

FINAL JEE-MAIN EXAMINATION – JULY, 2021

Held On Sunday 25th July, 2021

TIME: 9:00 AM to 12:00 NOON

SECTION-A

- 1. A spherical gas balloon of radius 16 meter subtends an angle 60° at the eye of the observer A while the angle of elevation of its center from the eye of A is 75°. Then the height (in meter) of the top most point of the balloon from the level of the observer's eye is:
 - (1) $8(2+2\sqrt{3}+\sqrt{2})$
- (2) $8(\sqrt{6} + \sqrt{2} + 2)$
- (3) $8(\sqrt{2}+2+\sqrt{3})$ (4) $8(\sqrt{6}-\sqrt{2}+2)$

Official Ans. by NTA (2)

- Let $f(x) = 3\sin^4 x + 10\sin^3 x + 6\sin^2 x 3$, 2.
 - $x \in \left[-\frac{\pi}{6}, \frac{\pi}{2}\right]$. Then, f is:
 - (1) increasing in $\left(-\frac{\pi}{6}, \frac{\pi}{2}\right)$
 - (2) decreasing in $\left(0, \frac{\pi}{2}\right)$
 - (3) increasing in $\left(-\frac{\pi}{6},0\right)$
 - (4) decreasing in $\left(-\frac{\pi}{6},0\right)$

Official Ans. by NTA (4)

- Let S_n be the sum of the first n terms of an 3. arithmetic progression. If $S_{3n} = 3S_{2n}$, then the value
 - of $\frac{S_{4n}}{S_{2n}}$ is:
 - (1) 6
- (2) 4
- (3) 2
- (4) 8

Official Ans. by NTA (1)

- 4. The locus of the centroid of the triangle formed by any point P on the hyperbola $16x^2 - 9y^2 + 32x + 36y - 164 = 0$, and its foci is :
 - $(1) 16x^2 9y^2 + 32x + 36y 36 = 0$
 - $(2) 9x^2 16y^2 + 36x + 32y 144 = 0$
 - (3) $16x^2 9y^2 + 32x + 36y 144 = 0$
 - $(4) 9x^2 16y^2 + 36x + 32y 36 = 0$

Official Ans. by NTA (1)

- Let the vectors
 - $(2+a+b)\hat{i} + (a+2b+c)\hat{j} (b+c)\hat{k}$, $(1+b)\hat{i} + 2b\hat{i} b\hat{k}$ and $(2+b)\hat{i} + 2b\hat{i} + (1-b)\hat{k}$ a, b, c, $\in \mathbb{R}$

be co-planar. Then which of the following is true?

- (1) 2b = a + c
- (2) 3c = a + b
- (3) a = b + 2c
- (4) 2a = b + c

Official Ans. by NTA (1)

Let $f: \mathbf{R} \to \mathbf{R}$ be defined as 6.

$$f(x) = \begin{cases} \frac{\lambda |x^2 - 5x + 6|}{\mu (5x - x^2 - 6)}, & x < 2\\ \frac{\tan(x - 2)}{e^{\frac{1}{x - |x|}}}, & x > 2\\ \mu, & x = 2 \end{cases}$$

where [x] is the greatest integer less than or equal to x. If f is continuous at x = 2, then $\lambda + \mu$ is equal to:

- (1) e(-e + 1)
- (2) e(e-2)

(3) 1

(4) 2e - 1

Official Ans. by NTA (1)

7. The value of the definite integral

$$\int_{\pi/24}^{5\pi/24} \frac{dx}{1 + \sqrt[3]{\tan 2x}} is:$$

- $(1) \frac{\pi}{3}$
- (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{12}$ (4) $\frac{\pi}{18}$

Official Ans. by NTA (3)

8. If b is very small as compared to the value of a, so that the cube and other higher powers of $\frac{b}{a}$ can be neglected in the identity

$$\frac{1}{a-b} + \frac{1}{a-2b} + \frac{1}{a-3b} + \dots + \frac{1}{a-nb} = \alpha n + \beta n^2 + \gamma n^3,$$

then the value of γ is:

- (1) $\frac{a^2 + b}{3a^3}$ (2) $\frac{a + b}{3a^2}$ (3) $\frac{b^2}{3a^3}$ (4) $\frac{a + b^2}{3a^3}$

Official Ans. by NTA (3)

9. Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = 1 + x e^{y-x}, -\sqrt{2} < x < \sqrt{2}, y(0) = 0$

then, the minimum value of $y(x), x \in \left(-\sqrt{2}, \sqrt{2}\right)$ is equal to :

- $(1) \left(2 \sqrt{3}\right) \log_e 2$
- (2) $(2+\sqrt{3}) + \log_e 2$
- (3) $(1+\sqrt{3})-\log_{e}(\sqrt{3}-1)$
- (4) $(1-\sqrt{3})-\log_{e}(\sqrt{3}-1)$

Official Ans. by NTA (4)

10. The Boolean expression

 $(p \Rightarrow q) \land (q \Rightarrow \sim p)$ is equivalent to :

- (1) ~q
- (2) q

(3) p

(4) ~p

Official Ans. by NTA (4)

- 11. The area (in sq. units) of the region, given by the set $\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x \ge 0, 2x^2 \le y \le 4 2x\}$ is:
 - $(1) \frac{8}{3}$

- $(2) \frac{17}{3}$
- $(3) \frac{13}{3}$
- $(4) \frac{7}{3}$

Official Ans. by NTA (4)

- 12. The sum of all values of x in $[0, 2\pi]$, for which $\sin x + \sin 2x + \sin 3x + \sin 4x = 0$, is equal to:
 - (1) 8π
- (2) 11π
- (3) 12π
- (4) 9 π

Official Ans. by NTA (4)

13. Let $g: N \to N$ be defined as

$$g(3n + 1) = 3n + 2$$

$$g(3n + 2) = 3n + 3$$
,

$$g(3n + 3) = 3n + 1$$
, for all $n \ge 0$.

Then which of the following statements is true?

- (1) There exists an onto function $f: \mathbb{N} \to \mathbb{N}$ such that $f \circ g = f$
- (2) There exists a one-one function $f: \mathbb{N} \to \mathbb{N}$ such that $f \circ g = f$
- (3) gogog = g
- (4) There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that gof = f

Official Ans. by NTA (1)

14. Let $f:[0, \infty) \to [0, \infty)$ be defined as

$$f(x) = \int_0^x [y] dy$$

where [x] is the greatest integer less than or equal to x. Which of the following is true?

- (1) f is continuous at every point in $[0, \infty)$ and differentiable except at the integer points.
- (2) f is both continuous and differentiable except at the integer points in $[0, \infty)$.
- (3) f is continuous everywhere except at the integer points in $[0, \infty)$.
- (4) f is differentiable at every point in $[0, \infty)$.

Official Ans. by NTA (1)

15. The values of a and b, for which the system of equations

$$2x + 3y + 6z = 8$$

$$x + 2y + az = 5$$

$$3x + 5y + 9z = b$$

has no solution, are:

- $(1) a = 3, b \neq 13$
- (2) $a \neq 3, b \neq 13$
- (3) $a \neq 3$, b = 3
- (4) a = 3, b = 13

Official Ans. by NTA (1)

16. Let 9 distinct balls be distributed among 4 boxes, B₁, B₂, B₃ and B₄. If the probability than B₃ contains

exactly 3 balls is $k\left(\frac{3}{4}\right)^9$ then k lies in the set:

- (1) $\{x \in \mathbf{R} : |x 3| < 1\}$ (2) $\{x \in \mathbf{R} : |x 2| \le 1\}$
- (3) $\{x \in \mathbf{R} : |x-1| < 1\}$ (4) $\{x \in \mathbf{R} : |x-5| \le 1\}$

Official Ans. by NTA (1)

- 17. Let a parabola P be such that its vertex and focus lie on the positive x-axis at a distance 2 and 4 units from the origin, respectively. If tangents are drawn from O(0, 0) to the parabola P which meet P at S and R, then the area (in sq. units) of Δ SOR is equal to:
 - (1) $16\sqrt{2}$
- (2) 16
- (3)32
- $(4) \ 8\sqrt{2}$

Official Ans. by NTA (2)

18. The number of real roots of the equation

$$e^{6x} - e^{4x} - 2e^{3x} - 12e^{2x} + e^{x} + 1 = 0$$
 is :

(1) 2

(2) 4

(3) 6

(4) 1

Official Ans. by NTA (1)

- 19. Let an ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a^2 > b^2$, passes through $\left(\sqrt{\frac{3}{2}},1\right)$ and has eccentricity $\frac{1}{\sqrt{3}}$. If a circle, centered at focus $F(\alpha, 0)$, $\alpha > 0$, of E and radius $\frac{2}{\sqrt{3}}$, intersects E at two points P and Q, then PQ^2 is equal to:
 - $(1) \frac{8}{3} \qquad (2) \frac{4}{3} \qquad (3) \frac{16}{3} \qquad (4) 3$

Official Ans. by NTA (3)

- 20. Let the foot of perpendicular from a point P(1, 2, -1) to the straight line $L: \frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$ be N. Let a line be drawn from P parallel to the plane x + y + 2z = 0 which meets L at point Q. If α is the acute angle between the lines PN and PQ, then $\cos \alpha$ is equal to ______.
 - (1) $\frac{1}{\sqrt{5}}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{1}{2\sqrt{3}}$

Official Ans. by NTA (3)

SECTION-B

1. Let y = y(x) be solution of the following differential equation

$$e^{y} \frac{dy}{dx} - 2e^{y} \sin x + \sin x \cos^{2} x = 0, \ y\left(\frac{\pi}{2}\right) = 0$$

If $y(0) = \log_e(\alpha + \beta e^{-2})$, then $4(\alpha + \beta)$ is equal to

Official Ans. by NTA (4)

2. If the value of

$$\left(1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \dots + \text{upto } \infty\right)^{\log_{(0.25)}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \text{upto } \infty\right)}$$

is l, then l^2 is equal to _____

Official Ans. by NTA (3)

3. Consider the following frequency distribution :

class:	10–20	20–30	30-40	40–50	50–60
Frequency:	α	110	54	30	β

If the sum of all frequencies is 584 and median is 45, then $|\alpha - \beta|$ is equal to _____.

Official Ans. by NTA (164)

4. Let $\vec{p} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{q} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. If a vector $\vec{r} = (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k})$ is perpendicular to each of the vectors $(\vec{p} + \vec{q})$ and $(\vec{p} - \vec{q})$, and $|\vec{r}| = \sqrt{3}$, then $|\alpha| + |\beta| + |\gamma|$ is equal to _____.

Official Ans. by NTA (3)

5. The ratio of the coefficient of the middle term in the expansion of $(1 + x)^{20}$ and the sum of the coefficients of two middle terms in expansion of $(1 + x)^{19}$ is _____.

Official Ans. by NTA (1)

6. Let
$$M = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \{\pm 3, \pm 2, \pm 1, 0\} \right\}$$
.

Define $f: M \to \mathbb{Z}$, as $f(A) = \det(A)$, for all $A \in M$, where \mathbb{Z} is set of all integers. Then the number of $A \in M$ such that f(A) = 15 is equal to _____.

Official Ans. by NTA (16)

7. There are 5 students in class 10, 6 students in class 11 and 8 students in class 12. If the number of ways, in which 10 students can be selected from them so as to include at least 2 students from each class and at most 5 students from the total 11 students of class 10 and 11 is 100 k, then k is equal

Official Ans. by NTA (238)

8. If α , β are roots of the equation $x^2 + 5(\sqrt{2})x + 10 = 0$, $\alpha > \beta$ and $P_n = \alpha^n - \beta^n$ for each positive integer n, then the value of $\left(\frac{P_{17}P_{20} + 5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19} + 5\sqrt{2}P_{18}^2}\right) \text{ is equal to } \underline{\hspace{1cm}}.$

Official Ans. by NTA (1)

9. The term independent of 'x' in the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}, \text{ where } x \neq 0, 1 \text{ is equal to}$

Official Ans. by NTA (210)

10. Let

$$S = \left\{ n \in \mathbf{N} \middle| \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \forall \, a, b, c, d \in \mathbf{R} \right\} \quad ,$$

where $i = \sqrt{-1}$. Then the number of 2-digit numbers in the set S is _____.

Official Ans. by NTA (11)