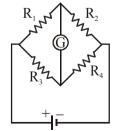
$$= N\left(\frac{3}{2}kT\right)$$

<mark>∛S</mark>aral

 $= \frac{N}{N_A} \frac{3}{2} RT$ $= \frac{3}{2} (nRT)$ $= \frac{3}{2} PV$ $= \frac{3}{2} P\left(\frac{m}{8}\right)$ $= \frac{3}{2} \times 4 \times 10^4 \times \frac{2}{8}$ $= 1.5 \times 10^4$ order will 10⁴
A particle which is experiencing a force, given

by $\vec{F} = 3\vec{i} - 12\vec{j}$, undergoes a displacement of $\vec{d} = 4\vec{i}$. If the particle had a kinetic energy of 3 J at the beginning of the displacement, what is its kinetic energy at the end of the displacement ? (1) 15 J (2) 10 J (3) 12 J (4) 9 J

Ans. (1)


28.

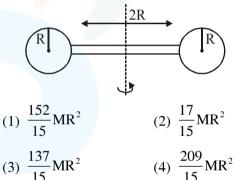
Work done = $\vec{F} \cdot \vec{d}$ = 12J work energy theorem $w_{net} = \Delta K.E.$ $12 = K_c - 3$

$$K_c = 15J$$

29. The Wheatstone bridge shown in Fig. here, gets balanced when the carbon resistor used as R_1 has the colour code (Orange, Red, Brown). The resistors R_2 and R_4 are 80 Ω and 40 Ω , respectively.

Assuming that the colour code for the carbon resistors gives their accurate values, the colour code for the carbon resistor, used as R_3 , would be :

- Red, Green, Brown
 Brown, Blue, Brown
 Grey, Black, Brown
- (4) Brown, Blue, Black


Ans. (2) $R_1 = 32 \times 10 = 320$ for wheat stone bridge $R_1 = R_2$

$$\Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4}$$

$$\frac{320}{R_3} = \frac{80}{40}$$
R_3 = 160
Brown Blue Brown

30.

Two identical spherical balls of mass M and radius R each are stuck on two ends of a rod of length 2R and mass M (see figure). The moment of inertia of the system about the axis passing perpendicularly through the centre of the rod is :

Ans. (3)

For Ball using parallel axis theorem.

$$I_{ball} = \frac{2}{5}MR^{2} + M(2R)^{2}$$
$$= \frac{22}{5}MR^{2}$$

2 Balls so $\frac{44}{5}$ MR²

Irod = for rod $\frac{M(2R)^2}{R} = \frac{MR^2}{3}$ $I_{system} = I_{Ball} + I_{rod}$ $= \frac{44}{5}MR^2 + \frac{MR^2}{3}$

$$=\frac{137}{15}$$
 MR²