

FINAL JEE–MAIN EXAMINATION – JANUARY, 2019
Held On Saturday 12th JANUARY, 2019
TIME: 09 : 30 AM To 12 : 30 PM

1. Iodine reacts with concentrated HNO_3 to yield Y along with other products. The oxidation state of iodine in Y, is :-
 (1) 5 (2) 3 (3) 1 (4) 7

Ans. (1)

Sol. $\text{I}_2 + 10\text{HNO}_3 \rightarrow 2\text{HIO}_3 + 10\text{NO}_2 + 4\text{H}_2\text{O}$
 In HIO_3 oxidation state of iodine is +5.

2. The major product of the following reaction is:

Ans. (3)

DIBAL-H will reduce cyanides & esters to aldehydes.

3. In a chemical reaction, $\text{A} + 2\text{B} \xrightleftharpoons{K} 2\text{C} + \text{D}$, the initial concentration of B was 1.5 times of the concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equilibrium constant(K) for the aforesaid chemical reaction is :

(1) 16 (2) 4 (3) 1 (4) $\frac{1}{4}$

Ans.(2)

At equilibrium $[\text{A}] = [\text{B}]$

$$\begin{aligned} \text{a}_0 - \text{x} &= 1.5\text{a}_0 - 2\text{x} \Rightarrow \text{x} = 0.5\text{a}_0 \\ \text{t} = \text{t}_{\text{eq}} & \quad 0.5\text{a}_0 \quad 0.5\text{a}_0 \quad \text{a}_0 \quad 0.5\text{a}_0 \end{aligned}$$

$$K_C = \frac{[\text{C}]^2 [\text{D}]}{[\text{A}] [\text{B}]^2} = \frac{(0.5\text{a}_0)^2 (0.5\text{a}_0)}{(0.5\text{a}_0) (0.5\text{a}_0)^2} = 4$$

4. Two solids dissociate as follows

The total pressure when both the solids dissociate simultaneously is :-

(1) $x^2 + y^2 \text{ atm}$ (2) $x^2 + y^2 \text{ atm}$
 (3) $2(\sqrt{x+y}) \text{ atm}$ (4) $\sqrt{x+y} \text{ atm}$

Ans. (3)

Adding (1) and (2)

$$x + y = (P_1 + P_2)^2$$

Now total pressure

$$\begin{aligned} P_T &= P_C + P_B + P_E \\ &= (P_1 + P_2) + P_1 + P_2 = 2(P_1 + P_2) \end{aligned}$$

$$P_T = 2(\sqrt{x+y})$$

5. Freezing point of a 4% aqueous solution of X is equal to freezing point of 12% aqueous solution of Y. If molecular weight of X is A, then molecular weight of Y is :-

(1) A (2) 3A (3) 4A (4) 2A

Ans. (2)

Sol. For same freezing point, molality of both solution should be same.

$$m_x = m_y$$

$$\frac{4 \times 1000}{96 \times M_x} = \frac{12 \times 1000}{88 \times M_y}$$

$$\text{or, } M_y = \frac{96 \times 12}{4 \times 88} M_x = 3.27 \text{ A}$$

Closest option is 3A.

6. Poly- β -hydroxybutyrate-co- β -hydroxyvalerate(PHBV) is a copolymer of__.

- 3-hydroxybutanoic acid and 4-hydroxypentanoic acid
- 2-hydroxybutanoic acid and 3-hydroxypentanoic acid
- 3-hydroxybutanoic acid and 2-hydroxypentanoic acid
- 3-hydroxybutanoic acid and 3-hydroxypentanoic acid

Ans. (4)

Sol. PHBV is a polymer of 3-hydroxybutanoic acid and 3-Hydroxy pentanoic acid.

7. Among the following four aromatic compounds, which one will have the lowest melting point ?

Ans. (1)

Sol. M.P. of Naphthalene $\simeq 80^\circ\text{C}$

8. $\text{CH}_3\text{CH}_2-\overset{\text{OH}}{\underset{\text{Ph}}{\text{C}}}-\text{CH}_3$ cannot be prepared by :

- $\text{HCHO} + \text{PhCH}(\text{CH}_3)\text{CH}_2\text{MgX}$
- $\text{PhCOCH}_2\text{CH}_3 + \text{CH}_3\text{MgX}$
- $\text{PhCOCH}_3 + \text{CH}_3\text{CH}_2\text{MgX}$
- $\text{CH}_3\text{CH}_2\text{COCH}_3 + \text{PhMgX}$

Ans. (1)

9. The volume of gas A is twice than that of gas B. The compressibility factor of gas A is thrice than that of gas B at same temperature. The pressures of the gases for equal number of moles are :

- $2P_A = 3P_B$
- $P_A = 3P_B$
- $P_A = 2P_B$
- $3P_A = 2P_B$

Ans. (1)

Sol. $V_A = 2V_B$

$$Z_A = 3Z_B$$

$$\frac{P_A V_A}{n_A RT_A} = \frac{3 \cdot P_B \cdot V_B}{n_B \cdot RT_B}$$

$$2P_A = 3P_B$$

10. The element with $Z = 120$ (not yet discovered) will be an/a :

- transition metal
- inner-transition metal
- alkaline earth metal
- alkali metal

Ans. (3)

Sol. $Z = 120$

Its general electronic configuration may be represented as [Nobal gas] ns^2 , like other alkaline earth metals.

11. Decomposition of X exhibits a rate constant of $0.05 \mu\text{g}/\text{year}$. How many years are required for the decomposition of $5 \mu\text{g}$ of X into $2.5 \mu\text{g}$?
 (1) 50 (2) 25 (3) 20 (4) 40

Ans. (1)

Sol. Rate constant (K) = $0.05 \mu\text{g}/\text{year}$
 means zero order reaction

$$t_{1/2} = \frac{a_0}{2K} = \frac{5\mu\text{g}}{2 \times 0.05 \mu\text{g}/\text{year}} = 50 \text{ year}$$

12. The major product of the following reaction is :

Ans. (4)

13. Given

Gas	H_2	CH_3	CO_2	SO_2
Critical	33	190	304	630

Temperature/K

On the basis of data given above, predict which of the following gases shows least adsorption on a definite amount of charcoal ?

(1) H_2 (2) CH_4 (3) SO_2 (4) CO_2

Ans. (1)

Sol. Smaller the value of critical temperature of gas, lesser is the extent of adsorption.

so least adsorbed gas is H_2

14. For diatomic ideal gas in a closed system, which of the following plots does not correctly describe the relation between various thermodynamic quantities ?

Ans. (2)

Sol. At higher temperature, rotational degree of freedom becomes active.

$$C_p = \frac{7}{2}R \quad (\text{Independent of } P)$$

$$C_v = \frac{5}{2}R \quad (\text{Independent of } V)$$

Variation of U vs T is similar as C_v vs T .

15. The standard electrode potential E^\ominus and its

temperature coefficient $\left(\frac{dE^\ominus}{dT} \right)$ for a cell are 2V

and $-5 \times 10^{-4} \text{ VK}^{-1}$ at 300 K respectively. The cell reaction is

The standard reaction enthalpy ($\Delta_r H^\ominus$) at 300 K in kJ mol^{-1} is,

[Use $R = 8\text{J K}^{-1} \text{ mol}^{-1}$ and $F = 96,000 \text{ C mol}^{-1}$]

(1) -412.8 (2) -384.0

(3) 206.4 (4) 192.0

Ans. (1)

Sol. Chiefly NO_2 , O_3 and hydrocarbon are responsible for build up smog.

16. The molecule that has minimum/no role in the formation of photochemical smog, is :

- $\text{CH}_2 = \text{O}$
- N_2
- O_3
- NO

Ans. (2)

Sol. Chiefly NO_2 , O_3 and hydrocarbon are responsible for build up smog.

17. In the Hall-Heroult process, aluminium is formed at the cathode. The cathode is made out of :

- Platinum
- Carbon
- Pure aluminium
- Copper

Ans. (2)

17. Ans.(2) Carbon

Sol. In the Hall-Heroult process the cathode is made of carbon.

18. Water samples with BOD values of 4 ppm and 18 ppm, respectively, are :

- Highly polluted and Clean
- Highly polluted and Highly polluted
- Clean and Highly polluted
- Clean and Clean

Ans. (3)

Sol. Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

19. In the following reactions, products A and B are :

Ans. (4)

19.

Ans. 4

20. What is the work function of the metal if the light of wavelength 4000 Å generates photoelectrons of velocity $6 \times 10^5 \text{ ms}^{-1}$ from it ?

(Mass of electron = $9 \times 10^{-31} \text{ kg}$

Velocity of light = $3 \times 10^8 \text{ ms}^{-1}$

Planck's constant = $6.626 \times 10^{-34} \text{ Js}$

Charge of electron = $1.6 \times 10^{-19} \text{ eV}^{-1}$

- 0.9 eV

- 4.0 eV

- 2.1 eV

- 3.1 eV

Ans. (3)

Sol. Nucleophilicity order

27. The pair of metal ions that can give a spin only magnetic moment of 3.9 BM for the complex $[\text{M}(\text{H}_2\text{O})_6]\text{Cl}_2$, is :

(1) Cr^{2+} and Mn^{2+} (2) V^{2+} and Co^{2+}
 (3) V^{2+} and Fe^{2+} (4) Co^{2+} and Fe^{2+}

Ans. (2)

27. Ans.(2) V^{2+} and Co^{2+}

Sol. $\text{V}^{2+} \rightarrow [\text{V}(\text{H}_2\text{O})_6]\text{Cl}_2$; $[\text{Ar}]_{18} \begin{array}{|c|c|c|c|c|} \hline 1 & 1 & 1 & \text{ } & \text{ } \\ \hline \end{array} \quad 3\text{d}^3$

$$\begin{aligned} & 3 \text{ unpaired } e^- \text{, spin only} \\ & \text{magnetic moment} \\ & = 3.89 \text{ B.M.} \end{aligned}$$

$\text{Co}^{2+} \rightarrow [\text{Co}(\text{H}_2\text{O})_6]\text{Cl}_2$; $[\text{Ar}]_{18} \begin{array}{|c|c|c|c|c|c|} \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array} \quad 3\text{d}^7$

$$\begin{aligned} & 3 \text{ unpaired } e^- \text{, spin only} \\ & \text{magnetic moment} \\ & = 3.89 \text{ B.M.} \end{aligned}$$

28. In the following reaction

Aldehyde Alcohol

HCHO ${}^t\text{BuOH}$

CH_3CHO MeOH

The best combinations is :

(1) HCHO and MeOH
 (2) HCHO and ${}^t\text{BuOH}$
 (3) CH_3CHO and MeOH
 (4) CH_3CHO and ${}^t\text{BuOH}$

Ans. (1)

$$\text{rate} \propto \frac{1}{\text{steric crowding of aldehyde}}$$

t-butanol can show formation of carbocation in acidic medium.

29. 50 mL of 0.5 M oxalic acid is needed to neutralize 25 mL of sodium hydroxide solution. The amount of NaOH in 50 mL of the given sodium hydroxide solution is :

(1) 40 g (2) 20 g (3) 80 g (4) 10 g

BONUS

$$m_{\text{eq}} \text{ of } \text{H}_2\text{C}_2\text{O}_4 = m_{\text{eq}} \text{ NaOH}$$

$$50 \times 0.5 \times 2 = 25 \times M_{\text{NaOH}} \times 1$$

$$\therefore M_{\text{NaOH}} = 2 \text{ M}$$

Now 1000 ml solution = 2 × 40 gram NaOH

$$\therefore 50 \text{ ml solution} = 4 \text{ gram NaOH}$$

30. A metal on combustion in excess air forms X, X upon hydrolysis with water yields H_2O_2 and O_2 along with another product. The metal is :

(1) Rb (2) Na (3) Mg (4) Li

Ans. (1)

