FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021
Held On Thursday 25th February, 2021
TIME: 3:00 PM to 6:00 PM

SECTION-A

1. Which among the following species has unequal bond lengths?
(1) BF_{4}^{-}
(2) XeF_{4}
(3) SF_{4}
(4) SiF_{4}

Official Ans. by NTA (3)
Sol.

Species	Hybridisation	Bond length
BF_{4}^{Θ}	$\mathrm{sp}^{3}($ Tetrahedral)	All bond lengths equal
XeF_{4}	$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (sq. planar)	All bond lengths equal
SF_{4}	$\mathrm{sp}^{3} \mathrm{~d}$ (see - saw)	axial bond length $>$ equitorial bond length
SiF_{4}	sp^{3} (Tetrahedral)	all bond lengths equal

2. Carbylamine test is used to detect the presence of primary amino group in an organic compound. Which of the following compound is formed when this test is performed with aniline?
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Sol. CARBYL amine given by 1° amine

3. Which of the following is correct structure of α-anomer of maltose?
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)

Sol. α-ANOMER OF MALTOSE

maltose is disaccharides of α-Dglucopyranose by $\mathrm{C}_{1}-\mathrm{C}_{4}$ glycosidic linkage

4. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Official Ans. by NTA (3)
Sol.

5. The correct sequence of reagents used in the preparation of 4-bromo-2-nitroethyl benzene from benzene is :
(1) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Br}_{2} / \mathrm{AlCl}_{3}, \mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$, $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
(2) $\mathrm{Br}_{2} / \mathrm{AlBr}_{3}, \mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{Zn} / \mathrm{HCl}$
(3) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{Br}_{2} / \mathrm{AlBr}_{3}, \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{Zn} / \mathrm{HCl}$
(4) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}, \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}, \mathrm{Br}_{2} / \mathrm{AlBr}_{3}$, $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$
Official Ans. by NTA (4)

Sol.

6. Water does not produce CO on reacting with:
(1) CO_{2}
(2) C
(3) CH_{4}
(4) $\mathrm{C}_{3} \mathrm{H}_{8}$

Official Ans. by NTA (1)
Sol. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
$\mathrm{C}+\mathrm{H}_{2} \mathrm{O}($ steam $) \rightarrow \mathrm{CO}+\mathrm{H}_{2}$
$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2} \quad$ both reactions are carried out at $\left.\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CO}+\mathrm{H}_{2}\right\rfloor 1270 \mathrm{~K}$ temp. with Ni catalyst

Thus CO_{2} does not produce CO.
7. The correct order of acid character of the following compounds is :

Options:
(1) III $>$ II $>$ I $>$ IV
(2) IV $>$ III $>$ II $>$ I
(3) I $>$ II $>$ III $>$ IV
(4) II $>$ III $>$ IV $>$ I

Official Ans. by NTA (4)

Sol.

eq.
Reso

$+\mathrm{I} /+\mathrm{H} . \mathrm{C}$
$2>3>4>1$
8.

(A) (B)
(C)

Correct statement about the given chemical reaction is :
(1) $-\ddot{\mathrm{N}} \mathrm{H}_{2}$ group is ortho and para directive, so product (B) is not possible.
(2) Reaction is possible and compound (B) will be the major product.
(3) The reaction will form sulphonated product instead of nitration.
(4) Reaction is possible and compound (A) will be major product.
Official Ans. by NTA (4)

Sol.

Due to formation of anilinium ion by acid base reaction m-product is form as considerable amount.

9. The correct order of bond dissociation enthalpy of halogens is :
(1) $\mathrm{Cl}_{2}>\mathrm{F}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
(2) $\mathrm{I}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
(3) $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
(4) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$

Official Ans. by NTA (3)
Sol. Correct order of bond dissociation enthalpy of halogens is $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$.
Due to inter electronic repulsions $\mathrm{F}-\mathrm{F}$ bond becomes weak and easily broken.
10. Given below are two statements :

Statement I :

The pH of rain water is normally ~ 5.6.

Statement II :

If the pH of rain water drops below 5.6 , it is called acid rain.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but Statement II is false.
(2) Both Statement I and Statement II are false.
(3) Statement I is false but Statement II is true.
(4) Both Statement I and Statement II are true.

Official Ans. by NTA (4)
Sol. Both statements are correct.
Normally rain water has pH of 5.6 due to the presence of H^{+}ions formed by the reaction of rain water with carbon dioxide present in the atmosphere.
11. The major components of German Silver are :
(1) Ge, Cu and Ag
(2) Zn, Ni and Ag
(3) Cu, Zn and Ni
(4) Cu, Zn and Ag

Official Ans. by NTA (3)
Sol. Major components of German silver are:
$\mathrm{Cu}, \quad \mathrm{Zn}, \quad \mathrm{Ni}$
(50\%) (30\%) (20\%)
12. In which of the following order the given complex ions are arranged correctly with respect to their decreasing spin only magnetic moment ?
(i) $\left[\mathrm{FeF}_{6}\right]^{3-}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(iii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(iv) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(1) (i) $>$ (iii) $>$ (iv) $>$ (ii)
(2) (ii) $>$ (iii) $>$ (i) $>$ (iv)
(3) (iii) $>$ (iv) $>$ (ii) $>$ (i)
(4) (ii) $>$ (i) $>$ (iii) $>$ (iv)

Official Ans. by NTA (1)
Sol. Complex
(i) $\left[\mathrm{FeF}_{6}\right]^{3-} \mathrm{Fe}^{3+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}, \mathrm{~F}^{-}$is WFL

$$
\mathrm{n}=5, \quad \mu=\sqrt{35} \text { B.M. }
$$

(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \Rightarrow \mathrm{Co}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{6}, \mathrm{NH}_{3}$ is SFL

(iii)

$$
\mathrm{Ni}^{2+} \frac{1 L 1 L 1 L 111}{3 \mathrm{~d}}
$$

$$
\mathrm{n}=2, \quad \mu=\sqrt{8} \text { B.M. }
$$

(iv) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{Cu}^{2+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{9}, \mathrm{NH}_{3} \rightarrow \mathrm{SFL}$ $\mathrm{Cu}^{2+} \frac{\text { 1L1L1L11. }}{3 \mathrm{~d}}$

$$
\mathrm{n}=1, \quad \mu=\sqrt{3} \text { B.M. }
$$

Thus correct order of spin only magnetic moment is
(i) $>$ (iii) $>$ (iv) $>$ (ii)
13. Which of the following compound is added to the sodium extract before addition of silver nitrate for testing of halogens?
(1) Nitric acid
(2) Ammonia
(3) Hydrochloric acid
(4) Sodium hydroxide

Official Ans. by NTA (1)
Sol. For testing of halogens, Nitric acid is added to the sodium extract because if CN^{-}or S^{2-} are present then they will be oxidised and removed before the test of halides.
14. Which one of the following statements is FALSE for hydrophilic sols ?
(1) Their viscosity is of the order of that of $\mathrm{H}_{2} \mathrm{O}$.
(2) The sols cannot be easily coagulated.
(3) They do not require electrolytes for stability.
(4) These sols are reversible in nature.

Official Ans. by NTA (1)
Sol. \rightarrow Viscosity of hydrophilic sol $>$ viscosity of $\mathrm{H}_{2} \mathrm{O}$
\rightarrow Hydrophilic sol is more stable so can't be easily coagulated.
\rightarrow Hydrophilic sols are reversible sols.
\rightarrow No electrolytes are required to stabilise hydrophilic sol.
15. The solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water is :
[Given: The solubility product of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water $=5.5 \times 10^{-6}$]
(1) 1.77×10^{-6}
(2) 1.11×10^{-6}
(3) 1.11×10^{-2}
(4) 1.77×10^{-2}

Official Ans. by NTA (3)
Sol. $\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{k}_{\mathrm{sp}}=\mathrm{s}(2 \mathrm{~s})^{2} \Rightarrow 5.5 \stackrel{\mathrm{~s}}{\times 10^{-6}=} \mathrm{SS}^{3 \mathrm{~s}}$
$\Rightarrow \mathrm{s}=\left(\frac{5.5}{4}\right)^{\frac{1}{3}} \times 10^{-2}=1.11 \times 10^{-2}$
16. Given below are two statements :

Statement I :

The identification of Ni^{2+} is carried out by dimethyl glyoxime in the presence of $\mathrm{NH}_{4} \mathrm{OH}$.

Statement II :

The dimethyl glyoxime is a bidentate neutral ligand.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is false but Statement II is true.
(2) Both Statement I and Statement II are false.
(3) Statement I is true but Statement II is false.
(4) Both Statement I and Statement II are true.

Official Ans. by NTA (3)
Sol. Neutral dimethyl glyoxime does not act as ligand.
When Ni^{2+} reacts with dimethyl glyoxime in presence of $\mathrm{NH}_{4} \mathrm{OH}$, it produce dimethyl glyoximate then it form rozy red ppt.

$$
\mathrm{Ni}_{\left({ }_{(\text {aq) }}^{2+}\right.}+2 \mathrm{dmg}^{-} \rightarrow \underset{\text { Rosyrcedpt. }}{\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right]}
$$

17. The major product of the following reaction is:

(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
(2)

(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

Official Ans. by NTA (3)
Sol. OXO PROCESS (Hydroformylation) :

18. The method used for the purification of Indium is :
(1) van Arkel method
(2) liquation
(3) zone refining
(4) vapour phase refining

Official Ans. by NTA (3)
Sol. Zone refining is used for the purification of indium.
19. What is ' X ' in the given reaction?

(1)

(2)

(3)

(4)

Official Ans. by NTA (1)

Sol.

20. Given below are two statements :

Statement-I : α and β forms of sulphur can change reversibly between themselves with slow heating or slow cooling.

Statement-II : At room temperature the stable crystalline form of sulphur is monoclinic sulphur.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is false but Statement II is true.
(2) Both Statement I and Statement II are true.
(3) Both Statement I is true but Statement II is false.
(4) Both Statement I and Statement II are false.

Official Ans. by NTA (3)
Sol. α-sulphur $\underset{<369 \mathrm{~K}}{\stackrel{>36 \mathrm{~K}}{\rightleftharpoons}} \beta$-sulphur
at room temperature α-sulphur (Rhombic) is most stable form.

SECTION-B

1. If a compound AB dissociates to the extent of 75% in an aqueous solution, the molality of the solution which shows a 2.5 K rise in the boiling point of the solution is \qquad molal.
(Rounded-off to the nearest integer)
$\left[\mathrm{K}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$
Official Ans. by NTA (3)
Sol. $\alpha=0.75, \mathrm{n}=2$
$\mathrm{i}=1-\alpha+\mathrm{n} \alpha=1-0.75+2 \times 0.75=1.75$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{ik}_{\mathrm{b}} \mathrm{m}$
or, $2.5=1.75 \times 0.52 \times \mathrm{m}$
or, $\mathrm{m}=\frac{2.5}{1.75 \times 0.52}=2.74$
\therefore nearest integer answer will be 3
2. The number of compound/s given below which contain/s -COOH group is \qquad _.
(A) Sulphanilic acid
(B) Picric acid
(C) Aspirin
(D) Ascorbic acid

Official Ans. by NTA (1)

Sol. $\longrightarrow \mathrm{COOH}$ group present in
(A)

Sulphanilic acid
(B)

Picric acid
(C)

Asprine
(D)

Ascorbic acid
3. The rate constant of a reaction increases by five times on increase in temperature from $27^{\circ} \mathrm{C}$ to $52^{\circ} \mathrm{C}$. The value of activation energy in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad (Rounded-off to the nearest integer)
$\left[\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
Official Ans. by NTA (52)
Sol. $\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{~T}_{2}=325 \mathrm{~K}, \mathrm{~K}_{2}=5 \mathrm{~K}$,
$\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
or, $\ln 5=\frac{\mathrm{Ea}}{8.314}\left[\frac{1}{300}-\frac{1}{325}\right]$
or, $\mathrm{Ea}=0.7 \times 2.303 \times 8.314 \times 12 \times 325$

$$
=52271 \mathrm{~J}=52.271 \mathrm{~kJ}
$$

Nearest integer answer will be 52 kJ
4. Among the following, number of metal/s which can be used as electrodes in the photoelectric cell is \qquad (Integer answer)
(A) Li
(B) Na
(C) Rb
(D) Cs

Official Ans. by NTA (1)
Sol. Cs is used as electrodes in the photoelectric cell.
5. The spin only magnetic moment of a divalent ion in aqueous solution (atomic number 29) is
\qquad BM.
Official Ans. by NTA (2)
Sol. $Z=29(\mathrm{Cu})$
Cu^{2+} form $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ complex ion with $\mathrm{H}_{2} \mathrm{O}$. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} \Rightarrow \mathrm{Cu}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{9}, \mathrm{H}_{2} \mathrm{O} \rightarrow$ WFL
number of unpaired $\mathrm{e}^{-}=1$
$\mu=\sqrt{1(1+2)}$ B.M.
$\mu=\sqrt{3} \Rightarrow 1.73$ B.M. \Rightarrow round off ans. $\Rightarrow 2$
6. Electromagnetic radiation of wavelength 663 nm is just sufficient to ionise the atom of metal A. The ionization energy of metal A in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad . (Rounded-off to the nearest integer)
$\left[\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3.00 \times 10^{8} \mathrm{~ms}^{-1}\right.$, $\left.\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right]$
Official Ans. by NTA (180)
Sol. $\mathrm{E}=\frac{\mathrm{hc}}{\lambda} \times \frac{\mathrm{N}_{\mathrm{A}}}{1000}$

$$
\begin{aligned}
& =\frac{6.63 \times 10^{-34} \times 3 \times 10^{8} \times 6.02 \times 10^{23}}{663 \times 10^{-9} \times 1000} \\
& =3 \times 6.02 \times 10 \mathrm{~kJ} \\
& =180.6 \mathrm{~kJ}
\end{aligned}
$$

7. Consider titration of NaOH solution versus 1.25 M oxalic acid solution. At the end point following burette readings were obtained.
(i) 4.5 mL
(ii) 4.5 mL
(iii) 4.4 mL
(iv) 4.4 mL
(v) 4.4 mL

If the volume of oxalic acid taken was 10.0 mL then the molarity of the NaOH solution is
\qquad M. (Rounded-off to the nearest integer)
Official Ans. by NTA (6)
Sol. $\mathrm{V}_{\mathrm{NaOH}}=4.4 \mathrm{ml}$
eq. of $\mathrm{NaOH}=$ eq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
or, $\mathrm{M} \times 4.4 \times 1=1.25 \times 10 \times 2$
or, $M=5.68 \mathrm{M}$
\therefore Nearest integer answer is 6
8. Five moles of an ideal gas at 293 K is expanded isothermally from an initial pressure of 2.1 MPa to 1.3 MPa against at constant external pressure 4.3 MPa. The heat transferred in this process is
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$. (Rounded-off to the nearest integer) [Use $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]

Official Ans. by NTA (15)
Sol. $\mathrm{n}=5, \mathrm{~T}=293 \mathrm{~K}=\mathrm{const}, \Delta \mathrm{U}=0$,
$\mathrm{P}_{1}=2.1 \mathrm{MPa}, \mathrm{P}_{2}=1.3 \mathrm{MPa}$
$\mathrm{P}_{\mathrm{ext}}=4.3 \mathrm{MPa}=$ const.
$\mathrm{W}=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=-\mathrm{P}_{\mathrm{ext}}\left(\frac{\mathrm{nRT}}{\mathrm{P}_{2}}-\frac{\mathrm{nRT}}{\mathrm{P}_{1}}\right)$
or, $\mathrm{W}=-\mathrm{P}_{\mathrm{ext}} \mathrm{nRT}\left(\frac{1}{\mathrm{P}_{2}}-\frac{1}{\mathrm{P}_{1}}\right)$

$$
\begin{aligned}
& =-4.3 \times 5 \times 8.314 \times 293\left(\frac{1}{1.3}-\frac{1}{2.1}\right) \\
& =-4.3 \times 5 \times 8.314 \times 293\left(\frac{2.1-1.3}{1.3 \times 2.1}\right) \\
& =-15347.7 \mathrm{~J}
\end{aligned}
$$

or, $\mathrm{W}=-15.35 \mathrm{~kJ}$
$\Delta \mathrm{U}^{0}=\mathrm{q}+\mathrm{W}$
$\therefore \quad \mathrm{q}=-\mathrm{W}$
or, $\mathrm{q}=15.35 \mathrm{~kJ}$ (for 5 moles)
$\therefore \mathrm{q} /$ mole $=\frac{15.35}{5}=3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
9. Copper reduces NO_{3}^{-}into NO and NO_{2} depending upon the concentration of HNO_{3} in solution. (Assuming fixed $\left[\mathrm{Cu}^{2+}\right]$ and $\mathrm{P}_{\mathrm{NO}}=\mathrm{P}_{\mathrm{NO}_{2}}$), the HNO_{3} concentration at which the thermodynamic tendency for reduction of NO_{3}^{-}into NO and NO_{2} by copper is same is $10^{x} \mathrm{M}$. The value of 2 x is
\qquad . (Rounded-off to the nearest integer)
[Given, $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}^{\mathrm{o}}=0.96 \mathrm{~V}$, $\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{0}=0.79 \mathrm{~V}$ and at 298 K ,

$$
\left.\frac{\mathrm{RT}}{\mathrm{~F}}(2.303)=0.059\right]
$$

Official Ans. by NTA (1)

Sol. If the partial pressure of NO and NO_{2} gas is taken as 1 bar, then Answer is 4 , else the question is bonus.
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}^{\circ}=0.96 \mathrm{~V}
$$

$\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}=0.79}^{\mathrm{o}}
$$

Let $\left[\mathrm{HNO}_{3}\right]=\mathrm{y} \Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{y}$ and $\left[\mathrm{NO}_{3}^{-}\right]=\mathrm{y}$ for same thermodynamic tendency
$\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}=\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}$
or, $\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}^{\mathrm{o}}-\frac{0.059}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y} \times \mathrm{y}^{4}}$

$$
=\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{\mathrm{o}}-\frac{0.059}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y} \times \mathrm{y}^{2}}
$$

or, $0.96-\frac{0.059}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}=0.79-\frac{0.059}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y}^{3}}$
or, $0.17=-\frac{0.059}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y}^{3}}+\frac{0.059}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}$
$0.17=-\frac{0.0591}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y}^{3}}+\frac{0.0591}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}$
$0.17=-\frac{0.0591}{3} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}^{3}}{\mathrm{y}^{9}}+\frac{0.0591}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}$
$0.17=\frac{0.0591}{3}\left[\log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}-\log \frac{\mathrm{P}_{\mathrm{NO}_{2}}^{3}}{\mathrm{y}^{9}}\right]$
$0.17=\frac{0.0591}{3}\left[\log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}} \times \frac{\mathrm{y}^{9}}{\mathrm{P}_{\mathrm{NO}_{2}}^{3}}\right]$
Assume $\mathrm{P}_{\mathrm{NO}} \simeq \mathrm{P}_{\mathrm{NO}_{2}}=1$ bar
$\frac{0.17 \times 3}{0.059}=\log y^{4}=8.644$
$\log y=\frac{8.644}{4}$
$\log y=2.161$
$y=10^{2.16}$
$\therefore 2 \mathrm{x}=2 \times 2.161=4.322$
Answer (4)
10. The unit cell of copper corresponds to a face centered cube of edge length $3.596 \AA$ with one copper atom at each lattice point. The calculated density of copper in $\mathrm{kg} / \mathrm{m}^{3}$ is \qquad . [Molar mass of $\mathrm{Cu}: 63.54 \mathrm{~g}$; Avogadro Number $=6.022$ $\times 10^{23}$]
Official Ans. by NTA (9077)
Sol. FCC,

$$
\begin{aligned}
\mathrm{d} & =\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{~N}_{\mathrm{A}} \times \mathrm{a}^{3}}=\frac{4 \times 63.54}{1000 \times 6.022 \times 10^{23} \times\left(3.596 \times 10^{-10}\right)^{3}} \\
& =9076 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

