FINAL JEE-MAIN EXAMINATION – MARCH, 2021 ## Held On Wednesday 17th March, 2021 TIME: 3:00 PM to 06:00 PM #### **SECTION-A** - 1. Fructose is an example of :- - (1) Pyranose - (2) Ketohexose - (3) Aldohexose - (4) Heptose ## Official Ans. by NTA (2) **Sol.** Fructose is a ketohexose. - 2. The set of elements that differ in mutual relationship from those of the other sets is: - (1) Li Mg - (2) B Si - (3) Be Al - (4) Li Na ## Official Ans. by NTA (4) - Sol. Li-Mg, B-Si, Be-Al show diagonal relationship but Li and Na do not show diagonal relationship as both belongs to same group and not placed diagonally. - 3. The functional groups that are responsible for the ion-exchange property of cation and anion exchange resins, respectively, are: - (1) $-SO_3H$ and $-NH_2$ - (2) -SO₃H and -COOH - (3) -NH₂ and -COOH - (4) -NH₂ and -SO₃H ## Official Ans. by NTA (1) - **Sol.** Cation exchanger contains –SO₃H or –COOH groups while anion exchanger contains basic groups like –NH₂. - **4.** Match List-I and List-II: ## List-I #### List-II - (a) Haematite - (i) $Al_2O_3.xH_2O$ - (b) Bauxite - (ii) Fe_2O_3 - (c) Magnetite - (iii) CuCO₃.Cu(OH)₂ - (d) Malachite - (iv) Fe₃O₄ Choose the correct answer from the options given below: - (1) (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv) - (2) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii) - (3) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv) - (4) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii) ## Official Ans. by NTA (4) ## Sol. Ore - Formula Fe₂O₃ - (a) Haematite Fe_2O_3 - (b) Bauxite $Al_2O_3.xH_2O$ - (c) Magnetite Fe₃O₄ - (d) Malachite CuCO₃.Cu(OH)₂ - 5. The correct pair(s) of the ambident nucleophiles is (are): - (A) AgCN/KCN - (B) RCOOAg/RCOOK - (C) AgNO₂/KNO₂ - (D) AgI/KI - (1) (B) and (C) only - (2) (A) only - (3) (A) and (C) only - (4) (B) only ## Official Ans. by NTA (3) - Sol. Ambident nucleophile - (A) KCN & AgCN - (C) AgNO, & KNO, - 6. The set that represents the pair of neutral oxides of nitrogen is: - (1) NO and N₂O - (2) N_2O and N_2O_3 - (3) N₂O and NO₂ - (4) NO and NO₂ - Official Ans. by NTA (1) - **Sol.** N₂O and NO are neutral oxides of nitrogen NO₂ and N₂O₃ are acidic oxides. - 7. Match List-I with List-II: #### List-I #### List-II - (a) [Co(NH₃)₆] [Cr(CN)₆] (i) Linkage isomerism - (b) $[Co(NH_3)_3 (NO_2)_3]$ - (ii) Solvate isomerism - (c) $[Cr(H_2O)_6]Cl_3$ - (iii) Co-ordination - isomerism - (d) cis-[CrCl₂(ox)₂]³⁻ (iv) Optical isomerism Choose the correct answer from the options given below: - (1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv) - (2) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i) - (3) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv) - (4) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv) - Official Ans. by NTA (1) #### Sol. Complex Type of Isomerism - $[Co(NH_3)_6]$ $[Cr(CN)_6]$ Co-ordination isomerism (a) - $[Co(NH_3)_3 (NO_2)_3]$ Linkage isomerism (b) - [Cr(H₂O)₆]Cl₃Solvate isomerism (c) - (d) cis-[CrCl₂(ox)₂]³-Optical isomerism - Primary, secondary and tertiary amines can be 8. separated using :- - (1) Para-Toluene sulphonyl chloride - (2) Chloroform and KOH - (3) Benzene sulphonic acid - (4) Acetyl amide # Official Ans. by NTA (1) - Sol. Primary amines react with Para Toluene sulfonyl chloride to form a precipitate that is soluble in NaOH. - Secondary amines reacts with para toluene sulfonyl chloride to give a precipitate that is insoluble in NaOH. - Tertiary amines do not react with para toluen. - 9. The common positive oxidation states for an element with atomic number 24, are: - (1) +2 to +6 - (2) +1 and +3 to +6 - (3) +1 and +3 - (4) +1 to +6 # Official Ans. by NTA (1) - **Sol.** Cr(Z=24) - [Ar] 4s¹3d⁵ Cr shows common oxidation states starting from +2 to +6. - Match List-I with List-II: 10. #### List-II List-I Chemical Used as Compound - (a) Sucralose - (i) Synthetic detergent - (b) Glyceryl ester of stearic acid - (ii) Artificial sweetener - (c) Sodium benzoate - (iii) Antiseptic - (d) Bithionol - (iv) Food preservative #### Choose the correct match: - (1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i) - (2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii) - (3) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i) - (4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii) ## Official Ans. by NTA (2) **Sol.** Artificial sweetner: Sucralose Antiseptic: Bithional Preservative: Sodium Benzoate Glyceryl ester of stearic acid: Sodium steasate Given below are two statements: 11. > **Statement-I:** 2-methylbutane on oxidation with KMnO₄ gives 2-methylbutan-2-ol. > Statement-II: n-alkanes can be easily oxidised to corresponding alcohol with KMnO₄. Choose the correct option: - (1) Both statement I and statement II are correct - (2) Both statement I and statement II are incorrect - (3) Statement I is correct but Statement II is incorrect - (4) Statement I is incorrect but Statement II is correct # Official Ans. by NTA (3) Alkane are very less reactive, tertiary hydrogen Sol. can oxidise to alcohal with KMnO₄. 2-methyl-butane Nitrogen can be estimated by Kjeldahl's method **12.** for which of the following compound? ## Official Ans. by NTA (2) - Sol. Kjeldahl method is not applicable to compounds containing nitrogen in nitrogroup, Azo groups and nitrogen present in the ring (e.g Pyridine) as nitrogen of these compounds does not change to Ammonium sulphate under these conditions. - **13.** Amongst the following, the linear species is: - (1) NO₂ - (2) Cl₂O - $(3) O_3$ - $(4) N_3^-$ Official Ans. by NTA (4) Sol. Bent shape $C_{12}H_{22}O_{11}+H_2O \xrightarrow{Enzyme\ A} C_6H_{12}O_6+C_6H_{12}O_6$ $C_6H_{12}O_6 \xrightarrow{\text{Enzyme B}} 2C_2H_5OH+2CO_2$ In the above reactions, the enzyme A and enzyme B respectively are :- - (1) Amylase and Invertase - (2) Invertase and Amylase - (3) Invertase and Zymase - (4) Zymase and Invertase Official Ans. by NTA (3) Sol. Informative ## OR $$C_{12}H_{22}O_{11} + H_2O \xrightarrow{Invertase} C_6H_{12}O_6 + C_6H_{12}O_6$$ Glucose Fructose $$C_6H_{12}O_6 \xrightarrow{Zymase} 2C_6H_5OH + 2CO_2$$ - One of the by-products formed during the **15.** recovery of NH₃ from Solvay process is: - $(1) Ca(OH)_2$ - (2) NaHCO₃ - (3) CaCl₂ - (4) NH_4C1 Official Ans. by NTA (3) OCH₂ $C_7H_7N_2OCl+C_2H_5OH \rightarrow + N_2+"X"+"Y"$ 16. > In the above reaction, the structural formula of (A), "X" and "Y" respectively are: $$(1) \bigcup_{OCH_3}^{N_2^+Cl^-}, \quad CH_3-C-H , \quad HCl$$ $$(2)$$ $\stackrel{N_2^+ \bar{O}CH_3}{\bigodot}$, $\stackrel{H}{\bigodot}$ $\stackrel{H}{\bigodot}$, HCI $$(3) \bigvee_{C1}^{N_2^+ \overline{O}CH_3} \bigcap_{CH_3 - C - H}, \quad H_2C$$ Official Ans. by NTA (1) Sol. $$N_2^+Cl^ + CH_3-CH_2-OH \longrightarrow OCH_3$$ OCH_3 Anisole For the coagulation of a negative sol, the 17. species below, that has the highest flocculating power is: - (1) SO_4^{2-} (2) Ba^{2+} (3) Na^+ (4) PO_4^{3-} Official Ans. by NTA (2) - **Sol.** To coagulate negative sol, cation with higher charge has higher coagulation value. - 18. Which of the following statement(s) is (are) incorrect reason for eutrophication? - (A) excess usage of fertilisers - (B) excess usage of detergents - (C) dense plant population in water bodies - (D) lack of nutrients in water bodies that prevent plant growth Choose the most appropriate answer from the options given below: - (1) (A) only - (2) (C) only - (3) (B) and (D) only - (4) (D) only Official Ans. by NTA (4) - Sol. The process in which nutrient enriched water bodies support a dense plant population which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity is known as eutrophication. - 19. Choose the correct statement regarding the formation of carbocations A and B given :- $$CH_{3}-CH_{2}-CH_{2}-CH_{2}+HBr - CH_{3}-CH_{2}-CH_{2}-CH_{2}+Br^{-}$$ $$"A"$$ $$CH_{3}-CH_{2}-CH_{2}-CH_{2}+Br^{-}$$ $$CH_{3}-CH_{2}-CH_{2}-CH_{3}+Br^{-}$$ $$"B"$$ - (1) Carbocation B is more stable and formed relatively at faster rate - (2) Carbocation A is more stable and formed relatively at slow rate - (3) Carbocation B is more stable and formed relatively at slow rate - (4) Carbocation A is more stable and formed relatively at faster rate Official Ans. by NTA (1) This is more stable due to secondary cation formation and formed with faster rate due to low activation energy. - **20.** During which of the following processes, does entropy decrease? - (A) Freezing of water to ice at 0°C - (B) Freezing of water to ice at −10°C - (C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ - (D) Adsorption of CO(g) and lead surface - (E) Dissolution of NaCl in water ## Official Ans. by NTA (1) - (1) (A), (B), (C) and (D) only - (2) (B) and (C) only - (3) (A) and (E) only - (4) (A), (C) and (E) only - **Sol.** (A) Water $\xrightarrow{0^{\circ}C}$ ice; $\Delta S = -ve$ - (B) Water $\xrightarrow{-10^{\circ}\text{C}}$ ice; $\Delta S = -\text{ve}$ - (C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g); \Delta S = -ve$ - (D) Adsorption; $\Delta S = -ve$ - (E) NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq); Δ S = +ve ## **SECTION-B** 1. A KCl solution of conductivity 0.14 S m⁻¹ shows a resistance of 4.19 Ω in a conductivity cell. If the same cell is filled with an HCl solution, the resistance drops to 1.03 Ω . The conductivity of the HCl solution is $\underline{\hspace{1cm}} \times 10^{-2} \text{ S m}^{-1}$. (Round off to the Nearest Integer). ## Official Ans. by NTA (57) **Sol.** $$\kappa = \frac{1}{R} \cdot G^*$$ For same conductivity cell, G^* is constant and hence $\kappa.R. = constant$. $$0.14 \times 4.19 = \kappa \times 1.03$$ or, $$\kappa$$ of HCl solution = $\frac{0.14 \times 4.19}{1.03}$ $$= 0.5695 \text{ Sm}^{-1}$$ $$= 56.95 \times 10^{-2} \text{ Sm}^{-1} \approx 57 \times 10^{-2} \text{ Sm}^{-1}$$ 2. On complete reaction of FeCl₃ with oxalic acid in aqueous solution containing KOH, resulted in the formation of product A. The secondary valency of Fe in the product A is _____. (Round off to the Nearest Integer). ## Official Ans. by NTA (6) Sol. $$Fe^{3+} + 3K^{+} + 3C_{2}O_{4}^{2-} \rightarrow K_{3}[Fe(C_{2}O_{4})_{3}]$$ (A) Secondary valency of Fe in 'A' is 6. 3. The reaction $2A + B_2 \rightarrow 2AB$ is an elementary reaction. For a certain quantity of reactants, if the volume of the reaction vessel is reduced by a factor of 3, the rate of the reaction increases by a factor of ______. (Round off to the Nearest Integer). # Official Ans. by NTA (27) **Sol.** Reaction: $2A + B_2 \longrightarrow 2AB$ As the reaction is elementary, the rate of reaction $$r = K \cdot [A]^2 [B_2]$$ on reducing the volume by a factor of 3, the concentrations of A and B₂ will become 3 times and hence, the rate becomes $3^2 \times 3 = 27$ times of initial rate. 4. The total number of C–C sigma bond/s in mesityl oxide $(C_6H_{10}O)$ is _____. (Round off to the Nearest Integer). ## Official Ans. by NTA (5) **Sol.** Mesityle oxide $$H_3C \stackrel{\circ}{=} C \stackrel{\circ}{=} CH \stackrel{\circ}{=} C \stackrel{\circ}{=} CH_3$$ $$CH_3 \qquad O$$ $$C \stackrel{\circ}{=} C = 5$$ 5. A 1 molal K₄Fe(CN)₆ solution has a degree of dissociation of 0.4. Its boiling point is equal to that of another solution which contains 18.1 weight percent of a non electrolytic solute A. The molar mass of A is ____ u. (Round off to the Nearest Integer). [Density of water = 1.0 g cm^{-3}] Official Ans. by NTA (85) Sol. $K_4 \text{ Fe(CN)}_6 \Longrightarrow 4K^+ + \text{ Fe(CN)}_6^{4-}$ Initial conc. 1 m 0 0 Final conc. $(1 - 0.4)\text{m} \quad 4 \times 0.4 \quad 0.4\text{m}$ $= 0.6 \text{ m} \quad = 1.6 \text{ m}$ > Effective molality = 0.6 + 1.6 + 0.4 = 2.6m For same boiling point, the molality of another solution should also be 2.6 m. > Now, 18.1 weight percent solution means 18.1 gm solute is present in 100 gm solution and hence, (100 - 18.1 =) 81.9 gm water. Now, $$2.6 = \frac{18.1 / M}{81.9 / 1000}$$ \therefore Molar mass of solute, M = 85 6. In the ground state of atomic Fe(Z = 26), the spin-only magnetic moment is $\times 10^{-1}$ BM. (Round off to the Nearest Integer). [Given: $$\sqrt{3} = 1.73$$, $\sqrt{2} = 1.41$] Official Ans. by NTA (49) Sol. Fe \rightarrow [Ar] $4s^23d^6$ 1111111 Number of unpaired $e^- = 4$ $$\mu = \sqrt{4(4+2)}$$ B.M. $\mu = \sqrt{24}$ B.M. $\mu = 4.89 \text{ B.M.}$ $\mu = 48.9 \times 10^{-1} \text{ B.M.}$ Nearest integer value will be 49. 7. The number of chlorine atoms in 20 mL of chlorine gas at STP is _____10²¹. (Round off to the Nearest Integer). [Assume chlorine is an ideal gas at STP $R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}, N_A = 6.023 \times 10^{23}$] Official Ans. by NTA (1) **Sol.** PV = nRT $$1.0 \times \frac{20}{1000} = \frac{N}{6.023 \times 10^{23}} \times 0.083 \times 273$$... Number of Cl₂ molecules, N = 5.3×10^{20} Hence, Number of Cl-atoms = 1.06×10^{21} $\approx 1 \times 10^{21}$ 8. KBr is doped with 10⁻⁵ mole percent of SrBr₂. The number of cationic vacancies in 1 g of KBr crystal is _____10¹⁴. (Round off to the Nearest Integer). [Atomic Mass : K : 39.1 u, Br : 79.9 u, $N_A = 6.023 \times 10^{23}$ Official Ans. by NTA (5) **Sol.** 1 mole KBr (= 119 gm) have $\frac{10^{-5}}{100}$ moles SrBr₂ and hence, 10^{-7} moles cation vacancy (as 1 Sr²⁺ will result 1 cation vacancy) :. Required number of cation vacancies $$= \frac{10^{-7} \times 6.023 \times 10^{23}}{119} = 5.06 \times 10^{14} \approx 5 \times 10^{14}$$ 9. Consider the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$. The temperature at which $K_C = 20.4$ and $K_P = 600.1$, is _____K. (Round off to the Nearest Integer). [Assume all gases are ideal and R = 0.0831 L bar K^{-1} mol⁻¹] Official Ans. by NTA (354) **Sol.** $N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta n = 2 - 1 = 1$ Now, $K_p = K_c \cdot (RT)^{\Delta ngg}$ or, $600.1 = 20.4 \times (0.0831 \times T)^1$ $\therefore T = 353.99 \text{ K} = 354\text{K}$ 10. $$\begin{array}{c} O \\ C \\ O.140g \\ \end{array} \begin{array}{c} C \\ C \\ O.388g \\ \end{array} \begin{array}{c} O \\ O \\ O.210g \\ \end{array}$$ Consider the above reaction. The percentage yield of amide product is ______. (Round off to the Nearest Integer). (Given: Atomic mass: C: 12.0 u, H: 1.0u, N: 14.0 u, O: 16.0 u, C1: 35.5 u) Official Ans. by NTA (77) Sol. $$\begin{array}{c} O \\ I \\ C \end{array}$$ $$\begin{array}{c} C \\ C $$C$$ 1 mole 1 mole 1 mole = 140.5 gm = 169 gm = 273 gm ∴ 0.140 gm $$\frac{169}{140.5} \times 0.140$$ L.R. = 0.168 gm < 0.388 gm excess .. Theoretical amount of given product formed $$= \frac{273}{140.5} \times 0.140 = 0.272 gm$$ But its actual amount formed is 0.210 gm. Hence, the percentage yield of product. $$= \frac{0.210}{0.272} \times 100 = 77.20 \approx 77$$ OR $$\begin{array}{c|c} O & O & O \\ C-C1 & O.388g & C-N \\ \hline O & (C_6H_5)_2NH & O.210g \end{array}$$ **&**Saral Mole of Ph – CoCl = $$\frac{0.140}{140}$$ = 10^{-3} mol Mole of $Ph-C-N(Ph)_2$, that should be obtained by mol-mol analysis = 10^{-3} mol. Theoritical mass of product = $10^{-3} \times 273 = 273 \times 10^{-3}$ g Observed mass of product = 210×10^{-3} g %yield of product = $$\frac{210 \times 10^{-3}}{273 \times 10^{-3}} \times 100 = 76.9\% = 77$$