

FINAL JEE-MAIN EXAMINATION – APRIL, 2019

Held On Monday 08th APRIL, 2019

TIME: 2 : 30 PM To 5 : 30 PM

1. Calculate the standard cell potential in(V) of the cell in which following reaction takes place :
 $\text{Fe}^{2+}(\text{aq}) + \text{Ag}^+(\text{aq}) \rightarrow \text{Fe}^{3+}(\text{aq}) + \text{Ag}(\text{s})$
 Given that

$$E_{\text{Ag}^+/\text{Ag}}^{\circ} = x \text{ V}$$

$$E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = y \text{ V}$$

$$E_{\text{Fe}^{3+}/\text{Fe}}^{\circ} = z \text{ V}$$

(1) $x + 2y - 3z$ (2) $x - z$
 (3) $x - y$ (4) $x + y - z$

Official Ans. by NTA (1)

Sol. $\text{Fe}^{2+}(\text{aq}) + \text{Ag}^+(\text{aq}) \rightarrow \text{Fe}^{3+}(\text{aq}) + \text{Ag}(\text{s})$

Cell reaction

anode : $\text{Fe}^{2+}(\text{aq}) \rightarrow \text{Fe}^{3+}(\text{aq}) + e^{\ominus}$;

$$E_{\text{Fe}^{2+}/\text{Fe}^{3+}}^{\circ} = m \text{ V}$$

cathode : $\text{Ag}^+(\text{aq}) + e^{\ominus} \rightarrow \text{Ag}(\text{s})$;

$$E_{\text{Ag}^+/\text{Ag}}^{\circ} = x \text{ V}$$

\Rightarrow cell standard potential = $(m + x) \text{ V}$

\therefore to find 'm' ;

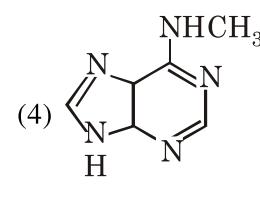
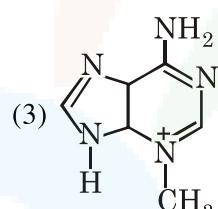
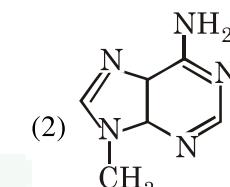
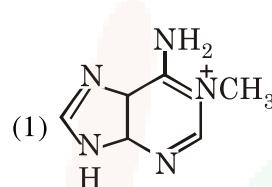
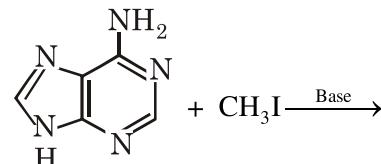
$\text{Fe}^{2+} + 2e^{\ominus} \rightarrow \text{Fe}$;

$$E_1^{\circ} = y \text{ V} \Rightarrow \Delta_1^{\circ}G = -(2Fy)$$

$\text{Fe}^{3+} + 3e^{\ominus} \rightarrow \text{Fe}$;

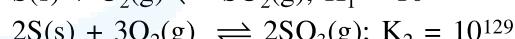
$$E_2^{\circ} = z \text{ V} \Rightarrow \Delta_2^{\circ}G = -(3Fz)$$

$\text{Fe}^{2+}(\text{aq}) \rightarrow \text{Fe}^{3+}(\text{aq}) + e^{\ominus}$;

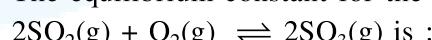





$$E_3^{\circ} = m \text{ V} \Rightarrow \Delta_3^{\circ}G = -(1Fm)$$

$$\Delta_3^{\circ}G = \Delta G_1^{\circ} - \Delta G_2^{\circ} = (-2Fy + 3Fz) = -Fm$$

$$\Rightarrow m = (2y - 3z)$$

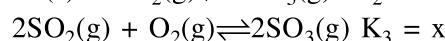
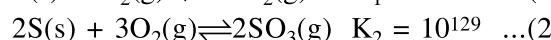

$$\Rightarrow E_{\text{cell}}^{\circ} = (x + 2y - 3z) \text{ V}$$

2. The major product in the following reaction is :

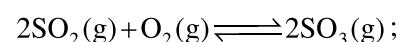


Official Ans. by NTA (2)
Ans. (Bonus)

Sol. because one double bond is missing in all given option. So aromaticity is lost in both the ring.



3. For the following reactions, equilibrium constants are given :

The equilibrium constant for the reaction,


(1) 10^{181} (2) 10^{154} (3) 10^{25} (4) 10^{77}

Official Ans. by NTA (3)

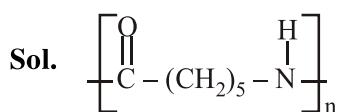
multiplying equation (1) by 2;

\Rightarrow Subtracting (3) from (2); we get

$$K_{\text{eq}} = 10^{(129 - 104)} = 10^{25}$$

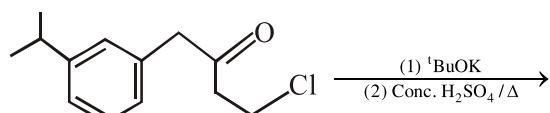
4. The ion that has sp^3d^2 hybridization for the central atom, is :

- (1) $[ICl_2]^-$
- (2) $[IF_6]^-$
- (3) $[ICl_4]^-$
- (4) $[BrF_2]^-$


Official Ans. by NTA (3)

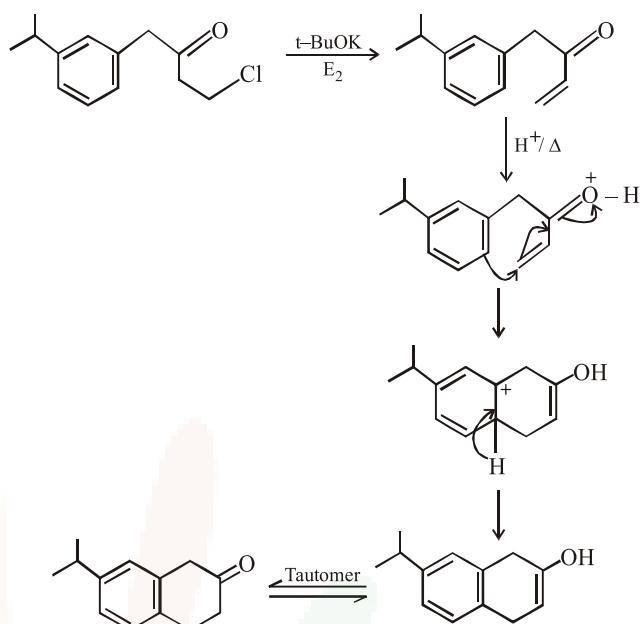
Sol.	Chemical species	Hybridisation of central atom
	ICl_2^-	sp^3d
	IF_6^-	sp^3d^3
	ICl_4^-	sp^3d^2
	BrF_2^-	sp^3d

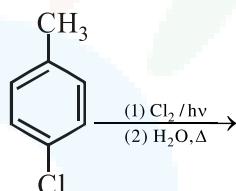
5. The structure of Nylon-6 is :


- (1) $\left[-\left(CH_2 \right)_6 - C(=O) - N - \right]_n$
- (2) $\left[-\left(CH_2 \right)_4 - C(=O) - N - \right]_n$
- (3) $\left[-C(=O) - \left(CH_2 \right)_5 - N - \right]_n$
- (4) $\left[-C(=O) - \left(CH_2 \right)_6 - N - \right]_n$

Official Ans. by NTA (3)

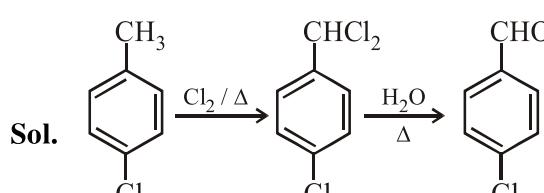
Nylon-6


6. The major product of the following reaction is:


- (1)
- (2)
- (3)
- (4)

Official Ans. by NTA (4)

Sol.



7. The major product of the following reaction is:

- (1)
- (2)
- (3)
- (4)

Official Ans. by NTA (4)

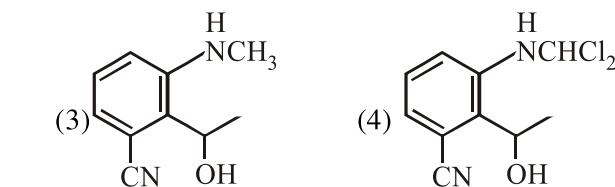
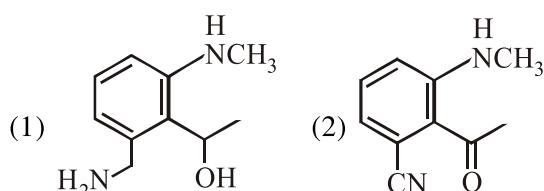
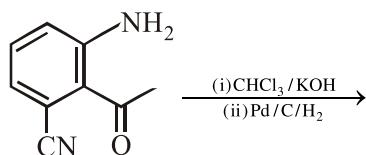
8. The percentage composition of carbon by mole in methane is :
 (1) 80% (2) 25% (3) 75% (4) 20%
Official Ans. by NTA (4)

Sol. CH_4

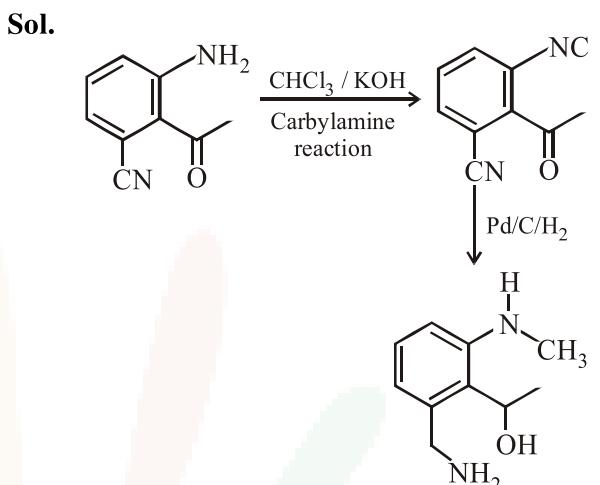
$$\% \text{ by mole of carbon} = \frac{1 \text{ mol atom}}{5 \text{ mol atom}} \times 100 \\ = 20\%$$

9. The IUPAC symbol for the element with atomic number 119 would be :
 (1) unh (2) uun (3) une (4) uue
Official Ans. by NTA (4)

Symbol	Atomic number
unh	106
uun	110
une	109
uue	119




10. The compound that inhibits the growth of tumors is :
 (1) cis-[Pd(Cl)₂(NH₃)₂]
 (2) cis-[Pt(Cl)₂(NH₃)₂]
 (3) trans-[Pt(Cl)₂(NH₃)₂]
 (4) trans-[Pd(Cl)₂(NH₃)₂]
Official Ans. by NTA (2)

Sol. cis-[PtCl₂(NH₃)₂] is used in chemotherapy to inhibits the growth of tumors.


11. The covalent alkaline earth metal halide ($X = \text{Cl, Br, I}$) is :
 (1) CaX_2 (2) SrX_2 (3) BeX_2 (4) MgX_2
Official Ans. by NTA (3)

Sol. All halides of Be are predominantly covalent in nature.

12. The major product obtained in the following reaction is :

Official Ans. by NTA (1)

13. The statement that is **INCORRECT** about the interstitial compounds is :

- They have high melting points
- They are chemically reactive
- They have metallic conductivity
- They are very hard

Official Ans. by NTA (2)

Sol. Generally interstitial compounds are chemically inert.

14. The maximum prescribed concentration of copper in drinking water is:

- 5 ppm
- 0.5 ppm
- 0.05 ppm
- 3 ppm

Official Ans. by NTA (4)

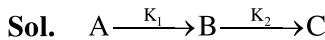
Sol. The maximum prescribed concentration of Cu in drinking water is 3 ppm.

15. The calculated spin-only magnetic moments (BM) of the anionic and cationic species of $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$ and $[\text{Fe}(\text{CN})_6]^{4-}$, respectively, are :

- 4.9 and 0
- 2.84 and 5.92
- 0 and 4.9
- 0 and 5.92

Official Ans. by NTA (3)

Sol. Complex is $[\text{Fe}(\text{H}_2\text{O})_6]^{2+} [\text{Fe}(\text{CN})_6]^{4-}$

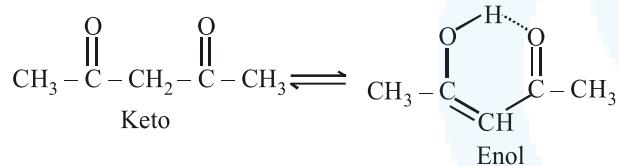

Complex ion	Configuration	No. of unpaired electrons	Magnetic moment
$[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$	$t_{2g}^4 e_g^2$	4	4.9 BM
$[\text{Fe}(\text{CN})_6]^{4-}$	$t_{2g}^6 e_g^0$	0	0

20. For a reaction scheme $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, if the rate of formation of B is set to be zero then the concentration of B is given by :

(1) $\left(\frac{k_1}{k_2}\right)[A]$ (2) $(k_1 + k_2)[A]$
 (3) $k_1 k_2 [A]$ (4) $(k_1 - k_2)[A]$

Official Ans. by NTA (1)

$$\frac{d[B]}{dt} = 0 = K_1[A] - K_2[B]$$


$$\Rightarrow [B] = \frac{K_1}{K_2}[A]$$

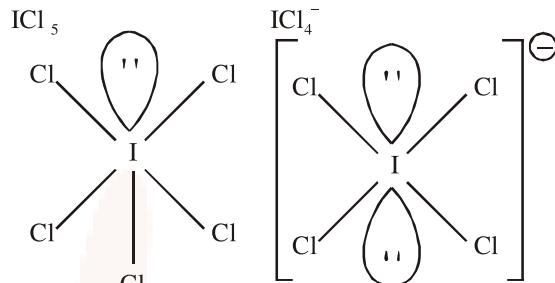
21. Which of the following compounds will show the maximum enol content?

(1) $\text{CH}_3\text{COCH}_2\text{COCH}_3$
 (2) CH_3COCH_3
 (3) $\text{CH}_3\text{COCH}_2\text{CONH}_2$
 (4) $\text{CH}_3\text{COCH}_2\text{COOC}_2\text{H}_5$

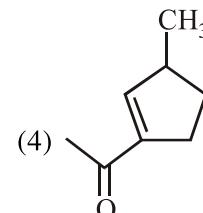
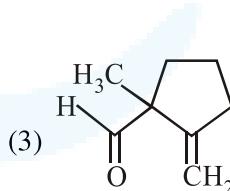
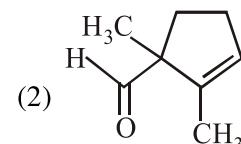
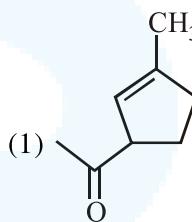
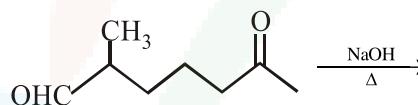
Official Ans. by NTA (1)

Sol. Solution

Due to intramolecular H-bonding and resonance stabilisation enol content is maximum

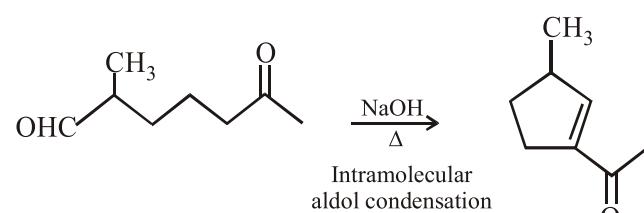

22. The correct statement about ICl_5 and ICl_4^- is

(1) ICl_5 is trigonal bipyramidal and ICl_4^- is tetrahedral.
 (2) ICl_5 is square pyramidal and ICl_4^- is tetrahedral.
 (3) ICl_5 is square pyramidal and ICl_4^- is square planar.
 (4) Both are isostructural.






Official Ans. by NTA (3)

Sol.

Chemical species	Hybridisation	Shape
ICl_5	sp^3d^2	Square pyramidal
ICl_4^-	sp^3d^2	Square planar



23. The major product obtained in the following reaction is

Official Ans. by NTA (4)

Sol.

24. Fructose and glucose can be distinguished by :

- Fehling's test
- Barfoed's test
- Benedict's test
- Seliwanoff's test

Official Ans. by NTA (4)

Sol. Seliwanoff's test is used to distinguish aldose and ketose group.

25. If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength λ , then for 1.5 p momentum of the photoelectron, the wavelength of the light should be:

(Assume kinetic energy of ejected photoelectron to be very high in comparison to work function)

$$(1) \frac{1}{2}\lambda \quad (2) \frac{3}{4}\lambda$$

$$(3) \frac{2}{3}\lambda \quad (4) \frac{4}{9}\lambda$$

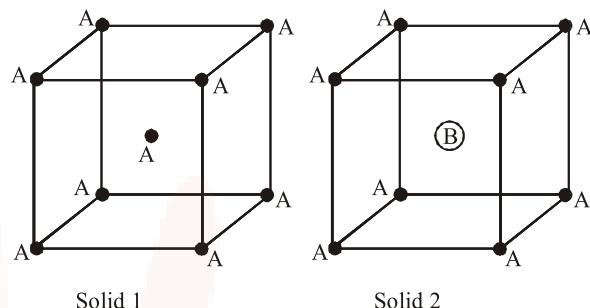
Official Ans. by NTA (4)

Sol. $h\nu - \phi = KE$

$$\Rightarrow \left(\frac{hc}{\lambda} \right)_{\text{incident}} = KE + \phi$$

$$\left(\frac{hc}{\lambda} \right)_{\text{incident}} \approx KE$$

$$KE = \frac{p^2}{2m} = \frac{hc}{\lambda_{\text{incident}}} = \frac{hc}{\lambda} \quad \dots(1)$$


$$\Rightarrow \frac{p^2 \times (1.5)^2}{2m} = \frac{hc}{\lambda'} \quad \dots(2)$$

divide (1) and (2)

$$(1.5)^2 = \frac{\lambda}{\lambda'}$$

$$\Rightarrow \lambda' = \frac{4\lambda}{9}$$

26. Consider the bcc unit cells of the solids 1 and 2 with the position of atoms as shown below. The radius of atom B is twice that of atom A. The unit cell edge length is 50% more in solid 2 than in 1. What is the approximate packing efficiency in solid 2?

(1) 45% (2) 65% (3) 90% (4) 75%

Official Ans. by NTA (3)

$$\text{Sol. p.f.} = \frac{\left(z_{\text{eff}} \times \frac{4}{3} \pi r_A^3 \right)_A + \left(z_{\text{eff}} \times \frac{4}{3} \pi r_B^3 \right)_B}{a^3}$$

$$2(r_A + r_B) = \sqrt{3}a$$

$$\Rightarrow 2(r_A + 2r_A) = \sqrt{3}a$$

$$\Rightarrow 2\sqrt{3}r_A = a$$

$$\Rightarrow \text{p.f.} = \frac{1 \times \frac{4}{3} \pi r_A^3 + \frac{4}{3} \pi (8r_A^3)}{8 \times 3\sqrt{3}r_A^3} = \frac{9 \times \frac{4}{3} \pi}{8 \times 3\sqrt{3}} = \frac{\pi}{2\sqrt{3}}$$

$$\text{p. efficiency} = \frac{\pi}{2\sqrt{3}} \times 100 \approx 90\%$$

27. Polysubstitution is a major drawback in:

- Reimer Tiemann reaction
- Friedel Craft's acylation
- Friedel Craft's alkylation
- Acetylation of aniline

Official Ans. by NTA (3)

Sol. In Friedel crafts alkylation product obtained is more activated and hence polysubstitution will take place.

28. The Mond process is used for the

- extraction of Mo
- Purification of Ni
- Purification of Zr and Ti
- Extraction of Zn

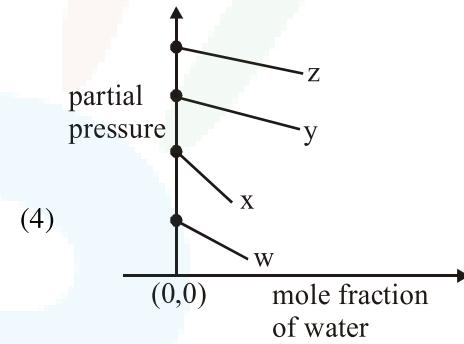
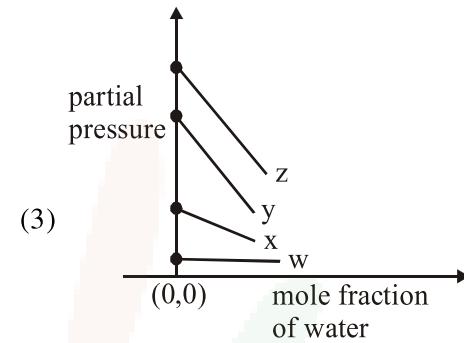
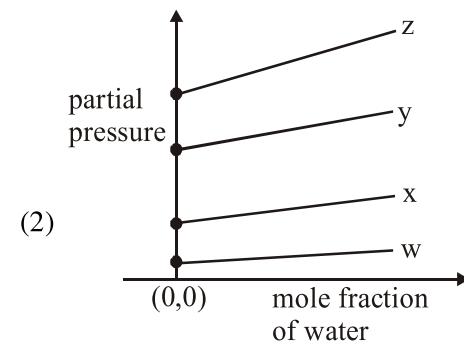
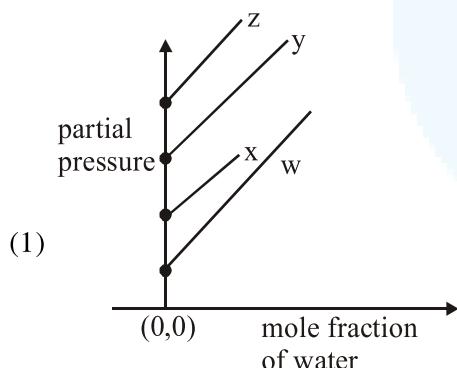
Official Ans. by NTA (2)

Sol. Mond's process is used for the purification of Nickel.

29. The strength of 11.2 volume solution of H_2O_2 is : [Given that molar mass of H = 1 g mol^{-1} and O = 16 g mol^{-1}]

- 13.6%
- 3.4%
- 34%
- 1.7%

Official Ans. by NTA (2)





Sol. Volume strength = $11.2 \times$ molarity = 11.2

$$\Rightarrow \text{molarity} = 1 \text{ M}$$

$$\Rightarrow \text{strength} = 34 \text{ g/L}$$

$$\Rightarrow \% \text{ w/w} = \frac{34}{1000} \times 100 = 3.4\%$$

30. For the solution of the gases w, x, y and z in water at 298K, the Henry's law constants (K_H) are 0.5, 2, 35 and 40 kbar, respectively. The correct plot for the given data is :-

Official Ans. by NTA (3)

Sol.
$$p = k_H \times \left(\frac{n_{\text{gas}}}{n_{\text{H}_2\text{O}} + n_{\text{gas}}} \right)$$

$$= k_H \left(1 - \frac{n_{\text{H}_2\text{O}}}{n_{\text{H}_2\text{O}} + n_{\text{gas}}} \right)$$

$$\Rightarrow p = k_H - k_H \times \chi_{\text{H}_2\text{O}}$$

$$p = (-k_H) \times \chi_{\text{H}_2\text{O}} + k_H$$