

FINAL JEE-MAIN EXAMINATION – JULY, 2021

Held On Tuesday 27th July, 2021 TIME: 9:00 AM to 12:00 NOON

SECTION-A

- 1. If the mean and variance of the following data: 6, 10, 7, 13, a, 12, b, 12 are 9 and $\frac{37}{4}$ respectively, then $(a - b)^2$ is equal to:
 - Official Ans. by NTA (4)

(2) 12

- The value of $\lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2j-1)+8n}{(2j-1)+4n}$ is equal to : 2.
 - (1) $5 + \log_{e} \left(\frac{3}{2} \right)$ (2) $2 \log_{e} \left(\frac{2}{2} \right)$

(1) 24

(4) 16

(3) 32

- (3) $3 + 2\log_{e}\left(\frac{2}{3}\right)$ (4) $1 + 2\log_{e}\left(\frac{3}{2}\right)$

Official Ans. by NTA (4)

- Let $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + 2\hat{j} + 3\hat{k}$. Then the 3. vector product $(\vec{a} + \vec{b}) \times ((\vec{a} \times ((\vec{a} - \vec{b}) \times \vec{b})) \times \vec{b})$ is equal to:
 - $(1)5(34\hat{i}-5\hat{j}+3\hat{k})$ (2) $7(34\hat{i}-5\hat{j}+3\hat{k})$
- - $(3)7(30\hat{i} 5\hat{j} + 7\hat{k}) \qquad (4) 5(30\hat{i} 5\hat{j} + 7\hat{k})$

Official Ans. by NTA (2)

4. The value of the definite integral

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)}$$

is equal to:

- $(1) -\frac{\pi}{2}$ $(2) \frac{\pi}{2\sqrt{2}}$ $(3) -\frac{\pi}{4}$ $(4) \frac{\pi}{\sqrt{2}}$

Official Ans. by NTA (2)

5. Let C be the set of all complex numbers. Let

$$S_1 = \{z \in C \mid |z - 3 - 2i|^2 = 8\},\$$

$$S_2 = \{z \in C \mid Re(z) \ge 5\}$$
 and

$$S_2 = \{z \in C \mid |z - \overline{z}| \ge 8\}.$$

Then the number of elements in $S_1 \cap S_2 \cap S_3$ is equal to

- (1) 1
- (2) 0
- (3) 2
- (4) Infinite

Official Ans. by NTA (1)

If the area of the bounded region

$$R = \left\{ (x, y) : \max\{0, \log_e x\} \le y \le 2^x, \frac{1}{2} \le x \le 2 \right\}$$

is, $\alpha(\log_e 2)^{-1} + \beta(\log_e 2) + \gamma$, then the value of $(\alpha + \beta - 2\gamma)^2$ is equal to:

- (1) 8
- (2) 2
- (3)4
- (4) 1

Official Ans. by NTA (2)

7. A ray of light through (2,1) is reflected at a point P on the y-axis and then passes through the point (5, 3). If this reflected ray is the directrix of an ellipse with eccentricity $\frac{1}{3}$ and the distance of the

nearer focus from this directrix is $\frac{8}{\sqrt{52}}$, then the

equation of the other directrix can be:

- (1) 11x + 7y + 8 = 0 or 11x + 7y 15 = 0
- (2) 11x 7y 8 = 0 or 11x + 7y + 15 = 0
- (3) 2x 7y + 29 = 0 or 2x 7y 7 = 0
- (4) 2x 7y 39 = 0 or 2x 7y 7 = 0

Official Ans. by NTA (3)

If the coefficients of x^7 in $\left(x^2 + \frac{1}{h_x}\right)^{11}$ and x^{-7} in

 $\left(x - \frac{1}{bx^2}\right)^{11}$, $b \ne 0$, are equal, then the value of b

is equal to:

- (1) 2
- (2) -1
- (3) 1
- (4) -2

Official Ans. by NTA (3)

- 9. The compound statement $(P \lor Q) \land (\sim P) \Rightarrow Q$ is equivalent to:
 - (1) $P \vee Q$
- (2) $P \land \sim Q$
- $(3) \sim (P \Rightarrow Q)$
- $(4) \sim (P \Rightarrow Q) \Leftrightarrow P \land \sim Q$

Official Ans. by NTA (4)

If $\sin \theta + \cos \theta = \frac{1}{2}$, then 10.

 $16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta))$ is equal to:

- (1) 23
- (2) -27
- (3) -23
- (4) 27

Official Ans. by NTA (3)

11. Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$. If $A^{-1} = \alpha I + \beta A$, $\alpha, \beta \in \mathbf{R}$, I is a

 2×2 identity matrix, then $4(\alpha - \beta)$ is equal to :

- (1) 5 (2) $\frac{8}{2}$ (3) 2 (4) 4

Official Ans. by NTA (4)

12. Let $f: \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} (1 + |\sin x|)^{\frac{3a}{|\sin x|}} &, & -\frac{\pi}{4} < x < 0 \\ & b &, & x = 0 \\ & e^{\cot 4x/\cot 2x} &, & 0 < x < \frac{\pi}{4} \end{cases}$$

If f is continuous at x = 0, then the value of $6a + b^2$ is equal to:

- (2) e -1(1) 1 - e
- (3) 1 + e

Official Ans. by NTA (3)

13. Let y = y(x) be solution of the differential equation

$$\log_{e}\left(\frac{dy}{dx}\right) = 3x + 4y$$
, with $y(0) = 0$.

If $y\left(-\frac{2}{3}\log_{e} 2\right) = \alpha \log_{e} 2$, then the value of α is

equal to:

- $(1) -\frac{1}{4}$ $(2) \frac{1}{4}$ (3) 2 $(4) -\frac{1}{2}$

Official Ans. by NTA (1)

- Let the plane passing through the point (-1, 0, -2)14. and perpendicular to each of the planes 2x + y - z = 2and x - y - z = 3 be ax + by + cz + 8 = 0. Then the value of a + b + c is equal to:
 - (1) 3
- (2) 8
- (3)5
- (4) 4

Official Ans. by NTA (4)

- 15. Two tangents are drawn from the point P(-1, 1) to the circle $x^2 + y^2 - 2x - 6y + 6 = 0$. If these tangents touch the circle at points A and B, and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle ABD is equal to:
 - (1) 2
- $(2)(3\sqrt{2}+2)$

(3)4

(4) $3(\sqrt{2}-1)$

Official Ans. by NTA (3)

- Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\lim_{x \to 2} \frac{x^2 f(2) - 4f(x)}{x - 2}$ is
 - equal to:
 - (1)4
- (2) 8
- (3) 16
- (4) 12

Official Ans. by NTA (4)

- Let P and Q be two distinct points on a circle 17. which has center at C(2, 3) and which passes through origin O. If OC is perpendicular to both the line segments CP and CQ, then the set {P, Q} is equal to
 - $(1) \{(4,0),(0,6)\}$
 - (2) $\{(2+2\sqrt{2},3-\sqrt{5}),(2-2\sqrt{2},3+\sqrt{5})\}$
 - (3) $\{(2+2\sqrt{2},3+\sqrt{5}),(2-2\sqrt{2},3-\sqrt{5})\}$
 - $(4) \{(-1,5),(5,1)\}$

Official Ans. by NTA (4)

18. Let α , β be two roots of the equation

$$x^{2} + (20)^{1/4} x + (5)^{1/2} = 0$$
. Then $\alpha^{8} + \beta^{8}$ is equal to

- (1) 10
- $(2)\ 100$
- (3) 50

Official Ans. by NTA (3)

- 19. The probability that a randomly selected 2-digit number belongs to the set $\{n \in N : (2^n - 2) \text{ is a } \}$ multiple of 3} is equal to
 - (1) $\frac{1}{6}$ (2) $\frac{2}{3}$ (3) $\frac{1}{2}$ (4) $\frac{1}{2}$

Official Ans. by NTA (3)

20.

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} | 2x^2 + 2y^2 - 2x - 2y = 1\},$$

$$B = \{(x,y) \in \mathbb{R} \times \mathbb{R} | 4x^2 + 4y^2 - 16y + 7 = 0 \}$$
 and

$$C = \{(x,y) \in \mathbf{R} \times \mathbf{R} | x^2 + y^2 - 4x - 2y + 5 \le r^2 \}.$$

Then the minimum value of |r| such that $A \cup B \subseteq C$ is equal to

- $(1) \frac{3+\sqrt{10}}{2} \qquad (2) \frac{2+\sqrt{10}}{2}$
- (3) $\frac{3+2\sqrt{5}}{2}$
- (4) $1+\sqrt{5}$

Official Ans. by NTA (3)

SECTION-B

1. For real numbers α and β , consider the following system of linear equations :

$$x + y - z = 2$$
, $x + 2y + \alpha z = 1$, $2x - y + z = \beta$.

If the system has infinite solutions, then $\alpha + \beta$ is equal to _____

Official Ans. by NTA (5)

&Saral

2. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, \vec{b} and $\vec{c} = \hat{j} - \hat{k}$ be three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 1$. If the length of projection vector of the vector \vec{b} on the vector $\vec{a} \times \vec{c}$ is l, then the value of $3l^2$ is equal to _____.

Official Ans. by NTA (2)

3. If $\log_3 2, \log_3(2^x - 5), \log_3\left(2^x - \frac{7}{2}\right)$ are in an arithmetic progression, then the value of x is equal to

Official Ans. by NTA (3)

4. Let the domain of the function

$$f(x) = \log_4 \left(\log_5 \left(\log_3 \left(18x - x^2 - 77 \right) \right) \right)$$
 be (a, b).

Then the value of the integral

$$\int_{a}^{b} \frac{\sin^3 x}{(\sin^3 x + \sin^3 (a+b-x))} dx \text{ is equal to} \underline{\hspace{1cm}}$$

Official Ans. by NTA (1)

5. Let

$$f(x) = \begin{vmatrix} \sin^2 x & -2 + \cos^2 x & \cos 2x \\ 2 + \sin^2 x & \cos^2 x & \cos 2x \\ \sin^2 x & \cos^2 x & 1 + \cos 2x \end{vmatrix}, x \in [0, \pi]$$

Then the maximum value of f(x) is equal to

Official Ans. by NTA (6)

6. Let $F : [3, 5] \rightarrow \mathbb{R}$ be a twice differentiable function on (3, 5) such that

$$F(x) = e^{-x} \int_{3}^{x} (3t^2 + 2t + 4F'(t)) dt.$$

If $F'(4) = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^2}$, then $\alpha + \beta$ is equal to

Official Ans. by NTA (16)

7. Let a plane P pass through the point (3, 7, -7) and contain the line, $\frac{x-2}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$. If distance of the plane P from the origin is d, then d² is equal

Official Ans. by NTA (3)

8. Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n) = f(m) \cdot f(n)$ for every $m, n \in S$ and $m \cdot n \in S$ is equal to

Official Ans. by NTA (490)

9. If y = y(x), $y \in \left[0, \frac{\pi}{2}\right]$ is the solution of the differential equation

$$\sec y \frac{dy}{dx} - \sin(x+y) - \sin(x-y) = 0, \text{ with } y(0) = 0,$$

then $5y'\left(\frac{\pi}{2}\right)$ is equal to _____.

Official Ans. by NTA (2)

10. Let $f:[0,3] \to \mathbb{R}$ be defined by

$$f(x) = \min \{x - [x], 1 + [x] - x\}$$

where [x] is the greatest integer less than or equal to x. Let P denote the set containing all $x \in [0, 3]$ where f is discontinuous, and Q denote the set containing all $x \in (0, 3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to

Official Ans. by NTA (5)