

FINAL JEE-MAIN EXAMINATION - AUGUST, 2021

Held On Friday 27th August, 2021 TIME: 9:00 AM to 12:00 PM

SECTION-A

1. In the following sequence of reactions, the final product D is:

$$CH_3$$
- $C=C-H+NaNH_2\rightarrow A$
 CH_3
 Br
 CH_3
 $BH_2/Pd-C$
 CCO_3
 CH_3

(2)
$$CH_3$$
- CH = CH - CH_2 - CH_2 - $COOH$

Official Ans. by NTA (4)

Sol.

$$CH_{3}-C \equiv CH + NaNH_{2} \rightarrow CH_{3}-C \equiv C^{-}Na^{+} + NH_{3}$$

$$OH \\ CH_{3}-C \equiv C-CH_{2}-CH_{2}-CH_{2}-CH_{-}CH_{3}$$

$$(B) \\ H_{2}/Pd-C \\ CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{-}CH_{3}$$

$$(C) OH \\ CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

2. The structure of the starting compound **P** used in the reaction given below is:

Official Ans. by NTA (1)

Sol.

$$\begin{array}{c}
O \\
\hline
NaOCl \\
H_3O^+
\end{array}$$

$$OH + CHCl_3 \\
\text{chloroform}$$
Methyl ketone

NaOCl is used in haloform reaction as reagent.

3. Match List-I with List-II:

List-I	List–II
(Species)	(Number of lone pairs of
	electrons on the central
	atom)
(a) XeF ₂	(i) 0
(b) XeO_2F_2	(ii) 1
(c) XeO_3F_2	(iii) 2
(d) XeF ₄	(iv) 3

Choose the **most appropriate** answer from the options given below:

$$(1)$$
 (a) – (iv) , (b) – (i) , (c) – (ii) , (d) – (iii)

$$(2)$$
 (a) – (iii) , (b) – (iv) , (c) – (ii) , (d) – (i)

$$(3)$$
 (a)– (iii) , (b)– (ii) , (c)– (iv) , (d)– (i)

Official Ans. by NTA (4)

(Number of lone Species pairs of electron son the central atom)

XeF₂

 XeO_2F_2 1

XeO₃F₂ 0

$$O \underset{Xe = O}{\overset{F}{\underset{Xe = O}{|}}}$$

2 XeF₄

- 4. In which one of the following molecules strongest back donation of an electron pair from halide to boron is expected?
 - (1) BCl₃
- (2) BF,
- (3) BBr₃
- (4) BI,

Official Ans. by NTA (2)

Sol. Type of back bonding

> BF, BCl BBr, BI, $(2p\pi-2p\pi) (2p\pi-3p\pi) (2p\pi-4p\pi)$ $(2p\pi-5p\pi)$ Therefore back bonding strength is as follows BCl

- $BF_3 >$
- $BBr_3 >$
- Deuterium resembles hydrogen in properties but : 5.
 - (1) reacts slower than hydrogen
 - (2) reacts vigorously than hydrogen
 - (3) reacts just as hydrogen
 - (4) emits β⁺ particles

Official Ans. by NTA (1)

The bond dissociation energy of D, is greater than Sol. H, and therefore D, reacts slower than H,.

- 6. Which refining process is generally used in the purification of low melting metals?
 - (1) Chromatographic method
 - (2) Liquation
 - (3) Electrolysis
 - (4) Zone refining

Official Ans. by NTA (2)

- Liquation method is used to purify those impure metals which has lower melting point than the melting point of impurities associated.
- ∴ This method is used for metal having low melting point.
- 7. Match items of List-I with those of List-II:

List-I List-II (Property) (Example)

- (a) Diamagnetism
- (i) MnO
- (b) Ferrimagnetism
- (ii) O,
- (c) Paramagnetism
- (iii) NaCl
- (d) Antiferromagnetism (iv) Fe₃O₄

Choose the **most appropriate** answer from the options given below:

- (1) (a)–(ii), (b)–(i), (c)–(iii), (d)–(iv)
- (2) (a)–(i), (b)–(iii), (c)–(iv), (d)–(ii)
- (3) (a)–(iii), (b)–(iv), (c)–(ii), (d)–(i)
- (4) (a)–(iv), (b)–(ii), (c)–(i), (d)–(iii)

Official Ans. by NTA (3)

(A)

8. ОН

(B)

$$\begin{array}{c} CH_{3} \\ CH_{2}CH_{2}NH_{2} \\ N \\ H \\ H_{3}CO \\ \textbf{(D)} \end{array}$$

The correct statement about (A), (B), (C) and (D) is:

- (1) (A), (B) and (C) are narcotic analgesics
- (2) (B), (C) and (D) are tranquillizers
- (3) (A) and (D) are tranquillizers
- (4) (B) and (C) are tranquillizers

Official Ans. by NTA (4)

Sol. B and C are tranquilizers

9. The major product of the following reaction is:

Official Ans. by NTA (3)

Sol.

- **10.** Which of the following is **not** a correct statement for primary aliphatic amines?
 - (1) The intermolecular association in primary amines is less than the intermolecular association in secondary amines.
 - (2) Primary amines on treating with nitrous acid solution form corresponding alcohols except methyl amine.
 - (3) Primary amines are less basic than the secondary amines.
 - (4) Primary amines can be prepared by the Gabriel phthalimide synthesis.

Official Ans. by NTA (1)

- **Sol.** The intermolecular association is more prominent in case of primary amines as compared to secondary, due to the availability of two hydrogen atom.
- 11. Acidic ferric chloride solution on treatment with excess of potassium ferrocyanide gives a Prussian blue coloured colloidal species. It is:
 - (1) $Fe_{4}[Fe(CN)_{6}]_{3}$
- $(2) K_s Fe[Fe(CN)_6],$
- (3) HFe[Fe(CN)₆]
- (4) KFe[Fe(CN),]

Official Ans. by NTA (4)

Sol. $FeCl_3 + K_4 [Fe(CN)_6] (excess)$

K Fe[Fe(CN)₆] Colloidal species

- **12.** The gas 'A' is having very low reactivity reaches to stratosphere. It is non-toxic and non-flammable but dissociated by UV—radiations in stratosphere. The intermediates formed initially from the gas 'A' are:
 - (1) $ClO + \dot{C}F_2Cl$ (2) $ClO + \dot{C}H_3$
 - (3) $\dot{C}H_3 + CF_2\dot{C}l$ (4) $\dot{C}l + CF_2\dot{C}l$

Official Ans. by NTA (4)

- In stratosphere CFCs get broken down by powerful Sol. UV radiations releasing Cl* $CF_2Cl_2(g) \xrightarrow{U.V.} Cl^{\bullet}(g) + {}^{\bullet}CF_2Cl(g)$
- 13. The number of water molecules in gypsum, dead burnt plaster and plaster of paris, respectively are:
 - (1) 2, 0 and 1
- (2) 0.5, 0 and 2
- (3) 5, 0 and 0.5
- (4) 2, 0 and 0.5

Official Ans. by NTA (4)

- Gypsum Sol.
- CaSO₄.2H₂O
- Plaster of Paris
- $CaSO_4$. $\frac{1}{2}H_2O$
- Dead burnt plaster
- CaSO,
- The nature of oxides V₂O₃ and CrO is indexed as 14. 'X' and 'Y' type respectively. The correct set of X and Y is:
 - (1) X = basic
- Y = amphoteric
- (2) X = amphoteric
- Y = basic
- (3) X = acidic
- Y = acidic
- (4) X = basic
- Y = basic

Official Ans. by NTA (4)

- V₂O₃ basic Sol.
 - CrO basic

15. Out of following isomeric forms of uracil, which one is present in RNA?

$$(1) \underset{HO}{\overset{OH}{\longrightarrow}}$$

- (3)

Official Ans. by NTA (4)

Isomeric form of uracil present in RNA Sol.

- 16. Given below are two statements: one is labelled as
 - Assertion (A) and the other is labelled as Reason (R).
 - **Assertion (A):** Synthesis of ethyl phenyl ether may be achieved by Williamson synthesis.

 - Reason (R): Reaction of bromobenzene with sodium ethoxide yields ethyl phenyl ether.
 - In the light of the above statements, choose the most appropriate answer from the options given below:
 - (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)

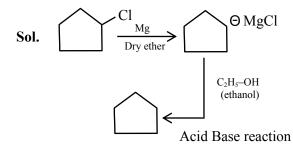
- (2) (A) is correct but (R) is not correct
- (3) (A) is not correct but (R) is correct
- (4) Both (A) and (R) are correct but (R) is NOT the correct explanation of (A)

Official Ans. by NTA (2)

Sol.
$$O^{-}Na^{+}$$
 $O-Et$

Sol. $Ethyl Phenyl ether$

17. In the following sequence of reactions the P is:


$$(1) \qquad \qquad P_{\text{(Major Product)}}$$

$$(2) \qquad O-CH_2CH_3$$

$$(3) \qquad CH_2CH_3$$

$$(4) \qquad (4)$$

Official Ans. by NTA (1)

- 18. The unit of the van der Waals gas equation $parameter 'a' in \left(P + \frac{an^2}{V^2}\right) (V nb) = nRT is :$
 - (1) kg m s⁻²
- (2) dm³ mol⁻¹
- (3) kg m s^{-1}
- (4) atm dm⁶ mol⁻²

Official Ans. by NTA (4)

Sol.
$$\frac{\operatorname{an}^2}{\operatorname{V}^2} = \operatorname{atm} \Rightarrow \operatorname{a} = \operatorname{atm} \times \frac{\operatorname{dm}^6}{\operatorname{mol}^2}$$

- 19. In polythionic acid, $H_2S_xO_6(x = 3 \text{ to } 5)$ the oxidation state(s) of sulphur is/are:
 - (1) + 5 only
- (2) + 6 only
- (3) + 3 and + 5 only
- (4) 0 and + 5 only

Official Ans. by NTA (4)

- **20.** Tyndall effect is more effectively shown by :
 - (1) true solution
- (2) lyophilic colloid
- (3) lyophobic colloid
- (4) suspension

Official Ans. by NTA (3)

Sol. Tyndall effect is observed in lyophobic colloids

SECTION-B

In Carius method for estimation of halogens, 0.2 g of an organic compound gave 0.188 g of AgBr.
 The percentage of bromine in the compound is ______. (Nearest integer)

[Atomic mass :
$$Ag = 108$$
, $Br = 80$]

Official Ans. by NTA (40)

Sol.
$$n_{AgBr} = \frac{0.188g}{188g / mol} = 10^{-3} mol$$

 $\Rightarrow n_{Br} = n_{AgBr} = 0.001 mol$
 $\Rightarrow mass_{Br} = (0.001 \times 80) gm = 0.08 gm$
 $\Rightarrow mass \% = \frac{0.08 \times 100}{0.2} = 40\%$

2. The reaction that occurs in a breath analyser, a device used to determine the alcohol level in a person's blood stream is

$$2K_2Cr_2O_7 + 8H_2SO_4 + 3C_2H_6O \rightarrow 2Cr_2(SO_4)_3 + 3C_7H_4O_7 + 2K_7SO_4 + 11H_7O$$

If the rate of appearance of $Cr_2(SO_4)_3$ is 2.67 mol min⁻¹ at a particular time, the rate of disappearance of C_2H_6O at the same time is _____ mol min⁻¹. (Nearest integer)

Official Ans. by NTA (4)

Sol.
$$\left(\frac{\text{Rate of disappearance of } C_2H_6O}{3}\right)$$

$$= \left(\frac{\text{Rate of appearance of } Cr_2(SO_4)_3}{2}\right)$$

$$\Rightarrow \left(\frac{2.67\text{mol}/\text{min}\times 3}{2}\right) = \text{rate of disappearance of } C_2H_6O.$$

$$\Rightarrow \text{Rate of disappearance of } C_2H_6O = 4.005$$

3. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is equal to $\frac{h^2}{xma_0^2}$. The value of 10x is ______ . (a_0 is radius of Bohr's orbit) (Nearest integer) [Given : $\pi = 3.14$]

Official Ans. by NTA (3155)

Sol.
$$\text{mvr} = \frac{\text{nh}}{2\pi}$$

K.E. $= \frac{\text{n}^2\text{h}^2}{8\pi^2\text{mr}^2} = \frac{4\text{h}^2}{8\pi^2\text{m}(4\text{a}_0)^2}$
 $= \left(\frac{4}{8\pi^2 \times 16}\right) \frac{\text{h}^2}{\text{ma}_0^2}$

$$\Rightarrow$$
 x = 315.507

mol/min

$$\Rightarrow$$
 10x = 3155 (nearest integer)

4. 1 kg of 0.75 molal aqueous solution of sucrose can be cooled up to -4°C before freezing. The amount of ice (in g) that will be separated out is _____. (Nearest integer)

[Given: $K_{s}(H_{s}O) = 1.86 \text{ K kg mol}^{-1}$]

Official Ans. by NTA (518)

Sol. Let mass of water initially present = x gm

$$\Rightarrow$$
 Mass of sucrose = (1000 - x) gm

$$\Rightarrow$$
 moles of sucrose = $\left(\frac{1000 - x}{342}\right)$

$$\Rightarrow 0.75 = \frac{\left(\frac{1000 - x}{342}\right)}{\left(\frac{x}{1000}\right)} \Rightarrow \frac{x}{1000} = \frac{1000 - x}{342 \times 0.75}$$

$$\Rightarrow$$
 256.5 x = 10⁶ – 1000x

$$\Rightarrow$$
 x = 795.86 gm

$$\Rightarrow$$
 moles of sucrose = 0.5969

New mass of $H_2O = a \text{ kg}$

$$\Rightarrow 4 = \frac{0.5969}{a} \times 1.86 \Rightarrow a = 0.2775 \text{ kg}$$

$$\Rightarrow$$
 ice separated = $(795.86 - 277.5) = 518.3 \text{ gm}$

1 mol of an octahedral metal complex with formula MCl₃ · 2L on reaction with excess of AgNO₃ gives
1 mol of AgCl. The denticity of Ligand L is . (Integer answer)

Official Ans. by NTA (2)

Sol. MCl₃.2L octahedral

$$MCl_3.2L \xrightarrow{Ex.AgNO_3} 1 \text{ mole of AgCl}$$

Its means that one Cl⁻ ion present in ionization sphere.

$$\therefore$$
 formula = [MCl,L,]Cl

For octahedral complex coordination no. is 6

- : L act as bidentate ligand
- 6. The number of moles of CuO, that will be utilized in Dumas method for estimation nitrogen in a sample of 57.5g of N, N-dimethylaminopentane is $\times 10^{-2}$. (Nearest integer)

Official Ans. by NTA (1125)

Sol. Moles of N in N,N - dimethylaminopentane

$$=\left(\frac{57.5}{115}\right)=0.5$$
mol

$$\Rightarrow C_7 H_{17} N + \frac{45}{2} CuO \rightarrow 7CO_2 + \frac{17}{2} H_2O + \frac{1}{2} N_2 + \frac{45}{2} Cu$$

$$\frac{n_{\text{CuO}} \, \text{reacted}}{\left(\frac{45}{2}\right)} = \frac{n_{\text{C}_7\text{H}_17\text{N}} \, \text{reacted}}{1}$$

$$\Rightarrow$$
 n_{CuO} reacted = $\left(\frac{45}{2}\right) \times 0.5 = 11.25$

7. The number of f electrons in the ground state electronic configuration of Np (Z = 93) is _____. (Nearest integer)

Official Ans. by NTA (4)

Ans. (18)

- Sol. Np = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² $4f^{14} 5d^{10} 6p^6 7s^2 5f^4 6d^1$ Total no. of 'f' electron = 14 e⁻ + 4e⁻ = 18
- 8. 200 mL of 0.2 M HCl is mixed with 300 mL of 0.1 M NaOH. The molar heat of neutralization of this reaction is -57.1 kJ. The increase in temperature in °C of the system on mixing is $x \times 10^{-2}$. The value of x is ______. (Nearest integer) [Given: Specific heat of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Density of water = 1.00 g cm^{-3}

Density of water = 1.00 g cm^{-3}]

(Assume no volume change on mixing)

Official Ans. by NTA (82)

- **Sol.** \Rightarrow Millimoles of HCl = $200 \times 0.2 = 40$
 - \Rightarrow Millimoles of NaOH = $300 \times 0.1 = 30$
 - $\Rightarrow \text{ Heat released} = \left(\frac{30}{1000} \times 57.1 \times 1000\right) = 1713 \text{ J}$
 - \Rightarrow Mass of solution = 500 ml \times 1 gm/ml = 500 gm

$$\Rightarrow \Delta T = \frac{q}{m \times C} = \frac{1713J}{500g \times 4.18 \frac{J}{g - K}} = 0.8196K$$

$$= 81.96 \times 10^{-2} \text{ K}$$

9. The number of moles of NH₃, that must be added to 2 L of 0.80 M AgNO₃ in order to reduce the concentration of Ag⁺ ions to 5.0×10^{-8} M (K_{formation} for [Ag(NH₃)₂]⁺ = 1.0×10^{8}) is ______. (Nearest integer)

[Assume no volume change on adding NH₃]

Official Ans. by NTA (4)

Sol. Let moles added = a

$$Ag^{+}_{(aq.)} + 2NH_{3(aq.)} \longrightarrow Ag(NH_3)^{+}_{2(aq.)}$$

$$t = 0$$
 0.8 $\left(\frac{a}{2}\right)$

$$t = \infty$$
 5×10^{-8} $\left(\frac{a}{2} - 1.6\right)$ 0.8

$$\frac{0.8}{(5\times10^{-8})\left(\frac{a}{2}-1.6\right)^2}=10^8$$

$$\Rightarrow \frac{a}{2} - 1.6 = 0.4 \Rightarrow a = 4$$

When 10 mL of an aqueous solution of KMnO₄ was titrated in acidic medium, equal volume of 0.1
 M of an aqueous solution of ferrous sulphate was required for complete discharge of colour.
 The strength of KMnO₄ in grams per litre is ______ × 10⁻². (Nearest integer)

[Atomic mass of K = 39, Mn = 55, O = 16]

Official Ans. by NTA (316)

Sol. Let molarity of $KMnO_4 = x$

$$KMnO_4 + FeSO_4 \rightarrow Fe_2(SO_4)_3 + Mn^{2+}$$

$$n = 5$$
 $n = 1$

(Equivalents of KMnO₄ reacted) = (Equivalents of FeSO₄ reacted)

$$\Rightarrow$$
 $(5 \times x \times 10 \text{ ml}) = 1 \times 0.1 \times 10 \text{ ml}$

$$\Rightarrow$$
 x = 0.02 M

Molar mass of KMnO₄ = 158 gm/mol

$$\Rightarrow$$
 Strength = $(x \times 158) = 3.16 \text{ g/}\ell$