

$$f_2 = f \left(\frac{v+u}{v} \right)$$

$$f_2 - f_1 = \frac{f}{v} [v + u - (v - u)]$$

$$10 = f_2 - f_1 = \frac{f}{v} [2u]$$

$$u = 2.5 \text{ m/s}$$

5. A particle is moving with speed $v = b\sqrt{x}$ along positive x-axis. Calculate the speed of the particle at time $t = \tau$ (assume that the particle is at origin at $t = 0$).

$$(1) \frac{b^2\tau}{4}$$

$$(2) \frac{b^2\tau}{2}$$

$$(3) b^2 \tau$$

$$(4) \frac{b^2\tau}{\sqrt{2}}$$

Official Ans. by NTA (2)

Sol. $v = b\sqrt{x}$

$$\frac{dv}{dt} = \frac{b}{2\sqrt{x}} \frac{dx}{dt}$$

$$a = \frac{b v}{2\sqrt{x}}$$

$$a = \frac{b(b\sqrt{x})}{2\sqrt{x}}$$

$$\frac{dv}{dt} = a = \frac{b^2}{2}$$

$$v = \frac{b^2}{2} \tau$$

6. Consider an electron in a hydrogen atom, revolving in its second excited state (having radius 4.65\AA). The de-Broglie wavelength of this electron is :

$$(1) 12.9 \text{ \AA}$$

$$(2) 3.5 \text{ \AA}$$

$$(3) 9.7 \text{ \AA}$$

$$(4) 6.6 \text{ \AA}$$

Official Ans. by NTA (3)

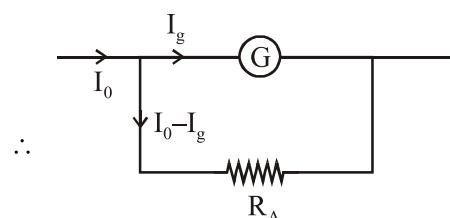
Sol. $2\pi r_n = n\lambda_n$

$$\lambda_3 = \frac{2\pi(4.65 \times 10^{-10})}{3}$$

$$\lambda_3 = 9.7 \text{ \AA}$$

7. A moving coil galvanometer, having a resistance G , produces full scale deflection when a current I_g flows through it. This galvanometer can be converted into (i) an ammeter of range 0 to I_0 ($I_0 > I_g$) by connecting a shunt resistance R_A to it and (ii) into a voltmeter of range 0 to V ($V = GI_0$) by connecting a series resistance R_V to it. Then,

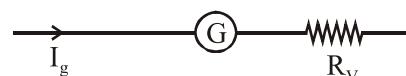
$$(1) R_A R_V = G^2 \left(\frac{I_g}{I_0 - I_g} \right) \text{ and } \frac{R_A}{R_V} = \left(\frac{I_0 - I_g}{I_g} \right)^2$$

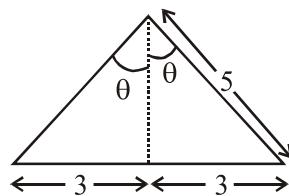

$$(2) R_A R_V = G^2 \text{ and } \frac{R_A}{R_V} = \left(\frac{I_g}{I_0 - I_g} \right)^2$$

$$(3) R_A R_V = G^2 \text{ and } \frac{R_A}{R_V} = \frac{I_g}{(I_0 - I_g)}$$

$$(4) R_A R_V = G^2 \left(\frac{I_0 - I_g}{I_g} \right) \text{ and } \frac{R_A}{R_V} = \left(\frac{I_g}{I_0 - I_g} \right)^2$$

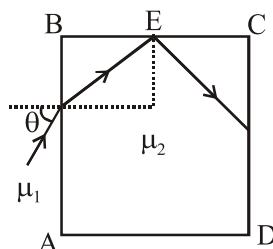
Official Ans. by NTA (2)


Sol. When galvanometer is used as an ammeter shunt is used in parallel with galvanometer.


$$\therefore I_g G = (I_0 - I_g) R_A$$

$$\therefore R_A = \left(\frac{I_g}{I_0 - I_g} \right) G$$

When galvanometer is used as a voltmeter, resistance is used in series with galvanometer.


Sol.

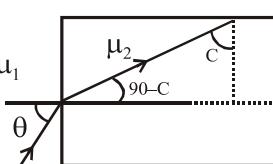
$$B = \frac{\mu_0 I}{4\pi d} 2 \sin \theta$$

$$d = 4 \text{ cm}$$

$$\sin \theta = \frac{3}{5}$$

11. A transparent cube of side d , made of a material of refractive index μ_2 , is immersed in a liquid of refractive index μ_1 ($\mu_1 < \mu_2$). A ray is incident on the face AB at an angle θ (shown in the figure). Total internal reflection takes place at point E on the face BC.

The θ must satisfy :


$$(1) \theta < \sin^{-1} \frac{\mu_1}{\mu_2}$$

$$(2) \theta < \sin^{-1} \sqrt{\frac{\mu_2^2}{\mu_1^2} - 1}$$

$$(3) \theta > \sin^{-1} \frac{\mu_1}{\mu_2}$$

$$(4) \theta > \sin^{-1} \sqrt{\frac{\mu_2^2}{\mu_1^2} - 1}$$

Official Ans. by NTA (2)

Sol.

$$\sin c = \frac{\mu_1}{\mu_2}$$

$$\mu_1 \sin \theta = \mu_2 \sin (90^\circ - C)$$

$$\sin \theta = \frac{\mu_2 \sqrt{1 - \frac{\mu_1^2}{\mu_2^2}}}{\mu_1}$$

$$\theta = \sin^{-1} \sqrt{\frac{\mu_2^2 - \mu_1^2}{\mu_2^2}}$$

For TIR

$$\theta < \sin^{-1} \sqrt{\frac{\mu_2^2}{\mu_1^2} - 1}$$

12. Let a total charge $2Q$ be distributed in a sphere of radius R , with the charge density given by $\rho(r) = kr$, where r is the distance from the centre. Two charges A and B, of $-Q$ each, are placed on diametrically opposite points, at equal distance, a , from the centre. If A and B do not experience any force, then :

$$(1) a = \frac{3R}{2^{\frac{1}{4}}}$$

$$(2) a = R / \sqrt{3}$$

$$(3) a = 8^{-1/4} R$$

$$(4) a = 2^{-1/4} R$$

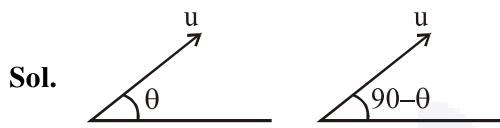
Official Ans. by NTA (3)

$$\text{Sol. } E 4\pi a^2 = \frac{\int_0^a kr 4\pi r^2 dr}{\epsilon_0}$$

$$E = \frac{k 4\pi a^4}{4 \times 4\pi \epsilon_0}$$

$$2Q = \int_0^R kr 4\pi r^2 dr$$

$$k = \frac{2Q}{\pi R^4}$$


$$QE = \frac{1}{4\pi\epsilon_0} \frac{QQ}{(2a)^2}$$

$$R = a 8^{1/4}$$

13. Two particles are projected from the same point with the same speed u such that they have the same range R , but different maximum heights, h_1 and h_2 . Which of the following is correct ?

(1) $R^2 = 2 h_1 h_2$ (2) $R^2 = 16 h_1 h_2$
(3) $R^2 = 4 h_1 h_2$ (4) $R^2 = h_1 h_2$

Official Ans. by NTA (2)

For same range angle of projection will be θ & $90 - \theta$

$$R = \frac{u^2 2 \sin \theta \cos \theta}{g}$$

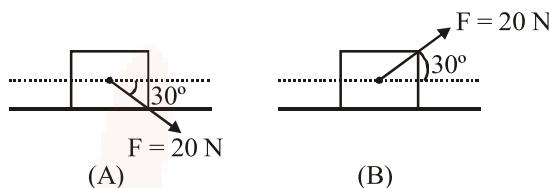
$$h_1 = \frac{u^2 \sin^2 \theta}{g}$$

$$h_2 = \frac{u^2 \sin^2 (90 - \theta)}{g}$$

$$\frac{R^2}{h_1 h_2} = 16$$

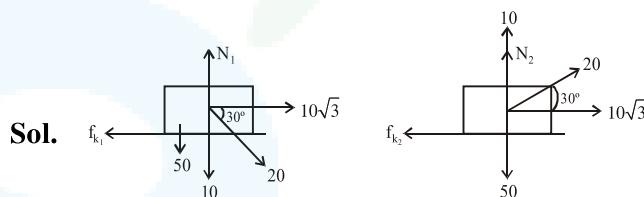
14. A spring whose unstretched length is l has a force constant k . The spring is cut into two pieces of unstretched lengths l_1 and l_2 where, $l_1 = nl_2$ and n is an integer. The ratio k_1/k_2 of the corresponding force constants, k_1 and k_2 will be :

(1) $\frac{1}{n^2}$ (2) n^2 (3) $\frac{1}{n}$ (4) n


Official Ans. by NTA (3)

Sol. $k_1 = \frac{C}{\ell_1}$

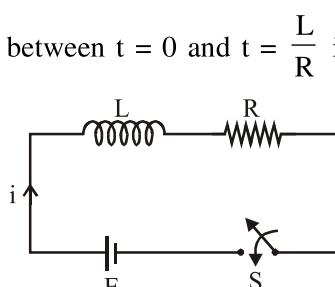
$$k_2 = \frac{C}{\ell_2}$$


$$\frac{k_1}{k_2} = \frac{C \ell_2}{\ell_1 C} \ell_2 = \frac{\ell_2}{n \ell_2} = \frac{1}{n}$$

15. A block of mass 5 kg is (i) pushed in case (A) and (ii) pulled in case (B), by a force $F = 20$ N, making an angle of 30° with the horizontal, as shown in the figures. The coefficient of friction between the block and floor is $\mu = 0.2$. The difference between the accelerations of the block, in case (B) and case (A) will be : ($g = 10 \text{ ms}^{-2}$)

(1) 0 ms^{-2} (2) 0.8 ms^{-2}
(3) 0.4 ms^{-2} (4) 3.2 ms^{-2}

Official Ans. by NTA (2)



$$N_1 = 60 \quad N_2 = 40$$

$$a_1 = \frac{10\sqrt{3} - 0.2 \times 60}{5} \quad a_2 = \frac{10\sqrt{3} - 0.2 \times 40}{5}$$

$$a_1 - a_2 = 0.8$$

16. Consider the LR circuit shown in the figure. If the switch S is closed at $t = 0$ then the amount of charge that passes through the battery between $t = 0$ and $t = \frac{L}{R}$ is :

(1) $\frac{EL}{7.3R}$ (2) $\frac{EL}{2.7R^2}$

(3) $\frac{7.3EL}{R^2}$ (4) $\frac{2.7EL}{R^2}$

Official Ans. by NTA (2)

20. The ratio of the weights of a body on the Earth's surface to that on the surface of a planet is

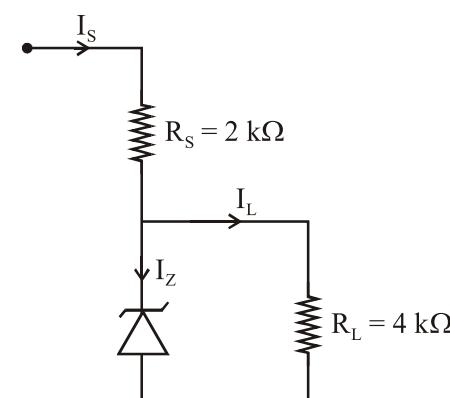
9 : 4. The mass of the planet is $\frac{1}{9}$ th of that of the Earth. If 'R' is the radius of the Earth, what is the radius of the planet ? (Take the planets to have the same mass density)

(1) $\frac{R}{3}$ (2) $\frac{R}{2}$ (3) $\frac{R}{4}$ (4) $\frac{R}{9}$

Official Ans. by NTA (2)

Sol. Since mass of the object remains same
 \therefore Weight of object will be proportional to 'g'
(acceleration due to gravity)

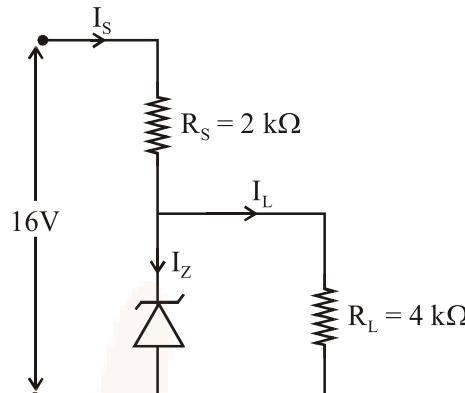
Given


$$\frac{W_{\text{earth}}}{W_{\text{planet}}} = \frac{9}{4} = \frac{g_{\text{earth}}}{g_{\text{planet}}}$$

Also, $g_{\text{surface}} = \frac{GM}{R^2}$ (M is mass planet, G is universal gravitational constant, R is radius of planet)

$$\therefore \frac{9}{4} = \frac{GM_{\text{earth}} R_{\text{planet}}^2}{GM_{\text{planet}} R_{\text{earth}}^2} = \frac{M_{\text{earth}}}{M_{\text{planet}}} \times \frac{R_{\text{planet}}^2}{R_{\text{earth}}^2} = 9 \frac{R_{\text{planet}}^2}{R_{\text{earth}}^2}$$

$$\therefore R_{\text{planet}} = \frac{R_{\text{earth}}}{2} = \frac{R}{2}$$


21. Figure shown a DC voltage regulator circuit, with a Zener diode of breakdown voltage = 6V. If the unregulated input voltage varies between 10 V to 16 V, then what is the maximum Zener current ?

(1) 2.5 mA (2) 3.5 mA
(3) 7.5 mA (4) 1.5 mA

Official Ans. by NTA (2)

Sol. Maximum current will flow from zener if input voltage is maximum.

When zener diode works in breakdown state, voltage across the zener will remain same.

$$\therefore V_{\text{across } 4\text{k}\Omega} = 6\text{V}$$

$$\therefore \text{Current through } 4\text{k}\Omega = \frac{6}{4000} \text{A} = \frac{6}{4} \text{mA}$$

Since input voltage = 16V

$$\therefore \text{Potential difference across } 2\text{k}\Omega = 10\text{V}$$

$$\therefore \text{Current through } 2\text{k}\Omega = \frac{10}{2000} = 5\text{mA}$$

$$\therefore \text{Current through zener diode} = (I_S - I_L) = 3.5 \text{ mA}$$

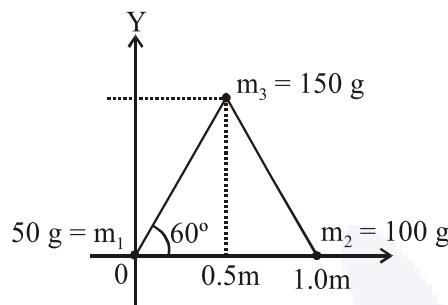
22. A Carnot engine has an efficiency of $1/6$. When the temperature of the sink is reduced by 62°C , its efficiency is doubled. The temperatures of the source and the sink are, respectively

(1) 124°C , 62°C (2) 37°C , 99°C
(3) 62°C , 124°C (4) 99°C , 37°C

Official Ans. by NTA (2)

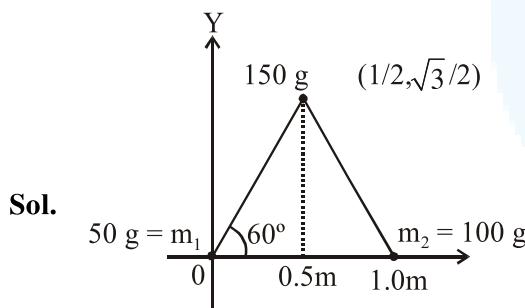
Sol. Efficiency of Carnot engine = $1 - \frac{T_{\text{sink}}}{T_{\text{source}}}$

Given,


$$\frac{1}{6} = 1 - \frac{T_{\text{sink}}}{T_{\text{source}}} \Rightarrow \frac{T_{\text{sink}}}{T_{\text{source}}} = \frac{5}{6} \quad \dots\dots(1)$$

Also,

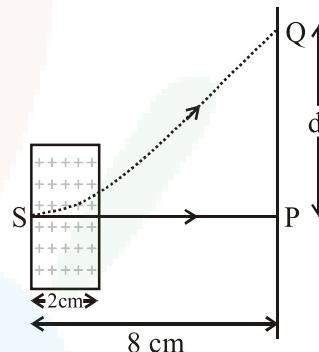
$$\frac{2}{6} = 1 - \frac{T_{\text{sink}} - 62}{T_{\text{source}}} \Rightarrow \frac{62}{T_{\text{source}}} = \frac{1}{6} \quad \dots\dots(2)$$



26. Three particles of masses 50 g, 100 g and 150 g are placed at the vertices of an equilateral triangle of side 1 m (as shown in the figure). The (x, y) coordinates of the centre of mass will be :

(1) $\left(\frac{7}{12}m, \frac{\sqrt{3}}{8}m\right)$ (2) $\left(\frac{\sqrt{3}}{4}m, \frac{5}{12}m\right)$
(3) $\left(\frac{7}{12}m, \frac{\sqrt{3}}{4}m\right)$ (4) $\left(\frac{\sqrt{3}}{8}m, \frac{7}{12}m\right)$

Official Ans. by NTA (3)


The co-ordinates of the centre of mass

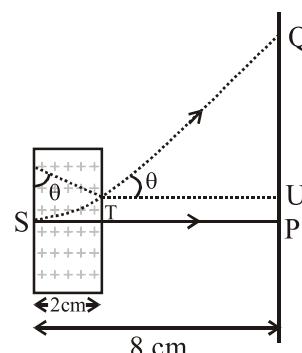
$$\vec{r}_{cm} = \frac{0 + 150 \times \left(\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j} \right) + 100 \times \hat{i}}{300}$$

$$\vec{r}_{cm} = \frac{7}{12} \hat{i} + \frac{\sqrt{3}}{4} \hat{j}$$

$$\therefore \text{Co-ordinate } \left(\frac{7}{12}, \frac{\sqrt{3}}{4} \right) m$$

27. An electron, moving along the x-axis with an initial energy of 100 eV, enters a region of magnetic field $\vec{B} = (1.5 \times 10^{-3} T) \hat{k}$ at S (See figure). The field extends between $x = 0$ and $x = 2$ cm. The electron is detected at the point Q on a screen placed 8 cm away from the point S. The distance d between P and Q (on the screen) is :
(electron's charge = 1.6×10^{-19} C, mass of electron = 9.1×10^{-31} kg)

(1) 12.87 cm (2) 1.22 cm
(3) 11.65 cm (4) 2.25 cm


Official Ans. by NTA (1)

Sol. $R = \frac{mv}{qB}$

$$= \frac{\sqrt{2m(K.E.)}}{qB}$$

$$R = \frac{\sqrt{2 \times 9.1 \times 10^{-31} \times (100 \times 1.6 \times 10^{-19})}}{1.6 \times 10^{-19} \times 1.5 \times 10^{-3}}$$

$$R = 2.248 \text{ cm}$$

$$\sin \theta = \frac{2}{2.248}$$

$$\tan \theta = \frac{QU}{TU}$$

$$\frac{2}{1.026} = \frac{QU}{6}$$

$$QU = 11.69$$

$$\begin{aligned} PU &= R(1 - \cos \theta) \\ &= 1.22 \end{aligned}$$

$$d = QU + PU$$

28. A plane electromagnetic wave having a frequency $v = 23.9$ GHz propagates along the positive z-direction in free space. The peak value of the electric field is 60 V/m. Which among the following is the acceptable magnetic field component in the electromagnetic wave?

- (1) $\vec{B} = 2 \times 10^7 \sin(0.5 \times 10^3 z + 1.5 \times 10^{11} t) \hat{i}$
- (2) $\vec{B} = 2 \times 10^{-7} \sin(1.5 \times 10^2 x + 0.5 \times 10^{11} t) \hat{j}$
- (3) $\vec{B} = 2 \times 10^{-7} \sin(0.5 \times 10^3 z - 1.5 \times 10^{11} t) \hat{i}$
- (4) $\vec{B} = 60 \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{k}$

Official Ans. by NTA (3)

Sol. Magnetic field when electromagnetic wave propagates in $+z$ direction

$$B = B_0 \sin(kz - \omega t)$$

where

$$B_0 = \frac{60}{3 \times 10^8} = 2 \times 10^{-7}$$

$$k = \frac{2\pi}{\lambda} = 0.5 \times 10^3$$

$$\omega = 2\pi f = 1.5 \times 10^{11}$$

29. In an amplitude modulator circuit, the carrier wave is given by, $C(t) = 4 \sin(20000 \pi t)$ while modulating signal is given by, $m(t) = 2 \sin(200 \pi t)$. The values of modulation index and lower side band frequency are:

- (1) 0.5 and 9 kHz
- (2) 0.5 and 10 kHz
- (3) 0.3 and 9 kHz
- (4) 0.4 and 10 kHz

Official Ans. by NTA (1)

Sol. Modulation index is given by

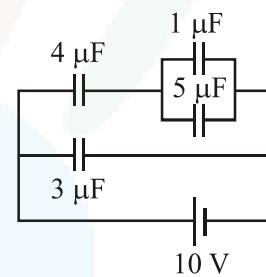
$$m = \frac{A_m}{A_c} = \frac{2}{4} = 0.5$$

& (a) carrier wave frequency is given by

$$= 2\pi f_c = 2 \times 10^4 \pi$$

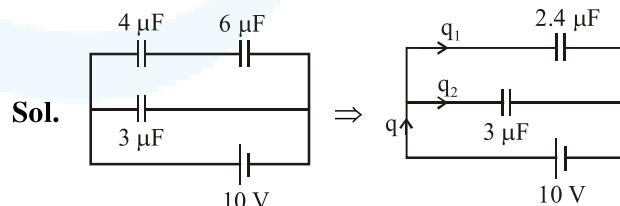
$$f_c = 10 \text{ kHz}$$

(b) modulating wave frequency (f_m)


$$2\pi f_m = 2000 \pi$$

$$\Rightarrow f_m = 1 \text{ kHz}$$

lower side band frequency $\Rightarrow f_c - f_m$


$$\Rightarrow 10 \text{ kHz} - 1 \text{ kHz} = 9 \text{ kHz}$$

30. In the given circuit, the charge on $4 \mu\text{F}$ capacitor will be:

- (1) $5.4 \mu\text{C}$
- (2) $24 \mu\text{C}$
- (3) $13.4 \mu\text{C}$
- (4) $9.6 \mu\text{C}$

Official Ans. by NTA (2)

$$\begin{aligned} \text{So total charge flow } q &= 5.4 \mu\text{F} \times 10\text{V} \\ &= 54 \mu\text{C} \end{aligned}$$

The charge will be distributed in the ratio of capacitance

$$\Rightarrow \frac{q_1}{q_2} = \frac{2.4}{3} = \frac{4}{5}$$

$$\therefore 9X = 54 \mu\text{C} \Rightarrow X = 6 \mu\text{C}$$

∴ charge on $4 \mu\text{F}$ capacitor

$$\text{will be } = 4X = 4 \times 6 \mu\text{C}$$

$$= 24 \mu\text{C}$$