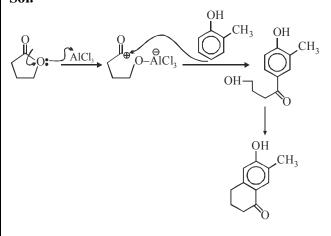

Å



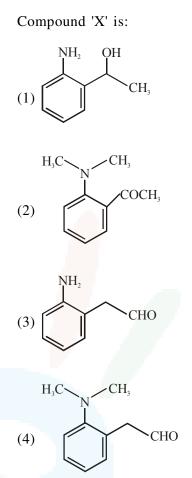
$$\begin{array}{ll} (1) \ \mathrm{N}_2 \rightarrow \mathrm{N}_2^+ & (2) \ \mathrm{NO} \rightarrow \mathrm{NO}^+ \\ (3) \ \mathrm{O}_2 \rightarrow \mathrm{O}_2^{2-} & (4) \ \mathrm{O}_2 \ \rightarrow \mathrm{O}_2^+ \end{array}$$

Sol.

Process	Change in magnetic nature	Bond Order Change
$N_2 \rightarrow N_2^+$	Dia → para	$3 \rightarrow 2.5$
$NO \rightarrow NO^+$	Para \rightarrow Dia	$2.5 \rightarrow 3$
$O_2 \rightarrow O_2^{-2}$	$Para \rightarrow Dia$	$2 \rightarrow 1$
$O_2 \rightarrow O_2^+$	$Para \rightarrow Para$	$2 \rightarrow 2.5$

Sol.

<mark>∛</mark>Saral

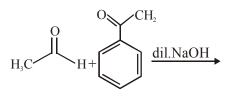

- **6.** The transition element that has lowest enthalpy of atomisation, is :
 - (1) Zn
 - (2) Cu
 - (3) V
 - (4) Fc
- Ans. (2)
- **Sol.** Since Zn is not a transition element so transition element having lowest atomisation energy out of Cu, V, Fe is Cu.
- 7. Which of the following combination of statements is true regarding the interpretation of the atomic orbitals ?
 - (a) An electron in an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.
 - (b) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
 - (c) According to wave mechanics, the ground h

state angular momentum is h equal to $\frac{h}{2\pi}$.

- (d) The plot of ψ Vs r for various azimuthal quantum numbers, shows peak shifting towards higher r value.
- (1) (b), (c) (2) (a), (d) (3) (a), (b) (4) (a), (c)

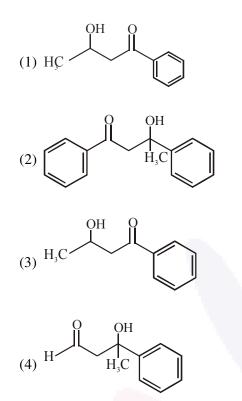
Ans. (4)

- Sol. Refer Theory
- 8. The tests performed on compound X and their inferences are:
 - TestInference(a) 2,4 DNP testColoured precipitate(b) Ladafarm textWellem precipitate
 - (b) Iodoform test Yellow precipitate
 - (c) Azo-dye test No dye formation



Ans. (2)

- Sol. $\rightarrow 2.4$ DNP test is given by aldehyde on ketone
 - \rightarrow Iodoform test is given by compound having CH₂ C group.


$$H_3 - C = group.$$

9. The major product formed in the following reaction is:

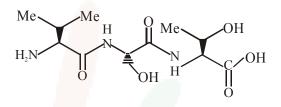
<mark>∛S</mark>aral

Ans. (1)

Sol. Aldehyde reacts at a faster rate than keton during aldol and stericall less hindered anion will be a better nucleophile so sefl aldol at

 $CH_3 - C - H$ will be the major product.

10. For the reaction, $2A + B \rightarrow$ products, when the concentrations of A and B both wrere doubled, the rate of the reaction increased from 0.3 mol $L^{-1}s^{-1}$ to 2.4 mol $L^{-1}s^{-1}$. When the concentration of A alone is doubled, the rate increased from 0.3 mol $L^{-1}s^{-1}$ to 0.6 mol $L^{-1}s^{-1}$


Which one of the following statements is correct ?

- (1) Order of the reaction with respect to Bis2
- (2) Order of the reaction with respect to Ais2
- (3) Total order of the reaction is 4

(4) Order of the reaction with respect to B is 1

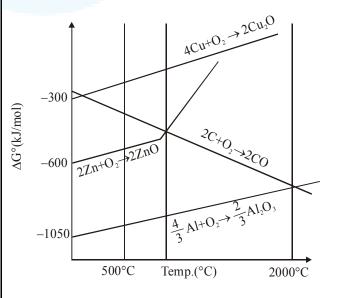
- Sol. $r = K[A]^{x}[B]^{y}$ $\Rightarrow 8 = 2^{3} = 2^{x+y}$ $\Rightarrow x + y = 3 ...(1)$ $\Rightarrow 2 = 2^{x}$ $\Rightarrow x = 1, y = 2$ Order w.r.t. A = 1Order w.r.t. B = 2
- **11.** The correct sequence of amino acids present in the tripeptide given below is :

(1) Leu - Ser - Thr (3) Thr - Ser - Val (4) Val - Ser - Thr Ans. (4)

> CH–COOH I NH₂

Sol. Leusine

Serine


H₃C Thrconine

H₃C-CH - CH-COOH I I OH NH₂

 $NO-CH_2-CH-COOH$

ΝH₂

12. The correct statement regarding the given Ellingham diagram is:

∛Saral

Å

- (1) At 800°C, Cu can be used for the extraction of Zn from ZnO
- (2) At 500 C, coke can be used for the extraction of Zn from ZnO
- (3) Coke cannot be used for the extraction of Cu from Ca₂O.
- (4) At 1400°C, Al can be used for the extraction of Zn from ZnO
- Ans. (4)
- Sol. According to the given diagram Al can reduce ZnO.

 $3ZnO+2Al \rightarrow 3Zn+Al_2O_3$

- 13. For the following reaction, the mass of water produced from 445 g of $C_{57}H_{110}O_6$ is :
- $2C_{57}H_{110}O_6(s) + 163O_2(g) \rightarrow 114CO_2(g) + 110 H_2OP(1)$ (1) 495 g (2) 490 g (3) 890 g (4) 445 g

Ans. (1)

Sol. moles of $C_{57}H_{110}O_6(s) = \frac{445}{890} = 0.5$ moles

 $2C_{57}H_{110}O_6(s) + 163 O_2(g) \rightarrow 114 CO_2(g) + 110 H_2O(l)$

$$n_{\rm H_2O} = \frac{110}{4} = \frac{55}{2}$$

$$m_{H_{2}O} = \frac{55}{2} \times 18$$

= 495gm

- 14. The correct match between Item I and Item II is :
- Item IItem II(A) Benzaldehyde(P) Mobile phase(B) Alumina(Q) Adsorbent(C) Acetonitrile(R) Adsorbate(1) (A) \rightarrow (Q);(B) \rightarrow (R);(C) \rightarrow (P)(2) (A) \rightarrow (P); (B) \rightarrow (R); (C) \rightarrow (Q)(3) (A) \rightarrow (Q); (B) \rightarrow (P); (C) \rightarrow (R)(4) (A) \rightarrow (R); (B) \rightarrow (Q); (C) \rightarrow (P)Ans. (4)

Sol.

15. The increasing basicity order of the following compounds is :

(A) CH₃CH₂NH₂
(B) CH₃CH₂CH₃
(B) CH₃CH₂NH

(C) CH₃ (H) H₃C-N-CH₃

(D) CH₃ (Ph-N-H) (I) (D)<(C)<(A)<(B)
(I) (D)<(C)<(A)<(A)

Ans. (1) Sol.

 $\begin{array}{ccc} CH_3 & CH_3 & CH_2-CH_3 \\ Ph-N-H < CH_3 - N - CH_3 < CH_2-NH < CH_3-CH_2-NH_2 \\ \hline 1 & \uparrow & \uparrow \\ lone pair & more steric \\ delocalized & hinderence \\ less solutions \\ energy \end{array}$

- 16. For coagulation of arscnious sulphide sol, which one of the following salt solution will be most effective ?
 - (1) $AlCl_3$ (2) NaCl(3) $BaCl_2$ (4) Na_3PO_4

Ans. (1)

Sol. Sulphide is -ve charged colloid so cation with maximum charge will be most effective for coagulation.

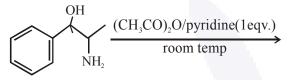
 $Al^{3+} > Ba^{2+} > Na^+$ coagulating power.

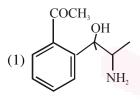
At 100°C, copper (Cu) has FCC unit cell structure with cell edge length of x Å. What is the approximate density of Cu (in g cm⁻³) at this temperature ?

[Atomic Mass of Cu = 63.55u]

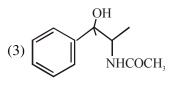
(1)
$$\frac{105}{x^3}$$
 (2) $\frac{211}{x^3}$ (3) $\frac{205}{x^3}$ (4) $\frac{422}{x^3}$

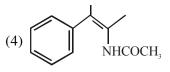
Ans. (4)

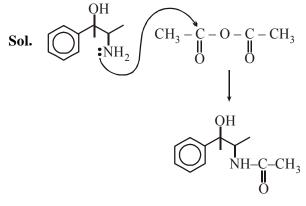

<mark>∛</mark>Saral


Å

Sol. FCC unit cell Z = 4


$$d = \frac{63.5 \times 4}{6 \times 10^{23} \times x^3 \times 10^{-24}} \text{ g/cm}^3$$
$$d = \frac{63.5 \times 4 \times 10}{6} \text{ g/cm}^3$$
$$d = \frac{423.33}{x^3} \approx \left(\frac{422}{x^3}\right)$$


18. The major product obtained in the following reaction is :



Ans. (3)

- **19.** Which of the following conditions in drinking water causes methemoglobinemia ?
 - (1) > 50ppm of load
 - (2) > 100 ppm of sulphate
 - (3) > 50 ppm of chloride
 - (4) > 50 ppm of nitrate

Ans. (4)

- **Sol.** Concentration of nitrate >50 ppm in drinking water causes methemoglobinemia
- 20. Homoleptic octahedral complexes of a metal ion 'M^{3+'} with three monodentate ligands and L_1 , L_2 , L_3 absorb wavelengths in the region of green, blue and red respectively. The increasing order of the ligand strength is :

(1)
$$L_2 < L_1 < L_3$$
 (2) $L_3 < L_2 < L_1$

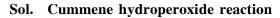
- (3) $L_3 < L_1 < L_2$ (4) $L_1 < L_2 < L_3$
- **Ans.** (3)
- **Sol.** Order of λ_{abs} L₃>L₁>L₂

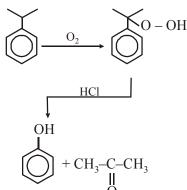
OII

So Δ_0 order will be $L_2 > L_1 > L_3$ (as $\Delta_0 \propto \frac{1}{\lambda_{abs}}$)

So order of ligand strength will be $L_2 > L_1 > L_3$

21. The product formed in the reaction of cumene with O_2 followed by treatment with dil. HCl are :


(1)
$$\bigcirc$$
 $H_{3}C$ \bigcirc $H_{3}C$ O $H_{3}C$ $H_{3}C$ O $H_{3}C$ $H_{3}C$


Ans. (3)

JEE Exam Solution

<mark>∛</mark>Saral

Ă

22. The temporary hardness of water is due to :(1) Ca(HCO₃)₂
(2) NaCl

 $(3) Na_2SO_4 \qquad (4) CaCl_2$

Ans. (1)

- Sol. $Ca(HCO_3)_2$ is reponsible for temporary hardness of water
- 23. The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is :

(Specific heat of water liquid and water vapour are 4.2 kJ K⁻¹ kg⁻¹ and 2.0 kJ K⁻¹ kg⁻¹; heat of liquid fusion and vapourisation of water are 344 kJ kg⁻¹ and 2491 kJ kg⁻¹, respectively). (log 273 = 2.436, log 373 = 2.572, log 383 = 2.583) (1) 7.90 kJ kg⁻¹ K⁻¹ (2) 2.64 kJ kg⁻¹ K⁻¹ (3) 8.49 kJ kg⁻¹ K⁻¹ (4) 4.26 kJ kg⁻¹ K⁻¹

Ans. (4)

Sol.
$$H_2O(s) \xrightarrow{\Delta S_1} H_2O(\ell) \xrightarrow{\Delta S_2} H_2O(\ell)$$

273K 273K 373K $\xrightarrow{\Delta S_3}$
 $H_2O(g) \xrightarrow{\Delta S_4} H_2O(g)$
373K 383K

$$\Delta S_{1} = \frac{\Delta \Pi_{\text{fusion}}}{273} = \frac{534}{273} = 1.22$$

$$\Delta S_{2} = 4.2 \,\ell N \left(\frac{363}{273}\right) = 1.31$$

$$\Delta S_{3} = \frac{\Delta H_{\text{vap}}}{373} = \frac{2491}{373} = 6.67$$

$$\Delta S_{4} = 2.0 \,\ell n \left(\frac{383}{373}\right) = 0.05$$

$$\Delta S_{\text{total}} = 9.26 \text{ kJ kg}^{-1} \text{ K}^{-1}$$

24. The pH of rain water, is approximately : (1) 6.5 (2) 7.5 (3) 5.6 (4) 7.0

Ans. (3)

- Sol. pH of rain water is approximate 5.6
- 25. If the standard electrode potential for a cell is2 V at 300 K, the equilibrium constant (K) for the reaction

 $Zn(s) + Cu^{2+}(aq) \implies Zn^{2+}(aq) + Cu(s)$

at 300 K is approximately.

(R = 8 JK⁻¹ mol⁻¹, F = 96000 C mol⁻¹) (1) e^{160} (2) e^{320}

(3)
$$e^{-160}$$
 (4) e^{-80}

Ans. (1)

Sol. $\Delta G^{\circ} = -RT \ln k = -nFE_{cell}^{\circ}$

$$lnk = \frac{ll \times F \times E}{R \times T} = \frac{2 \times 90000 \times 2}{8 \times 300}$$
$$lnk = 160$$
$$k = e^{160}$$

26. A solution containing 62 g ethylene glycol in 250 g water is cooled to -10° C. If K_f for water is 1.86 K kg mol⁻¹, the amount of water (in g) separated as ice is :

(1) 32 (2) 48 (3) 16 (4) 64

Ans. (4)

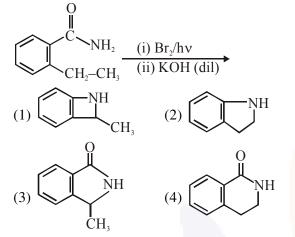
Sol. $\Delta T_f = K_f \cdot m$

$$10 = 1.86 \times \frac{62/62}{W_{kg}}$$

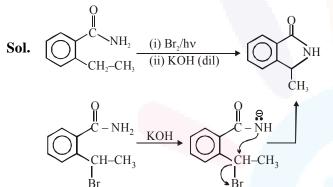
W = 0.186 kg

- $\Delta W = (250 186) = 64 \text{ gm}$
- 27. When the first electron gain enthalpy $(\Delta_{eg}H)$ of oxygen is -141 kJ/mol, its second electron gain enthalpy is :
 - (1) almost the same as that of the first
 - (2) negative , but less negative than the first
 - (3) a positive value
 - (4) a more negative value than the first

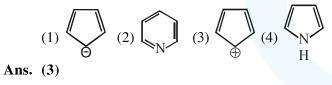
Ans. (3)


Sol. Second electron gain enthalpy is always positive for every element.

 $O^{-}_{(g)}$ + $e^{-} \rightarrow O^{-2}_{(g)}$; ΔH = positive


∛Saral

Å


28. The major product of the following reaction is :

Ans. (3)

29. Which of the following compounds is not aromatic ?

Sol.

Do not have $(4n + 2) \pi$ electron It has $4n \pi$ electrons

So it is Anti aromatic.

30. Consider the following reversible chemical reactions :

$$A_2(g) + Br_2(g) \rightleftharpoons 2AB(g) \dots (1)$$

 $6AB(g) \xrightarrow{K_2} 3A_2(g) + 3B_2(g) \dots (2)$ The relation between K₁ and K₂ is : (1) K₂ = K₁³ (2) K₂ = K₁⁻³

(3)
$$K_1 K_2 = 3$$
 (4) $K_1 K_2 = \frac{1}{3}$

Ans. (2)

Sol.
$$A_2(g) + B_2(g) \xrightarrow{k_1} 2AB$$
 ...(1)
 \Rightarrow eq. (1) × 3
 $6 AB(g) \xrightarrow{3} 3A_2(g) + 3B_2(g)$
 $\Rightarrow \left(\frac{1}{k_1}\right)^3 = k_2 \Rightarrow k_2 = (k_1)^{-3}$

JEE Exam Solution