

FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021

Held On Wednesday 24th February, 2021

TIME: 3:00 PM to 6:00 PM

SECTION-A

1. What is the correct sequence of reagents used for converting nitrobenzene into *m*-dibromobenzene?

$$NO_2$$
 Br
 Br

$$(1) \xrightarrow{\text{NaNO}_2} / \xrightarrow{\text{HCl}} / \xrightarrow{\text{KBr}} / \xrightarrow{\text{H}^+}$$

(2)
$$\xrightarrow{\text{Br}_2/\text{Fe}}$$
 / $\xrightarrow{\text{Sn/HCl}}$ / $\xrightarrow{\text{NaNO}_2/\text{HCl}}$ / $\xrightarrow{\text{CuBr/HBr}}$

(3)
$$\xrightarrow{\text{Sn/HCl}} / \xrightarrow{\text{KBr}} / \xrightarrow{\text{Br}_2} / \xrightarrow{\text{H}^+}$$

$$(4)$$
 $\xrightarrow{\text{Sn/HCl}}$ $/$ $\xrightarrow{\text{Br}_2}$ $/$ $\xrightarrow{\text{NaNO}_2}$ $/$ $\xrightarrow{\text{NaBr}}$

Official Ans. by NTA (2)

Sol. Correct sequence of reagents for the following conversion.

$$\begin{array}{c}
NO_2 \\
\hline
O
\end{array}
\longrightarrow
\longrightarrow
\begin{array}{c}
Br \\
\hline
O
\end{array}$$
Br

$$\begin{array}{c|c}
NO_2 & NO_2 \\
\hline
O & Br_2/Fe \\
\hline
A & O & Br \\
\hline
Br & NaNO_2/HCl \\
\hline
O & Br \\
\hline
HBr & O & Br \\
\hline
N_2Cl^- & O & Br \\
\hline
Br & CuBr & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & Br & O & Br \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O & O & O & O \\
\hline
O & O$$

- 2. Most suitable salt which can be used for efficient clotting of blood will be:-
 - (1) NaHCO₃
- (2) $FeSO_4$
- (3) Mg(HCO₃)₂
- (4) FeCl₃

Official Ans. by NTA (4)

Sol. Blood: negatively charged sol

According to Hardly-schulz rule, for the negatively charged sol, most (+) ve ion is needed for its efficient coagulation.

Ans.: FeCl₃

3. The correct order of the following compounds showing increasing tendency towards nucleophilic substitution reaction is:-

$$\begin{array}{c|cccc}
Cl & Cl & Cl & NO_2 & O_2N & Cl & NO \\
\hline
O & O & NO_2 & NO_2 & NO_2 & NO_2 \\
\hline
(i) & (ii) & (iii) & (iv) & (iv)
\end{array}$$

- (1) (iv) < (iii) < (ii) < (i)
- (2) (iv) < (i) < (ii) < (iii)
- (3) (iv) < (i) < (iii) < (ii)
- (4) (i) < (ii) < (iii) < (iv)

Official Ans. by NTA (4)

Sol. For nucleophile substitution in aromatic halides

Correct order is:

More No. of NO₂ substituted aromatic halide, increase the rate of nucleophile substitution reaction in aromatic halides.

- 4. According to Bohr's atomic theory :-
 - (A) Kinetic energy of electron is $\propto \frac{Z^2}{r^2}$.
 - (B) The product of velocity (v) of electron and principal quantum number (n), 'vn' $\propto Z^2$.
 - (C) Frequency of revolution of electron in an orbit is $\propto \frac{Z^3}{r^3}$.
 - (D) Coulombic force of attraction on the electron is $\propto \frac{Z^3}{r^4}$.

Choose the most appropriate answer from the options given below:

- (1) (C) Only
- (2) (A) Only
- (3) (A), (C) and (D) only
- (4) (A) and (D) only

Official Ans. by NTA (3)

Official Ans. by ALLEN (4)

Sol. According to Bohr's theory:

(A) KE =
$$13.6 \frac{z^2}{n^2} \frac{\text{eV}}{\text{atom}} \Rightarrow \text{KE}\alpha \frac{z^2}{n^2}$$

- (B) speed of $e^{-\alpha}$
- $\therefore |\mathbf{v} \times \mathbf{n} \alpha \mathbf{z}|$
- (C) Frequency of revolution of $e^- = \frac{V}{2\pi r}$

$$\therefore$$
 frequency $\alpha \frac{z^2}{n^3}$

(D)
$$F = \frac{kq_1q_2}{r^2} = \frac{kze^2}{r^2}$$
 $\left\{ r \alpha \frac{n^2}{z} \right\}$

$$\Rightarrow F\alpha \frac{z}{\left(\frac{n^2}{z}\right)^2}$$

$$\Rightarrow \overline{F\alpha \frac{z^3}{n^4}}$$

Match list - I and List - II.

List-I

List-II

- O || (a) R-C-Cl→R-CHO
- (i) Br₂/NaOH
- (b) R-CH₂-COOH \rightarrow R-CH-COOH (ii) H₂/Pd-BaSO₄ C1
- $(c) R-C-NH₂\rightarrow R-NH₂$
- (iii) Zn(Hg)/Conc.HCl
- (d) $R-C-CH_3\rightarrow R-CH_2-CH_3$ (iv) $Cl_2/Red P, H_2O$

Choose the correct answer from the options given below:

- (1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
- (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (3) (a)–(ii), (b)–(iv), (c)–(i), (d)–(iii)
- (4) (a)–(iii), (b)–(i), (c)–(iv), (d)–(ii)

Official Ans. by NTA (3)

Match list-I & list-II Sol.

(a)
$$R-C-C1 \xrightarrow{H_2} R-CH$$
 (a) $R-CH$ (a) $R-CH$

Rosenmund Reduction

(b)
$$R-CH_2-COOH \xrightarrow{Cl_2/P} R-CH-COOH$$

HVZ reaction

(c)
$$R-C-NH_2 \xrightarrow{Br_2} R-NH_2$$
 (c) - (i)

Hoffmann Bromamide reaction

(c)
$$R-C-CH_3$$
 $\xrightarrow{Zn(Hg)}$ $R-CH_2-CH_3$ (d) - (iii)

Clemmenson reduction

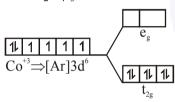
6. The calculated magnetic moments (spin only value) for species $[FeCl_4]^{2-}$, $[Co(C_2O_4)_3]^{3-}$ and

 MnO_4^{2-} respectively are :

- (1) 5.82, 0 and 0 BM
- (2) 4.90, 0 and 1.73 BM
- (3) 5.92, 4.90 and 0 BM
- (4) 4.90, 0 and 2.83 BM

Official Ans. by NTA (2)

Sol.


(i)
$$[FeCl_4]^{-2} \Rightarrow \frac{111111}{Fe^{+2} \Rightarrow [Ar]3d^6} \frac{1}{e} \frac{1}{e}$$

$$\mu = \sqrt{n(n+2)} BM$$

$$= \sqrt{4(4+2)} BM$$

$$= \sqrt{24} BM \implies 4.90 BM$$

(ii) $[Co(C_2O_4)_3]^{-3}$

$$\mu = 0$$

(iii) MnO_4^{-2}

$$Mn^{+6} \Rightarrow [Ar]3d^{1}$$
 $\mu = \sqrt{n(n+2)} BM$
= $\sqrt{1(1+2)} BM$
= $\sqrt{3} BM \Rightarrow 1.73 BM$

7. Match List-I with List-II:

	List-I		List-II
	(Salt)		(Flame colour
			wavelength)
(a)	LiCl	(i)	455.5 nm
(b)	NaCl	(ii)	670.8 nm
(c)	RbCl	(iii)	780.0 nm
(d)	CsCl	(iv)	589.2 nm

Choose the correct answer from the options given below:

$$(3)$$
 (a) – (i) , (b) – (iv) , (c) – (ii) , (d) – (iii)

Official Ans. by NTA (4)

Sol.		Colour	λ/nm
	Li	Crimson red	670.8
	Na	Yellow	589.2
	Rb	Red violet	780.0
	Cs	Blue	455.5

8. Which one of the following carbonyl compounds cannot be prepared by addition of water on an alkyne in the presence of HgSO₄ and H₂SO₄?

(1)
$$CH_3$$
– C – H (2) \bigcirc C – C + C - C + C 3

Official Ans. by NTA (3)

Sol. Reaction of HgSO₄/dil.H₂SO₄ with alkyne gives addition of water as per markonikoff's rule

(1)
$$HC = CH \xrightarrow{HgSO_4} CH_2 - CH \rightleftharpoons CH_3 - CH$$

 OH

(2)
$$C = CH \xrightarrow{HgSO_4} C = CH_2 \Rightarrow C - CH_3$$

(3)
$$CH_3-C=CH \xrightarrow{HgSO_4} CH_3-C=CH_2 \Rightarrow CH_3-C-CH_3$$

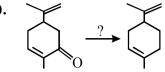
Hence CH₃-CH₂-CHO cannot be form.

(4)
$$CH_3-C=C-CH_3 \xrightarrow{HgSO_4} CH_3-C=CH-CH_3$$

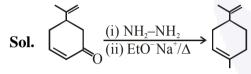
 OH
 $CH_3-C-CH_2-CH_3$

9. In polymer Buna-S: 'S' stands for :-

- (1) Sulphonation
- (2) Strength
- (3) Sulphur
- (4) Styrene


Official Ans. by NTA (4)

Sol. BUN-S, 'S' stand for styrene.


10.

Which of the following reagent is suitable for the preparation of the product in the above reaction?

- (1) NaBH₄
- (2) NH_2-NH_2/C_2H_5 ONa
- $(3) \text{ Ni/H}_2$
- (4) Red $P + Cl_2$

Official Ans. by NTA (2)

To reduce the carbonyl groups into alkane wolf -kischner reduction is used, without affecting the double bond.

11. Match List-I and List-II.

	List-I		List-II			
(a)	Valium	(i)	Antifertility dru	g		
(b)	Morphine	(ii)	Pernicious anaer	mia		
(c)	Norethindrone	(iii)	Analgesic			
(d)	Vitamin B ₁₂	(iv)	Tranquilizer			
(1) (a)–(iv), (b)–(iii), (c)–(ii), (d)–(i)						
(2) (a)–(iv), (b)–(iii), (c)–(i), (d)–(ii)						
(3) (a)–(ii), (b)–(iv), (c)–(iii), (d)–(i)						
(4) (a	ı)–(i), (b)–(iii),	, (c)-(iv), (d)–(ii)			

Official Ans. by NTA (2)

- **Sol.** (a) Valium Tranquilizer (a)-(iv)
 - (b) Morphine Analgesic (b)-(iii) (c) Norethindrone – Antifertility Drug (c)-(i)
 - (d) Vitamin B₁₂ Pernicious anaemia (d)-(ii)
- Match List-I with List-II. 12.

	List-I		List-II
	(Metal)		(Ores)
(a)	Aluminium	(i)	Siderite
(b)	Iron	(ii)	Calamine
(c)	Copper	(iii)	Kaolinite
(d)	Zinc	(iv)	Malachite

Choose the correct answer from the options given below:

- (1) (a)–(iv), (b)–(iii), (c)–(ii), (d)–(i)
- (2) (a)–(ii), (b)–(iv), (c)–(i), (d)–(iii)
- (3) (a)–(i), (b)–(ii), (c)–(iii), (d)–(iv)
- (4) (a)–(iii), (b)–(i), (c)–(iv), (d)–(ii)

Official Ans. by NTA (4)

Sol. Siderite – FeCO,

Calamine – ZnCO₂

Kaolinite – Al₂(OH)₄.Si₂O₅

Malachite – Cu(OH)₂.CuCO₃

- 13. Which one of the following compounds is nonaromatic?

Official Ans. by NTA (1)

- **Sol.** For the following ion/compounds
 - Non aromatic
 - (2) $\langle \rangle$ Aromatic
 - Aromatic
 - Aromatic
- 14. What is the correct order of the following elements with respect to their density?
 - (1) Cr < Zn < Co < Cu < Fe
 - (2) Zn < Cu < Co < Fe < Cr
 - (3) Zn < Cr < Fe < Co < Cu
 - (4) Cr < Fe < Co < Cu < Zn

Official Ans. by NTA (3)

Sol. Density/g cm⁻³ 7.1 7.19 7.8 8.7 8.9

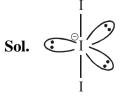
15. Given below are two statements:

Statement I: The value of the parameter "Biochemical Oxygen Demand (BOD)" is important for survival of aquatic life.

Statement II: The optimum value of BOD is 6.5 ppm.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but Statement II is false
- (4) Both Statement I and Statement II are false


Official Ans. by NTA (3)

- **Sol.** Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
- **16.** The **incorrect** statement among the following is:-
 - (1) VOSO₄ is a reducing agent
 - (2) Cr₂O₃ is an amphoteric oxide
 - (3) RuO₄ is an oxidizing agent
 - (4) Red colour of ruby is due to the presence of Co³⁺ **Official Ans. by NTA (4)**

Sol.

- (i) In VOSO₄, 'V' is in +4 oxidation state. So it act as oxidising agent.
- (ii) Cr₂O₃ is an amphoteric oxide.
- (iii) In RuO₄, 'Ru' is in +8 oxidation state. So it act as oxidising agent.
- (iv) Red colour of ruby is due to the presence of Cr^{+3} ions in Al_2O_3 .
- 17. The correct shape and I-I-I bond angles respectively in I_3^- ion are :-
 - (1) Distorted trigonal planar; 135° and 90°
 - (2) T-shaped; 180° and 90°
 - (3) Trigonal planar; 120°
 - (4) Linear; 180°

Official Ans. by NTA (4)

Shape : Linear, I–I–I Bond angle \Rightarrow 180°

18. Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: Hydrogen is the most abundant element in the Universe, but it is not the most abundant gas in the troposphere.

Reason R: Hydrogen is the lightest element. In the light of the above statements, choose the correct answer from the options given below:

- (1) **A** is true but **R** is false
- (2) Both **A** and **R** are true and **R** is the correct explanation of **A**
- (3) A is false but R is true
- (4) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**

Official Ans. by NTA (2)

- **Sol.** Most abundant gas in the troposphere is nitrogen.
- 19. The diazonium salt of which of the following compounds will form a coloured dye on reaction with β-Naphthol in NaOH?

(1)
$$\bigcirc$$
 CH_2NH_2 (2) \bigcirc $N-CH_3$ (3) \bigcirc NH_2 (4) \bigcirc \bigcirc $NH-CH_3$

Official Ans. by NTA (3)

Sol.

$$NH_2$$
 $NaNO_2$
 $+HCl$
 $NaNO_2$
 $+HCl$
 $N=N$
 β -naphthol

 $N=N-\bigcirc$
 OH
 OH

- The correct set from the following in which both 20. pairs are in correct order of melting point is :-
 - (1) LiF > LiCl; MgO > NaCl
 - (2) LiCl > LiF; NaCl > MgO
 - (3) LiF > LiCl; NaCl > MgO
 - (4) LiCl > LiF; MgO > NaCl

Official Ans. by NTA (1)

Sol. L.E. \propto M.P.

L.E.: LiF > LiCl, MgO > NaCl

SECTION-B

- 1. The total number of amines among the following which can be synthesized by Gabriel synthesis is _____.
 - (A) $\overset{\text{CH}_3}{\text{CH}}$ $\overset{\text{CH}_2}{\text{CH}_2}$ $\overset{\text{CH}_2}{\text{NH}_2}$ (B) $\overset{\text{CH}_3}{\text{CH}_2}$ $\overset{\text{CH}_2}{\text{NH}_2}$
 - (C) CH_2-NH_2 (D) NH_2

Official Ans. by NTA (3)

Sol. Gabriel phthalimide synthesis is used to prepare 1° aliphatic/alicyclic amine in common.

> Hence amine which can synthesised by Gabriel phthalimide synthesis method is:

- (A) Me,CH-CH,-NH, (B) CH,CH,NH,
- (C) Ph-CH,-NH,
- 2. Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is
 - (A) α-sulphur
- (B) β-sulphur
- (C) S_2 -form

Official Ans. by NTA (1)

- **Sol.** α -sulphur and β -sulphur are diamagnetic. S₂-form is paramagnetic.
- **3.** The formula of a gaseous hydrocarbon which requires 6 times of its own volume of O2 for complete oxidation and produces 4 times its own volume of CO₂ is C_xH_y. The value of y is

Official Ans. by NTA (8)

Sol. Combustion rxⁿ:

$$C_x H_{y(g)} + \left(x + \frac{y}{4}\right) O_2(g) \rightarrow xCO_2(g) + \frac{y}{2} H_2O(\ell)$$

V 6V -
$$- Vx = 4V$$

$$\Rightarrow x = 4$$

Sinc: (I)
$$V_{O_2} = 6 \times V_{C_x H_y}$$

$$\Rightarrow V\left(x + \frac{y}{4}\right) = 6V$$

$$\Rightarrow \left[\left(x + \frac{y}{4} \right) = 6 \right] \Rightarrow 4 + \frac{y}{4} = 6$$

$$\Rightarrow y = 8$$

- 4. The volume occupied by 4.75 g of acetylene gas at 50°C and 740 mmHg pressure is L. (Rounded off to the nearest integer)
 - [Given $R = 0.0826 L atm K^{-1} mol^{-1}$]

Official Ans. by NTA (5)

Given Mass = $4.75 \text{ g} \Rightarrow C_2H_2(g)$ Sol.

$$\Rightarrow$$
 Moles = $\frac{4.75}{26}$ mol

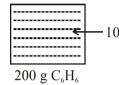
Temp =
$$50 + 273 = 323 \text{ K}$$

$$P = \frac{740}{760} atm$$

$$R = 0.0826 \quad \frac{\ell \text{ atm}}{\text{mol } K}$$

$$\Rightarrow V = \frac{nRT}{P} = \frac{4.75}{26} \times \frac{0.0826 \times 323}{\left(\frac{740}{760}\right)}$$

$$\Rightarrow V = \frac{96314.078}{19240} = 5.0059 \ell \simeq 5\ell$$


5. C_6H_6 freezes at 5.5°C. The temperature at which a solution 10 g of C_4H_{10} in 200 g of C_6H_6 freeze is _____ °C. (The molal freezing point depression constant of C_6H_6 is 5.12°C/m.)

Official Ans. by NTA (1)

Sol. Pure Solvent : $C_6H_6(\ell)$

Given:
$$T_f^{\circ} = 5.5^{\circ}C$$

$$K_f = 5.12 \,{}^{\circ}\text{C} \, / \, \text{m}$$

: Solute is non dissociative

$$\therefore \Delta T_f = k_f \times m$$

$$\Rightarrow \left(T_f^0 - T_f^{'}\right) = 5.12 \times \frac{\left(\frac{10}{58}\right)}{\left(\frac{200}{1000}\right) kg} mol$$

$$\Rightarrow 5.5 - T_f = \frac{5.12 \times 5 \times 10}{58}$$

$$\Rightarrow T_f = 1.086 \,^{\circ}\text{C} \approx 1 \,^{\circ}\text{C}$$

power of the MnO₄⁻/Mn²⁺ couple is x × 10⁻⁴ V, if the H⁺ concentration is decreased from 1 M to 10⁻⁴ M at 25°C. (Assume concentration of MnO₄⁻ and Mn²⁺ to be same on change in H⁺ concentration). The value of x is _____. (Rounded off to the nearest integer)

Given:
$$\frac{2.303 \text{ RT}}{F} = 0.059$$

Official Ans. by NTA (3776)

Sol. Eqn is-

$$MnO_4^- + H^{\oplus} + 5e^- \rightarrow Mn^{+2} + 4H_2O$$

Nernst equation:

$$E_{cell} = E_{Cell}^{0} - \frac{0.059}{5} log \frac{[Mn^{+2}]}{[MnO_{4}^{-}]} \left[\frac{1}{H^{+}}\right]^{8}$$

(I) Given $[H^{\oplus}] = 1M$

$$E_1 = E^0 - \frac{0.059}{5} log \frac{[Mn^{+2}]}{[MnO_4^-]}$$

(II) Now:
$$[H^{\oplus}] = 10^{-4} M$$

$$E_2 = E^0 - \frac{0.059}{5} log \frac{[Mn^{+2}]}{[MnO_4^-]} \times \frac{1}{(10^{-4})^8}$$

$$= E^{0} - \frac{0.059}{5} log \frac{Mn^{+2}}{\lceil MnO_{4}^{-} \rceil} + \frac{0.059}{5} log 10^{-32}$$

therefore :
$$|E_1 - E_2| = \frac{0.059}{5} \times 32$$

$$= 0.3776 \text{ V} = 3776 \times 10^{-4}$$

$$x = 3776$$

7. The solubility product of PbI₂ is 8.0 × 10⁻⁹. The solubility of lead iodide in 0.1 molar solution of lead nitrate is x × 10⁻⁶ mol/L. The value of x is ______. (Rounded off to the nearest integer)

[Given:
$$\sqrt{2} = 1.41$$
]

Official Ans. by NTA (141)

Sol. Given :
$$[K_{sp}]_{PbI_2} = 8 \times 10^{-9}$$

To calculate: solubility of PbI₂ in 0.1 M sol of Pb (NO₃)₂

(I) Pb
$$(NO_3)_2 \rightarrow Pb_{(aq)}^{+2} + 2NO_3^{-}(aq)$$

(II)
$$PbI_2(s) \rightleftharpoons Pb^{+2}(aq) + 2I^{-}(aq)$$

$$s 2s$$

$$= s + 0.1$$

$$\approx 0.1$$

Now: $K_{sp} = 8 \times 10^{-9} = [Pb^{+2}] [\Gamma]^2$ $\Rightarrow 8 \times 10^{-9} = 0.1 \times (2s)^2$

$$\Rightarrow 8 \times 10^{-8} = 4s^2 \Rightarrow s = \sqrt{2} \times 10^{-4}$$

$$\Rightarrow$$
 $S = 141 \times 10^{-6} M$

$$\Rightarrow$$
 x = 141

8. Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at 25°C. After 9 h, the fraction of sucrose remaining is f. The

value of
$$\log_{10}\left(\frac{1}{f}\right)$$
 is _____ × 10⁻². (Rounded

off to the nearest integer)

[Assume : $\ln 10 = 2.303$, $\ln 2 = 0.693$]

Official Ans. by NTA (81)

Sol. Given:

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow[t_{1/2} = \frac{10}{3} \text{ hr}]{} C_6H_{12}O_6 + C_6H_{12}O_6$$

Fructose

$$t = 0$$
 $a = [A]_0$
 $t = 9hr$ $a - x = [A]_t$

from I order kinetic: $\frac{k \times t}{2.303} = \log \frac{|A|_0}{|A|_0}$

$$\Rightarrow \frac{\ln 2 \times 9}{\frac{10}{3} \times 2.303} = \log \left(\frac{1}{f}\right)$$

$$\Rightarrow \frac{0.693 \times 9 \times 3}{23.03} = \log\left(\frac{1}{f}\right)$$

$$\Rightarrow \log\left(\frac{1}{f}\right) = 0.81246 = 81.24 \times 10^{-2}$$

$$\Rightarrow$$
 x = 81

- 9. 1.86 g of aniline completely reacts to form acetanilide. 10% of the product is lost during purification. Amount of acetanilide obtained after purification (in g) is _____ × 10⁻².
 - Official Ans. by NTA (243)

Given 1.86 g

$$\Rightarrow$$
 1 mol C₆H₅NH₂ give 1 mol C₆H₅ NHCCH₃

$$\therefore \text{ moles of } C_6H_5 \text{ NH}_2 = \text{moles of } C_6H_5 \text{ NHCCH}_3$$

$$\Rightarrow \frac{1.86}{93} = \frac{W_{\text{ace tan ilide}}}{135}$$

$$\Rightarrow$$
 W_{acelanilide} = $\frac{1.86 \times 135}{93}$ g = 2.70g

But efficiency of reaction is 90% only

$$\therefore \text{ Mass of acetanilide produced} = 2.70 \times \frac{90}{100} \text{ g}$$

$$= 2.43 g$$

$$= 243 \times 10^{-2} g$$

$$\Rightarrow$$
 x = 243

10. Assuming ideal behaviour, the magnitude of log K for the following reaction at 25°C is $x \times 10^{-1}$. The value of x is _____. (Integer answer)

$$3HC \equiv CH_{(g)} \rightleftharpoons C_6H_{6(\ell)}$$

[Given:
$$\Delta_f G^o(HC = CH) = -2.04 \times 10^5 \text{ J mol}^{-1}$$
; $\Delta_f G^o(C_6H_6) = -1.24 \times 10^5 \text{ J mol}^{-1}$; $R = 8.314$ J K⁻¹ mol⁻¹]

Official Ans. by NTA (855)

Sol.
$$3HC \equiv CH_{(g)} \rightarrow C_6H_6(\ell):\Delta G^0 = -RT \ln k$$

$$\Delta G_f^0 - 2.04 \times 10^5 \frac{J}{\text{mol}} - 1.24 \times 10^5 \text{ J/mol}$$

$${\Longrightarrow} \Delta G^0 = \sum \Bigl(\Delta G^0_{\,\mathrm{f}}\,\Bigr)_{\!P} - \sum \Bigl(\Delta G^0_{\,\mathrm{f}}\,\Bigr)_{\!R}$$

$$\Rightarrow$$
 -RT ℓ nk = 1×(-124×10⁵)-(-3×2.04×10⁵)

$$\Rightarrow$$
 -2.303 × R × T log k = 4.88 × 10⁵

$$\Rightarrow \log k = -\frac{4.88 \times 10^5}{2.303 \times R \times T} = -\frac{488000}{5705.848} = -85.52$$
$$= 855 \times 10^{-1}$$

$$\Rightarrow$$
 x = 855