Å

FINAL JEE–MAIN EXAMINATION – FEBRUARY, 2021 Held On Thursday 25th February, 2021 TIME: 9:00 AM to 12:00 NOON

SECTION-A

 Given below are two statements: Statement I : CeO₂ can be used for oxidation

> of aldehydes and ketones. Statement II : Aqueous solution of EuSO₄ is a

strong reducing agent.

In the light of the above statements, choose the correct answer from the options given below:

(1) Statement I is false but statement II is true

(2) Statment I is true but statement II is false

(3) Both statement I and statement II are true(4) Both statement I and statement II are falseOfficial Ans. by NTA (3)

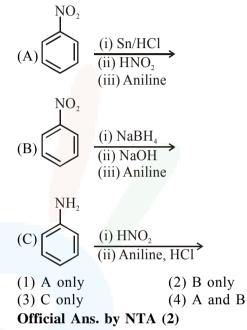
Sol. The +3 oxidation state of lanthanide is most stable and therefore lanthanide in +4 oxidation state has strong tendence to gain e⁻ and converted into +3 and therefore act as strong oxidizing agent.

eg Ce⁺⁴

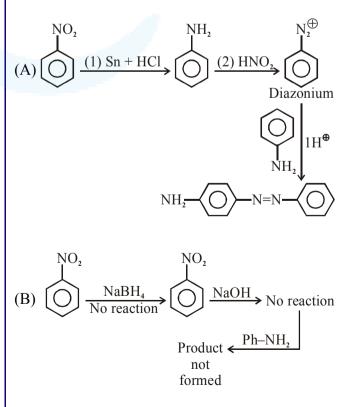
∛Saral

And there fore CeO_2 is used to oxidized alcohol aldehyde and ketones.

Lanthanide in +2 oxidation state has strong tendency to loss e⁻ and converted into +3oxidation state therefore act as strong reducing agent.


 \therefore EuSO₄ act as strong reducing agent.

2. According to molecular theory, the species among the following that does not exist is: (1) He_2^+ (2) He_2^- (3) Be_2 (4) O_2^{2-} Official Ans. by NTA (3)

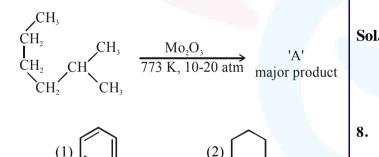

Sol.	Chemical Species	Bond Order
	He ₂ ⁺	0.5
	He ₂	0.5
	Be ₂	0
	O ₂ ²⁻	1

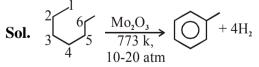
According to M.O.T. If bond order of chemical species is zero then that chemical species does not exist.

3. Which of the following reaction/s will not give p-aminoazobenzene?

Sol. In basic or neutral medium N–N coupling favourable while in slightly acidic medium C–N coupling favourable.

www.esaral.com


261


4. Which of the following equation depicts the oxidizing nature of H₂O₂? (1) $\text{KIO}_4 + \text{H}_2\text{O}_2 \rightarrow \text{KIO}_3 + \text{H}_2\text{O} + \text{O}_2$ (2) $2I^- + H_2O_2 + 2H^+ \rightarrow I_2 + 2H_2O$ (3) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ (4) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$ Official Ans. by NTA (2)

- **Sol.** I- is oxidised to I₂ by H_2O_2 Hence answer is (2)
- 5. Identify A in the given chemical reaction.

Official Ans. by NTA (4)

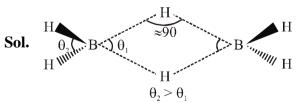
Mo₂O₃ at 773 K temperature and 10-20-atm pressure is aromatising agent.

6. Complete combustion of 1.80 g of an oxygen containing compound $(C_x H_y O_z)$ gave 2.64 g of CO_2 and 1.08 g of H₂O. The percentage of oxygen in the organic compound is: (1) 51.63 (2) 63.53 (3) 53.33 (4) 50.33 Official Ans. by NTA (3)

Sol.
$$n_c = n_{co_2} = \frac{2.04}{44} = 0.06$$

 $n_H = 2 \times n_{H_2O} = \frac{1.08}{18} \times 2 = 0.12$
 $m_0 = 1.80 - 12 \times \frac{2.64}{44} - \frac{1.08}{18} \times 2$
 $= 1.80 - 0.72 - 0.12 = 0.96 \text{ gm}$
 $\%0 = \frac{0.96}{1.80} \times 100 = 53.33\%$
Hence answer is (3)
7. Which one of the following reactions will not form acetaldehyde?
(1) CH₃CH₂OH \xrightarrow{Cu}_{573K}
(2) CH₃CN $\xrightarrow{(i)DIBAL-H}_{H_2O}$
(3) CH₂=CH₂ + O₂ $\xrightarrow{Pd(II)/Cu(II)}_{H_2O}$
(4) CH₃CH₂OH $\xrightarrow{CrO_3-H_2SO_4}_{Strong oxidising}$ CH₃-C-OH
(Corrbounding of the following conduction of the following of the following form a cetal of the following form a cetal of the following reactions will not form a cetal dehyde?
(1) CH₃CH₂OH \xrightarrow{Cu}_{573K}
(2) CH₃CN $\xrightarrow{(i)DIBAL-H}_{H_2O}$
(3) CH₂=CH₂ + O₂ $\xrightarrow{Pd(II)/Cu(II)}_{H_2O}$
(4) CH₃CH₂OH $\xrightarrow{CrO_3-H_2SO_4}_{Strong oxidising}$ CH₃-C-OH
(Corrbounding of the following of the following form a cetal dehyde?
(1) CH₃CH₂-OH $\xrightarrow{CrO_3-H_2SO_4}_{Strong oxidising}$ CH₃-C-OH

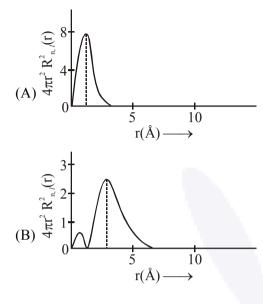
7.

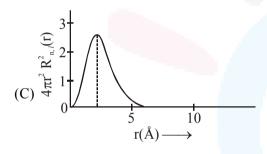

(Carboxylic agent acid is formed by complete oxidation)

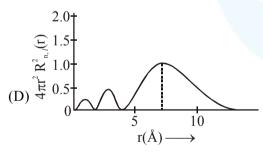
8. The correct statement about B_2H_6 is: (1) Terminal B-H bonds have less p-character when compared to bridging bonds.

(2) The two B–H–B bonds are not of same length

(3) All B–H–B angles are of 120°


(4) Its fragment, BH₃, behaves as a Lewis base **Official Ans. by NTA (1)**




- $\theta_{2} > \theta_{1}$, \therefore B-H (terminal) having less pcharacter as compare to bridge bond. Both B–H–B bridge bond having same bond • length.
 - B–H–B bond angle is $\approx 90^{\circ}$
- BH₃ is e⁻ deficient species and therefore act • as lewis acid

•

9. The plots of radial distribution functions for various orbitals of hydrogen atom against 'r' are given below:

The correct plot for 3s orbital is:

- (1) (B) (2) (A)
- (3) (D) (4) (C)

Official Ans. by NTA (3)

Sol. Number of radial nodes = $n - \ell - 1$

Therefor corresponding graph is (D)

= 3 - 0 - 1 = 2

Hence answer is (3)

10. Given below are two statements:

Statement I : An allotrope of oxygen is an important intermediate in the formation of reducing smog.

<u>X</u>

Statement II : Gases such as oxides of nitrogen and sulphur present in troposphere contribute to the formation of photochemical smog.

In the light of the above statements, choose the correct answer from the options given below:

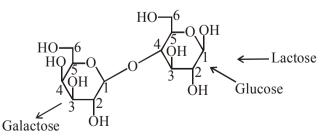
- (1) Both statement I and Statement II are false
- (2) Statement I is true but Statement II is false

(3) Both Statement I and Statement II are true(4) Statement I is false but Statement II is true

Official Ans. by NTA (1)

Sol. Reducing smog is a mixture of smoke, fog and sulphur dioxide.

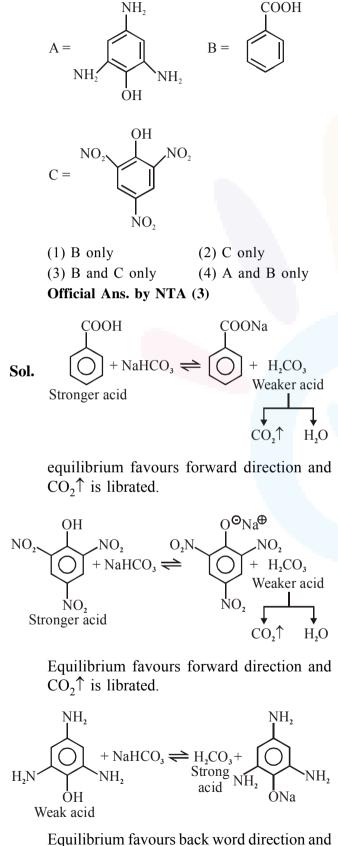
Tropospheric pollutants such as hydrocarbon and nitrogen oxide contirbute to the formation of photochemical smog.


11. In which of the following pairs, the outer most electronic configuration will be the same?

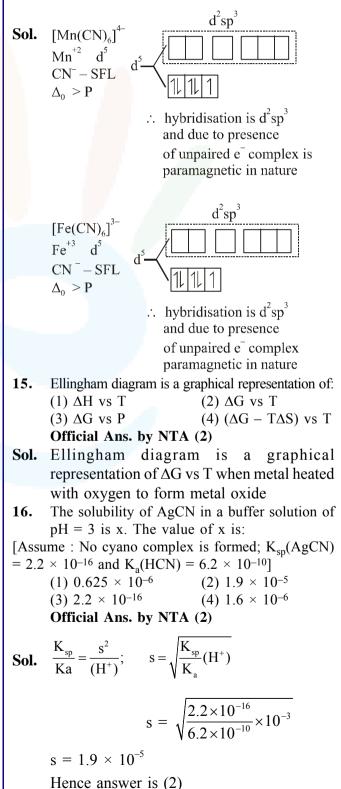
(1) Cr^+ and Mn^{2+}	(2) Ni ²⁺ and Cu ⁺		
(3) Fe^{2+} and Co^+	(4) V^{2+} and Cr^+		
Official Ans. by NTA (1)			

- 12. Which of the glycosidic linkage between galactose and glucose is present in lactose?
 (1) C-1 of galactose and C-4 of glucose
 (2) C-1 of glucose and C-6 of galactose
 (3) C-1 of glucose and C-4 of galactose
 (4) C-1 of galactose and C-6 of glucose

Official Ans. by NTA (1)


In lactose linkage is formed between C_1 of galactose and C_4 of gluocse.

JEE Exam Solution


www.esaral.com

Å

13. Compound(s) which will liberate carbon dioxide with sodium bicarbonate solution is/are:

- 14. The hybridization and magnetic nature of [Mn(CN)₆]⁴⁻ and [Fe(CN)₆]³⁻, respectively are:
 (1) d²sp³ and diamagnetic
 (2) sr³d² and diamagnetic
 - (2) sp³d² and diamagnetic
 (3) d²sp³ and paramagnetic
 - (4) sp^3d^2 and paramagnetic
 - Official Ans. by NTA (3)

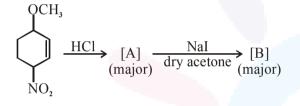
 CO_2 is not librated.

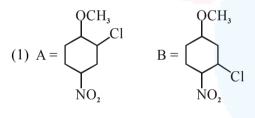
Å

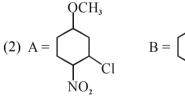
17. In Freundlich adsorption isotherm at moderate

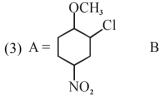
pressure, the extent of adsorption $\left(\frac{x}{m}\right)$ is directly proportional to P^x. The value of x is

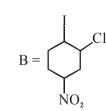
(4) ∞

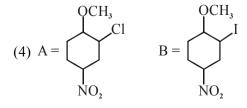

- (1) zero (2) $\frac{1}{n}$
- (3) 1
- Official Ans. by NTA (2)

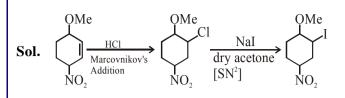

Sol. As per Freundlich adsorption isotherm


$$\left(\frac{x}{m}\right) = KP^{\frac{1}{n}} \to x = \frac{1}{n}$$


Hence answer is (2)


18. Identify A and B in the chemical reaction.





NO.

Official Ans. by NTA (4)

 \Rightarrow Ist reaction marcovnikov's addition of HCl on double bond while 2nd reaction is halide substitution by finkelstein reaction.

- **19.** Which statement is correct ?
 - (1) Synthesis of Buna-S needs nascent oxygen.
 - (2) Neoprene is an addition copolymer used in plastic bucket manufacturing.
 - (3) Buna-S is a synthetic and linear thermosetting polymer.
 - (4) Buna-N is a natural polymer.

Official Ans. by NTA (1)

Sol.
$$\wedge + \rightarrow Ph \xrightarrow{\text{Nascent}} (CH_2 CH_2 - CH_2 - CH_1 - CH_2 - C$$

20. The major product of the following chemical reaction is :

$$(1) H_{3}O^{\dagger}, \Delta$$


$$(2) SOCl_{2} \rightarrow ?$$

$$(3) Pd/BaSO_{4}, H_{2} \rightarrow ?$$

(1) CH₃CH₂CH₃
 (2) CH₃CH₂CH₂OH
 (3) (CH₃CH₂CO)₂O
 (4) CH₃CH₂CHO

Official Ans. by NTA (4)

Sol. Et-C=N
$$\xrightarrow{(i) H_3O^{+/\Delta}}$$
 Et-C-OH $\xrightarrow{(2) SOCl_2}$ Et-C-Cl
 C
Et-C-H $\xleftarrow{(3) Pd/BaSO_4}$
Resonmund's
reduction

JEE Exam Solution

SECTION-B Among the following, the number of halide(s) 1. which is/are inert to hydrolysis is (A) BF_3 (B) $SiCl_4$ (C) PCl₅ (D) SF₆ Official Ans. by NTA (1) **Sol.** SF_6 is inert towards hydrolysis \therefore answere is (1) 2. 1 molal aqueous solution of an electrolyte A_2B_3 is 60% ionised. The boiling point of the solution at 1 atm is K. (Rounded-off to the nearest integer) [Given $K_{\rm b}$ for (H₂O) = 0.52 K kg mol⁻¹] Official Ans. by NTA (375) **Sol.** $\Delta T_{\rm b} = iK_{\rm b}m$ $= (1 + 4\alpha) \times 0.52 \times 1$ $= 3.4 \times 0.52 \times 1 = 1.768$ $T_{\rm h} = 1.768 + 313.15 = 374.918 \text{ K}$ = 375 KHence answer is (375)In basic medium CrO_4^{2-} oxidises $S_2O_3^{2-}$ to form 3. SO_4^{2-} and itself changes into $Cr(OH)_4^-$. The volume of 0.154 M CrO_4^{2-} required to react with 40 mL of 0.25 M $S_2O_3^{2-}$ is mL. (Rounded-off to the nearest integer) Official Ans. by NTA (173) **Sol.** $\operatorname{CrO}_{4}^{+6} + \operatorname{S}_{2}^{2-} \operatorname{O}_{3}^{2-} \to \operatorname{SO}_{4}^{+6} + \operatorname{Cr}(\operatorname{OH})_{4}^{-}$ gm equi. of $CrO_{4}^{2-} = S_{2}O_{3}^{2-}$ $0.154 \times 3 \times v = 0.25 \times 40 \times 8$ v = 173.16 = 173 mlHence answer is (173)4. A car tyre is filled with nitrogen gas at 35 psi at 27°C. It will burst if pressure exceeds 40 psi. The temperature in °C at which the car tyre will burst is . (Rounded-off to the nearest integer) Official Ans. by NTA (70) Sol. $P \propto T$ $\frac{P_2}{P_1} = \frac{T_2}{T_1} \Longrightarrow \frac{40}{35} = \frac{T_2}{300}$ $T_2 = 342.854 \text{ K}$ $= 69.70^{\circ}C \simeq 70^{\circ}C$ Hence answer is (70)

5. The reaction of cyanamide, $NH_2CN_{(s)}$ with oxygen was run in a bomb calorimeter and ΔU was found to be -742.24 kJ mol⁻¹. The magnitude of ΔH_{298} for the reaction

$$\mathrm{NH_2CN}_{(\mathrm{s})} + \, \frac{3}{2}\,\mathrm{O_2(g)} \rightarrow \mathrm{N_{2(g)}} + \,\mathrm{O_2(g)} + \,\mathrm{H_2O_{(l)}}$$

is _____ kJ. (Rounded off to the nearest integer) [Assume ideal gases and $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$]

Official Ans. by NTA (741)

Sol.
$$\Delta H = \Delta U + \Delta n_g RT$$

6.

$$= -742.24 + \frac{1}{2} \times \frac{8.314}{1000} \times 298$$

<mark>= -7</mark>41 kJ/mol

Hence answer is (741)

Using the provided information in the following paper chromatogram :

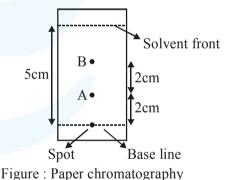
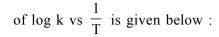
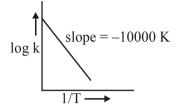


Figure : Paper chromatography for compounds A and B.

the calculate R_f value of A _____ \times 10⁻¹.

Official Ans. by NTA (4)


Sol. $R_f = \frac{\text{Distance travelled by compound}}{\text{Distance travelled by solvent}}$


on chromatogram distance travelled by cmopound is $\rightarrow 2$ cm Distance travelled by solvent = 5 cm

So
$$R_f = \frac{2}{5} = 4 \times 10^{-1} = 0.4$$

Sol. Upto first end point

7. For the reaction, $aA + bB \rightarrow cC + dD$, the plot

The temperature at which the rate constant of the reaction is 10^{-4} s⁻¹ is _____ K.

(Rounded-off to the nearest integer)

[Given : The rate constant of the reaction is 10^{-5} s⁻¹ at 500 K.]

Official Ans. by NTA (526)

Sol.
$$\log K = \log A - \frac{Ea}{2.303RT}$$

$$|\text{Slope}| = \frac{\text{Ea}}{2.303\text{R}} = 10,000$$

$$\log\left(\frac{\mathrm{K}_{2}}{\mathrm{K}_{1}}\right) = \frac{\mathrm{Ea}}{2.303\mathrm{R}}\left(\frac{1}{\mathrm{T}_{1}} - \frac{1}{\mathrm{T}_{2}}\right)$$

$$\log\left(\frac{10^{-4}}{10^{-5}}\right) = 10,000 \left[\frac{1}{500} - \frac{1}{T_2}\right]$$

 $T_2 = 526.31 \simeq 526K$

Hence answer is (526)

8. 0.4 g mixture of NaOH, Na_2CO_3 and some inert

impurities was first titrated with $\frac{N}{10}$ HCl using phenolphthalein as an indicator, 17.5 mL of HCl was required at the end point. After this methyl orange was added and titrated. 1.5 mL of same HCl was required for the next end point. The weight percentage of Na₂CO₃ in the mixture is ______. (Rounded-off to the nearest integer) **Official Ans. by NTA (4)** gm equi. of (NaOH + Na₂CO₃) = HCl $x + y \times 1 = \frac{1}{10} \times 17.5$ x + y = 1.75 ...(1) Upto second end point NaOH + Na₂CO₃ = HCl $x + y \times 2 = \frac{1}{10} \times 19$ x + 2y = 1.9 ...(2) y = 0.15%Na₂CO₃ = $\frac{0.15 \times 10^{-3} \times 106}{0.4} \times 100$ = 3.975% = 4%Hence answer is (4)

Consider the following chemical reaction. $CH = CH \xrightarrow{(1) \text{ Red hot Fe tube, 873 K}} Product$ The number of sp² hybridized carbon atom(s) present in the product is _____. Official Ans. by NTA (7)

Ö

Sol.

9.

3 CH=CH
$$\xrightarrow{\text{Red hot Fe}}$$
 \bigcirc $\xrightarrow{\text{CO + HCl}}$ \bigcirc

In benzaldehyde total number of sp² 'C' are 7. The ionization enthalpy of Na⁺ formation from Na_(g) is 495.8 kJ mol⁻¹, while the electron gain enthalpy of Br is -325.0 kJ mol⁻¹. Given the lattice enthalpy of NaBr is -728.4 kJ mol⁻¹. The energy for the formation of NaBr ionic solid is (-) $- \times 10^{-1}$ kJ mol⁻¹.

Official Ans. by NTA (5576)
Na(g) + Br(g)
$$\longrightarrow$$
 NaBr(s)

Sol. Na(g) + Br(g)
$$\longrightarrow$$
 NaBr(s)
IE₁ Δ Heg₁ $L.E.$
Na⁺(g) + Br⁻(g) $L.E.$
 Δ H_{formation} = IE₁ + Δ Heg₁ + LE
= 495.8 + (-325) + (-728.4)
= -557.6
= -5576 × 10⁻¹ KJ/mol.
Note: The above calculation is not a

Note: The above calculation is not for $\Delta H_{formation}$ but for $\Delta H_{Reaction}$.

But on the basis of given data it is the best ans.