

FINAL JEE-MAIN EXAMINATION – JANUARY, 2019

Held On Saturday 12th JANUARY, 2019

TIME: 09:30 AM To 12:30 PM

- Iodine reacts with concentrated HNO3 to yield Y 1. along with other products. The oxidation state of iodine in Y, is :-
 - (1) 5
- (2) 3
- (3) 1
- (4) 7

Ans. (1)

- **Sol.** $I_2 + 10HNO_3 \longrightarrow 2HIO_3 + 10NO_2 + 4H_2O$ In HIO₃ oxidation state of iodine is +5.
- 2. The major product of the following reaction is:

$$\begin{array}{c} CN \\ O \\ \hline (i) DIBAL-H \\ \hline (ii) H_3O^{\dagger} \end{array}$$

Ans. (3)

Sol.
$$CN$$
 $(1) DIBAL-H$
 $(2) H^{\dagger}/H_2O$
 OH

DIBAL-H will reduce cyanides & esters to aldehydes.

- In a chemical reaction, A + 2B $\stackrel{K}{\rightleftharpoons}$ 2C + D, **3.** the initial concentration of B was 1.5 times of the concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equilibrium constant(K) for the aforesaid chemical reaction is:
 - (1) 16
- (2) 4
- (3) 1
- $(4) \frac{1}{4}$

Ans.(2)

Sol.
$$A + 2B \rightleftharpoons 2C + D$$

 $t=0 \quad a_0 \quad 1.5a_0 \quad 0 \quad 0$
 $t=t_{eq} \quad a_0 - x \quad 1.5a_0 - 2x \quad 2x \quad x$

At equilibrium [A] = [B]

$$a_0 - x = 1.5a_0 - 2x \implies x = 0.5a_0$$

 $t = t_{eq} = 0.5a_0 = 0.5a_0 = 0.5a_0$

$$K_{C} = \frac{[C]^{2}[D]}{[A][B]^{2}} = \frac{(a_{0})^{2} (0.5a_{0})}{(0.5a_{0}) (0.5a_{0})^{2}} = 4$$

4. Two solids dissociate as follows

$$A(s) \rightleftharpoons B(g) + C(g) ; K_{p_1} = x atm^2$$

$$D(s) \rightleftharpoons C(g) + E(g) ; K_{p_2} = y atm^2$$

The total pressure when both the solids dissociate simultaneously is:-

(1)
$$x^2 + y^2$$
 atm

(2)
$$x^2 + y^2$$
 atm

(3)
$$2(\sqrt{x+y})$$
atm (4) $\sqrt{x+y}$ atm

(4)
$$\sqrt{x+y}$$
 atn

Ans. (3)

Sol.
$$A(s) \rightleftharpoons B(g) + C(g)$$
 $K_{P_1} = x = P_B \cdot P_C$
 P_1 P_1 $x = P_1(P_1 + P_2)$...(1)
 $D(s) \rightleftharpoons C(g) + E(g)$ $K_{P_2} = y = P_C \cdot P_E$
 P_2 P_2 $y = (P_1 + P_2) (P_2)$...(2)
Adding (1) and (2)

$$x + y = (P_1 + P_2)^2$$

Now total pressure

$$\begin{split} P_T &= P_C + P_B + P_E \\ &= (P_1 + P_2) + P_1 + P_2 = 2(P_1 + P_2) \end{split}$$

$$P_T = 2\left(\sqrt{x+y}\right)$$

- 5. Freezing point of a 4% aqueous solution of X is equal to freezing point of 12% aqueous solution of Y. If molecular weight of X is A, then molecular weight of Y is :-
 - (1) A
 - (2) 3A
 - (3) 4A
 - (4) 2A

Ans. (2)

Sol. For same freezing point, molality of both solution should be same.

$$m_x = m_v$$

∜Saral

$$\frac{4\times1000}{96\times M_x} = \frac{12\times1000}{88\times M_y}$$

or,
$$M_y = \frac{96 \times 12}{4 \times 88} M_x = 3.27 \text{ A}$$

Closest option is 3A.

- **6.** Poly-β-hydroxybutyrate-co-β-hydroxyvalerate(PHBV) is a copolymer of___
 - (1) 3-hydroxybutanoic acid and 4-hydroxypentanoic acid
 - (2) 2-hydroxybutanoic acid and 3-hydroxypentanoic acid
 - (3) 3-hydroxybutanoic acid and 2-hydroxypentanoic acid
 - (4) 3-hydroxybutanoic acid and 3-hydroxypentanoic acid

Ans. (4)

- **Sol.** PHBV is a polymer of 3-hydroxybutanoic acid and 3-Hydroxy pentanoic acid.
- **7.** Among the following four aromatic compounds, which one will have the lowest melting point ?

Ans. (1)

Sol. M.P. of Napthalene ~ 80°C

- (1) $HCHO + PhCH(CH_3)CH_2MgX$
- (2) $PhCOCH_2CH_3 + CH_3MgX$
- (3) PhCOCH₃ + CH₃CH₂MgX
- $(4) CH_3CH_2COCH_3 + PhMgX$

Ans. (1)

- **9.** The volume of gas A is twice than that of gas B. The compressibility factor of gas A is thrice than that of gas B at same temperature. The pressures of the gases for equal number of moles are:
 - (1) $2P_A = 3P_B$
 - (2) $P_A = 3P_B$
 - (3) $P_A = 2P_B$
 - (4) $3P_A = 2P_B$

Ans. (1)

Sol.
$$V_A = 2V_B$$

 $Z_A = 3Z_B$

$$\frac{P_{A}V_{A}}{n_{A}RT_{A}} = \frac{3 \cdot P_{B} \cdot V_{B}}{n_{B}.RT_{B}}$$

$$2P_A = 3P_B$$

- 10. The element with Z = 120 (not yet discovered) will be an/a:
 - (1) transition metal
 - (2) inner-transition metal
 - (3) alkaline earth metal
 - (4) alkali metal

Ans. (3)

Sol.
$$Z = 120$$

Its general electronic configuration may be represented as [Nobal gas] ns², like other alkaline earth metals.

- 11. Decomposition of X exhibits a rate constant of 0.05 μ g/year. How many years are required for the decomposition of 5 μ g of X into 2.5 μ g?
 - (1) 50
- (2) 25
- (3) 20
- (4) 40

Ans.(1)

&Saral

Sol. Rate constant (K) = $0.05 \mu g/year$ means zero order reaction

$$t_{1/2} \!=\! \! \frac{a_0}{2K} \! =\! \frac{5 \mu g}{2 \! \times \! 0.05 \, \mu g \, / \, year} \; = 50 \; year$$

12. The major product of the following reaction is:

$$\begin{array}{c} \text{CH}_{3}\text{O} \\ & \begin{array}{c} \text{Cl} \\ \hline \text{(2) AlCl}_{3}(\text{anhyd.}) \end{array} \end{array}$$

$$\begin{array}{c} \text{Cl} \\ \text{(2) CH}_{3}\text{O} \\ \end{array}$$

$$\begin{array}{c} \text{Cl} \\ \text{(2) CH}_{3}\text{O} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_{3}\text{O} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_{3}\text{O} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_{3}\text{O} \\ \end{array}$$

Ans. (4)

Sol.
$$CH_3O$$

$$Cl_2$$

$$MeO$$

$$Cl_3$$

$$MeO$$

$$Cl_4 + H^+$$

13. Given

Gas	H_2	CH_3	CO_2	SO_2
Critical	33	190	304	630

Temperature/K

On the basis of data given above, predict which of the following gases shows least adsorption on a definite amount of charcoal ?

- $(1) H_2$
- (2) CH₄
- (3) SO₂
- (4) CO₂

Ans. (1)

Sol. Smaller the value of critical temperature of gas, lesser is the extent of adsorption.

so least adsorbed gas is H₂

14. For diatomic ideal gas in a closed system, which of the following plots does not correctly describe the relation between various thermodynamic quantities?

Ans. (2)

Sol. At higher temperature, rotational degree of freedom becomes active.

$$C_P = \frac{7}{2}R$$
 (Independent of P)

$$C_V = \frac{5}{2}R$$
 (Independent of V)

Variation of U vs T is similar as C_V vs T.

15. The standard electrode potential E^{\odot} and its

temeprature coefficient
$$\left(\frac{dE^{\odot}}{dT}\right)$$
 for a cell are 2V

and $-5\times 10^{-4}\ VK^{-1}$ at 300 K respectively. The cell reaction is

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

The standard reaction enthalpy $(\Delta_r H^{\odot})$ at 300

K in kJ mol-1 is,

[Use $R = 8jK^{-1} \text{ mol}^{-1}$ and $F = 96,000 \text{ Cmol}^{-1}$]

- (1) -412.8
- (2) -384.0
- (3) 206.4
- (4) 192.0

Ans. (1)

Sol. Chiefly NO₂, O₃ and hydrocarbon are responsible for build up smog.

4

- 16. The molecule that has minimum/no role in the formation of photochemical smog, is:
 - (1) $CH_2 = O$
 - (2) N_2
 - (3) O_3
 - (4) NO

Ans. (2)

∜Saral

- **Sol.** Chiefly NO_2 , O_3 and hydrocarbon are responsible for build up smog.
- **17.** In the Hall-Heroult process, aluminium is formed at the cathode. The cathode is made out of:
 - (1) Platinum
 - (2) Carbon
 - (3) Pure aluminium
 - (4) Copper

Ans. (2)

- **17.** Ans.(2) Carbon
- Sol. In the Hall-Heroult process the cathode is made of carbon.
- 18. Water samples with BOD values of 4 ppm and 18 ppm, respectively, are:
 - (1) Highly polluted and Clean
 - (2) Highly polluted and Highly polluted
 - (3) Clean and Highly polluted
 - (4) Clean and Clean

Ans. (3)

- **Sol.** Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
- **19.** In the following reactions, products A and B are:

$$[A] \xrightarrow{O} O \\ H_{3}C \xrightarrow{CH_{3}} H \xrightarrow{dil NaOH} [A]$$

$$[A] \xrightarrow{H_{3}O^{+}} [B]$$

$$OH \qquad H_{2}C \xrightarrow{H} H$$

OH CH₃

$$(2) A = H_{3}C CH_{3}$$

$$(3) A = CH_{3}$$

$$(4) A = HO CH_{3}$$

$$(4) A = HO CH_{3}$$

$$(5) CH_{3}$$

$$(6) CH_{3}$$

$$(7) CH_{3}$$

$$(8) CH_{3}$$

$$(8) CH_{3}$$

$$(9) CH_{3}$$

$$(10) CH_{3}$$

$$(11) CH_{3}$$

$$(12) CH_{3}$$

$$(13) CH_{3}$$

$$(14) CH_{3}$$

$$(15) CH_{3}$$

$$(17) CH_{3}$$

$$(18) CH_{3}$$

$$(19) CH_{3}$$

What is the work function of the metal if the light 20. of wavelength 4000 Å generates photoelectrons of velocity 6×10^5 ms⁻¹ form it?

(Mass of electron = 9×10^{-31} kg

Velocity of light = $3 \times 10^8 \text{ ms}^{-1}$

Planck's constant = 6.626×10^{-34} Js

Charge of electron = $1.6 \times 10^{-19} \text{ JeV}^{-1}$)

- (1) 0.9 eV
- (2) 4.0 eV
- (3) 2.1 eV
- (4) 3.1 eV

Ans. (3)

19.

Ans.

Sol.

Sol. $hv = \phi + hv^{\circ}$

∜Saral

$$\frac{1}{2}mv^2 = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)$$

$$h\nu = \phi + \frac{1}{2}mv^2$$

$$\phi = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{4000 \times 10^{-10}} - \frac{1}{2} \times 9 \times 10^{-31} \times (6 \times 10^5)^2$$

$$\phi = 3.35 \times 10^{-19} \text{ J} \implies \phi \approx 2.1 \text{ eV}$$

- **21.** Among the following compounds most basic amino acid is:
 - (1) Lysine
 - (2) Asparagine
 - (3) Serine
 - (4) Histidine

Ans. (4)

Sol. Histidine

- 22. The metal d-orbitals that are directly facing the ligands in $K_3[Co(CN)_6]$ are :
 - (1) d_{xz} , d_{vz} and d_{z^2}
 - (2) d_{xy} , d_{xz} and d_{yz}
 - (3) d_{xy} and $d_{x^2-y^2}$
 - (4) $d_{x^2-y^2}$ and d_{z^2}

Ans. (4)

Sol. $K_3[Co(CN)_6]$ $Co^{+3} \rightarrow [Ar]_{18} 3d^6$

23. The hardness of a water sample (in terms of equivalents of CaCO₃) containing 10⁻³ M CaSO₄ is:

(molar mass of $CaSO_4 = 136 \text{ g mol}^{-1}$)

- (1) 100 ppm
- (2) 50 ppm
- (3) 10 ppm
- (4) 90 ppm

Ans. (1)

- **Sol.** ppm of CaCO₃ $(10^{-3} \times 10^{3}) \times 100 = 100 \text{ ppm}$
- **24.** The correct order for acid strength of compounds CH≡CH, CH₃-C≡CH and CH₂=CH₂ is as follows:

(1)
$$CH \equiv CH > CH_2 = CH_2 > CH_3 - C \equiv CH$$

(2)
$$HC \equiv CH > CH_3 - C \equiv CH > CH_2 = CH_2$$

(3)
$$CH_3-C \equiv CH > CH_2 = CH_2 > HC \equiv CH$$

(4)
$$CH_3-C \equiv CH > CH \equiv CH > CH_2 = CH_2$$

Ans. (2)

- Sol. $CH = CH > CH_3 C = CH > CH_2 = CH_2$ (Acidic strength order)
- 25. $Mn_2(CO)_{10}$ is an organometallic compound due to the presence of :
 - (1) Mn Mn bond
- (2) Mn C bond
- (3) Mn O bond
- (4) C O bond

Ans. (2)

Sol. Compounds having at least one bond between carbon and metal are known as organometallic compounds.

26. The increasing order of reactivity of the following compounds towards reaction with alkyl halides directly is:

$$(A) \qquad (B) \qquad NH$$

$$CN NH_2 NH_2$$
 $CO (D)$

- (1) (B) < (A) < (D) < (C)
- (2) (B) < (A) < (C) < (D)
- (3) (A) < (C) < (D) < (B)
- (4) (A) < (B) < (C) < (D)

Ans. (2)

Sol. Nucleophilicity order

$$\bigcup_{0}^{O} NH < \bigcup_{0}^{O} NH_{2} < \bigcup_{0}^{CN} NH_{2} < \bigcup_{0}^{N} NH_{2}$$

- The pair of metal ions that can give a spinonly 27. magnetic moment of 3.9 BM for the complex $[M(H_2O)_6]Cl_2$, is:
 - (1) Cr^{2+} and Mn^{2+}
- (2) V^{2+} and Co^{2+}
- (3) V^{2+} and Fe^{2+}
- (4) Co^{2+} and Fe^{2+}

Ans. (2)

- 27. Ans.(2) V^{2+} and Co^{2+}
- **Sol.** $V^{2+} \rightarrow [V(H_2O)_6]Cl_2$; $[Ar]_{18}$

3 unpaired e-, spin only magnetic moment

= 3.89 B.M.

3 unpaired e-, spin only magnetic moment

= 3.89 B.M.

28. In the following reaction

Aldehyde + Alcohol \xrightarrow{HCl} Acetal

Aldehyde Alcohol **HCHO** ^tBuOH CH₃CHO MeOH

The best combinations is:

- (1) HCHO and MeOH
- (2) HCHO and ^tBuOH
- (3) CH₃CHO and MeOH
- (4) CH₃CHO and ^tBuOH

Ans. (1)

Sol.
$$H-C-H + H^+ \longrightarrow C+ \xrightarrow{OH} CH_{H} OH OH OH$$

$$H OMe OMe OH OH$$

$$H OMe OH$$

$$H OMe$$

$$H OMe OH$$

$$H OMe$$

$$H$$

rate
$$\propto \frac{1}{\text{steric crowding of aldehyde}}$$

t-butanol can show formation of carbocation in acidic medium.

- 29. 50 mL of 0.5 M oxalic acid is needed to neutralize 25 mL of sodium hydroxide solution. The amount of NaOH in 50 mL of the given sodium hydroxide solution is:
 - (1) 40 g
- (2) 20 g
- (3) 80 g
- (4) 10 g

BONUS

$$\begin{split} &H_2C_2O_4 + 2NaOH \longrightarrow Na_2C_2O_4 + 2H_2O \\ &m_{eq} \text{ of } H_2C_2O_4 = m_{eq} \text{ NaOH} \\ &50 \times 0.5 \times 2 = 25 \times M_{NaOH} \times 1 \end{split}$$

$$M_{NaOH} = 2 M$$

Now 1000 ml solution = 2×40 gram NaOH 50 ml solution = 4 gram NaOH

- 30. A metal on combustion in excess air forms X, X upon hydrolysis with water yields H_2O_2 and O₂ along with another product. The metal is:
 - (1) Rb (2) Na
- (3) Mg
- (4) Li

Ans. (1)

Sol.
$$Rb + O_{2(excess)} \longrightarrow RbO_2$$

 $2RbO_2 + 2H_2O \longrightarrow 2RbOH + H_2O_2 + O_2$