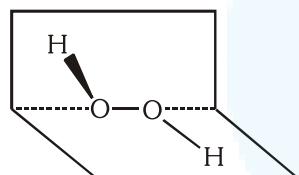


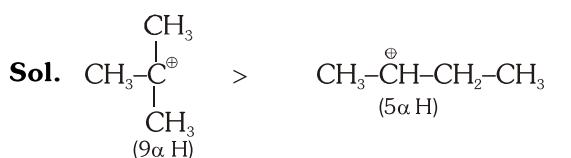
CHEMISTRY TEST PAPER WITH ANSWER & SOLUTIONS
FINAL NEET(UG)-2020 (EXAMINATION)


136. Match the following and identify the correct option.

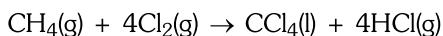
(a) CO(g) + $\text{H}_2(\text{g})$	(i) $\text{Mg}(\text{HCO}_3)_2 + \text{Ca}(\text{HCO}_3)_2$
(b) Temporary hardness of water	(ii) An electron deficient hydride
(c) B_2H_6	(iii) Synthesis gas
(d) H_2O_2	(iv) Non-planar structure

(a)	(b)	(c)	(d)
(1) (i)	(iii)	(ii)	(iv)
(2) (iii)	(i)	(ii)	(iv)
(3) (iii)	(ii)	(i)	(iv)
(4) (iii)	(iv)	(ii)	(i)

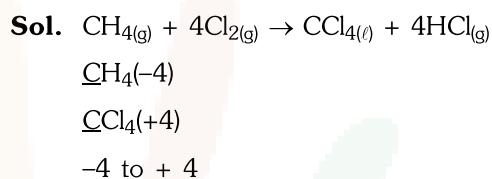
Ans. (2)


Sol. (a) $\text{CO} + \text{H}_2$... (iii) synthesis gas
 (b) Temporary Hardness ... (i) $\text{Mg}(\text{HCO}_3)_2 + \text{Ca}(\text{HCO}_3)_2$
 (c) B_2H_6 ... (ii) Electron deficient ($6e^-$)
 (d) H_2O_2 ... (iv) Non-planar structure

137. A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following ?

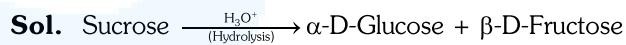

- (1) Hyperconjugation
- (2) $-I$ effect of $-\text{CH}_3$ groups
- (3) $+R$ effect of $-\text{CH}_3$ groups
- (4) $-R$ effect of $-\text{CH}_3$ groups

Ans. (1)


Tert. Butyl Carbocation
 ↓
 More stable due to Hyperconjugation effect.

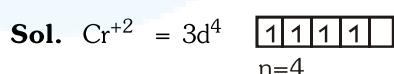
138. What is the change in oxidation number of carbon in the following reaction ?

(1) 0 to -4	(2) +4 to +4
(3) 0 to +4	(4) -4 to +4


Ans. (4)

139. Sucrose on hydrolysis gives :

- (1) α -D-Fructose + β -D-Fructose
- (2) β -D-Glucose + α -D-Fructose
- (3) α -D-Glucose + β -D-Glucose
- (4) α -D-Glucose + β -D-Fructose


Ans. (4)

140. The calculated spin only magnetic moment of Cr^{2+} ion is :

(1) 2.84 BM	(2) 3.87 BM
(3) 4.90 BM	(4) 5.92 BM

Ans. (3)

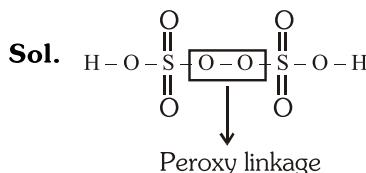
$$\mu = \sqrt{n(n+2)} \text{ B.M.} = \sqrt{4(6)} = \sqrt{24} \text{ B.M.} = 4.90 \text{ B.M.}$$

141. Identify a molecule which does not exist.

- (1) O_2
- (2) He_2
- (3) Li_2
- (4) C_2

Ans. (2)

Sol. $\text{He}_2 = \text{Total electron} = 4$


$$= \sigma_{1\sigma}^2 \sigma_{1\sigma}^{*2} \Rightarrow \text{B.O.} = \frac{1}{2}[\text{Nb} - \text{Na}] = \frac{1}{2}[2 - 2] = 0$$

Bond order = 0, so He_2 does not exist.

142. Which of the following oxoacid of sulphur has $-O-O-$ linkage?

- (1) $H_2S_2O_7$, pyrosulphuric acid
- (2) H_2SO_3 , sulphurous acid
- (3) H_2SO_4 , sulphuric acid
- (4) $H_2S_2O_8$, peroxodisulphuric acid

Ans. (4)

143. Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?

- (1) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
- (2) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
- (3) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
- (4) $F^- < SCN^- < C_2O_4^{2-} < CN^-$

Ans. (2)

Sol. According to spectrochemical series.

144. The number of Faradays(F) required to produce 20 g of calcium from molten $CaCl_2$ (Atomic mass of Ca = 40 g mol^{-1}) is:

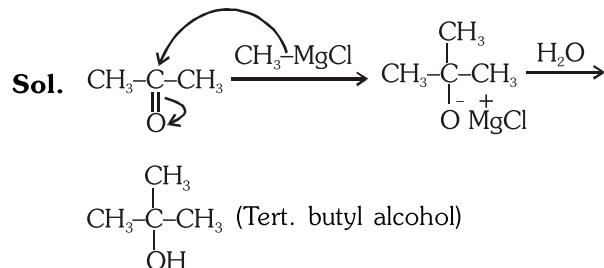
- (1) 4
- (2) 1
- (3) 2
- (4) 3

Ans. (2)

Sol. $Ca^{+2} + 2e^- \rightarrow Ca_{(s)}$

v.f. = 2

As per faraday's 1st law


Charge passed in faraday = g.eq of product

$$= \frac{20}{40} \times 2 = 1F$$

145. Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give:

- (1) Isobutyl alcohol
- (2) Isopropyl alcohol
- (3) Sec. butyl alcohol
- (4) Tert. butyl alcohol

Ans. (4)

146. Which of the following is a cationic detergent?

- (1) Sodium dodecylbenzene sulphonate
- (2) Sodium lauryl sulphate
- (3) Sodium stearate
- (4) Cetyltrimethyl ammonium bromide

Ans. (4)

Sol. $C_{19}H_{42}N^+Br^-$ (cationic detergent)

12th NCERT (16.5.2)

Synthetic detergents

147. Identify the incorrect statement.

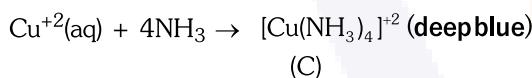
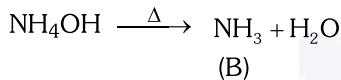
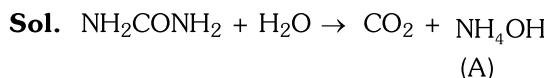
- (1) The oxidation states of chromium in CrO_4^{2-} and $Cr_2O_7^{2-}$ are not the same
- (2) Cr^{2+} (d^4) is a stronger reducing agent than Fe^{2+} (d^6) in water.
- (3) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
- (4) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.

Ans. (1)

Sol. Chromate (CrO_4^{2-}) \Rightarrow oxidation state = + 6
dichromate ($Cr_2O_7^{2-}$) \Rightarrow oxidation state = + 6
oxidation state are same.

148. Which of the following alkane cannot be made in good yield by Wurtz reaction?

- (1) n-Butane
- (2) n-Hexane
- (3) 2,3-Dimethylbutane
- (4) n-Heptane




Ans. (4)

Sol. n-Heptane can not be made in good yield using Wurtz reaction since it is unsymmetrical alkane.

149. Urea reacts with water to form A which will decompose to form B. B when passed through Cu^{2+} (aq), deep blue colour solution C is formed. What is the formula of C from the following ?

(1) $\text{CuCO}_3 \cdot \text{Cu}(\text{OH})_2$ (2) CuSO_4
 (3) $[\text{Cu}(\text{NH}_3)_4]^{2+}$ (4) $\text{Cu}(\text{OH})_2$

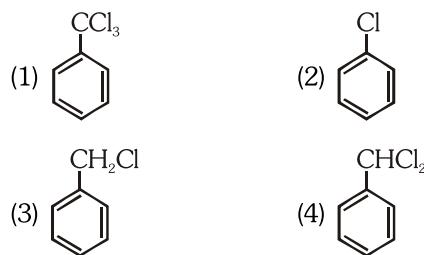
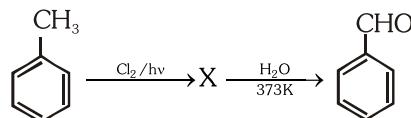
Ans. (3)

150. The freezing point depression constant (K_f) of benzene is $5.12 \text{ K kg mol}^{-1}$. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off upto two decimal places) :

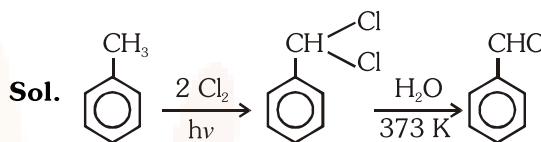
(1) 0.60 K (2) 0.20 K (3) 0.80 K (4) 0.40 K

Ans. (4)

Sol. $\Delta T_f = K_f \times m$
 $= 5.12 \times 0.078$
 $\Delta T_f = 0.40 \text{ K}$



151. The number of protons, neutrons and electrons in ${}^{175}_{71}\text{Lu}$, respectively, are :

(1) 175, 104 and 71 (2) 71, 104 and 71
 (3) 104, 71 and 71 (4) 71, 71 and 104


Ans. (2)

Sol. ${}^{175}_{71}\text{Lu}$
 $p^+ = 71$
 $n^0 = 175 - 71 = 104$
 $e^- = 71$

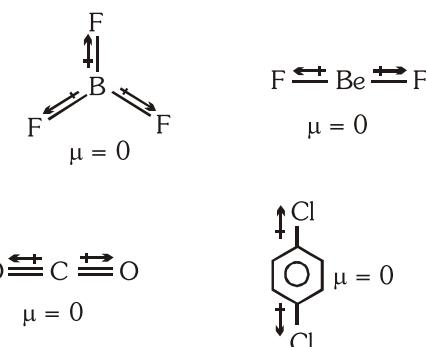
152. Identify compound X in the following sequence of reactions :

Ans. (4)

153. Identify the **correct** statement from the following:

(1) Pig iron can be moulded into a variety of shapes.
 (2) Wrought iron is impure iron with 4% carbon.
 (3) Blister copper has blistered appearance due to evolution of CO_2 .
 (4) Vapour phase refining is carried out for Nickel by Van Arkel method.

Ans. (1)


Sol. Pig iron contains impurities (C, S, Si, P etc) having malleable nature that's why can be moulded.

154. Which of the following set of molecules will have zero dipole moment ?

(1) Boron trifluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
 (2) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
 (3) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
 (4) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene

Ans. (1)

Sol. BF_3 , BeF_2 , CO_2 & 1, 4 - dichloro benzene all are symmetrical structure.

155. Paper chromatography is an example of:

- Column chromatography
- Adsorption chromatography
- Partition chromatography
- Thin layer chromatography

Ans. (3)

Sol. 11th NCERT (12.8.5) chromatography

156. Identify the **incorrect** match :

Name	IUPAC Official Name
(a) Unnilunium	(i) Mendelevium
(b) Unniltrium	(ii) Lawrencium
(c) Unnilhexium	(iii) Seaborgium
(d) Unununniun	(iv) Darmstadtium
(1) (d), (iv)	(2) (a), (i)
(3) (b), (ii)	(4) (c), (iii)

Ans. (1)

Sol. Unununniun ($Z = 111$) it is Rontgentum (Rg) not darmstadtium.

157. Find out the solubility of $\text{Ni}(\text{OH})_2$ in 0.1M NaOH. Given that the ionic product of $\text{Ni}(\text{OH})_2$ is 2×10^{-15} .

- 1×10^8 M
- 2×10^{-13} M
- 2×10^{-8} M
- 1×10^{-13} M

Ans. (2)

Sol. $\alpha = 1$ for NaOH

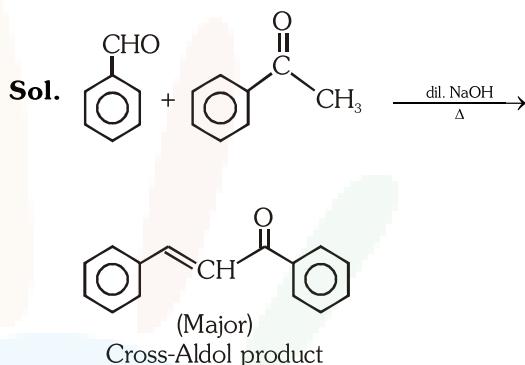
$$\text{Ionic product} = (\text{S}') (0.1 + 2\text{S}')^2$$

$$2 \times 10^{-15} = \text{S}'(0.1)^2$$

$$\text{S}' = 2 \times 10^{-13} \text{ M}$$

158. Which of the following is a natural polymer ?

- poly (Butadiene-acrylonitrile)
- cis-1,4-polyisoprene
- poly (Butadiene-styrene)
- polybutadiene


Ans. (2)

Sol. 12th NCERT (15.2.4)

159. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as :

- Cross Aldol condensation
- Aldol condensation
- Cannizzaro's reaction
- Cross Cannizzaro's reaction

Ans. (1)

160. The mixture which shows positive deviation from Raoult's law is :-

- Chloroethane + Bromoethane
- Ethanol + Acetone
- Benzene + Toluene
- Acetone + Chloroform

Ans. (2)

Sol. Hydrogen bond of ethanol gets weakened by addition of acetone.

161. The rate constant for a first order reaction is $4.606 \times 10^{-3} \text{ s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is :

- 1000 s
- 100 s
- 200 s
- 500 s

Ans. (4)

Sol. $k = 4.606 \times 10^{-3} \text{ s}^{-1}$

$$kt = 2.303 \log_{10} \frac{2}{0.2}$$

$$4.606 \times 10^{-3} \times t = 2.303 \times \log 10$$

$$t = \frac{1000}{2} = 500 \text{ s}$$

162. HCl was passed through a solution of CaCl_2 , MgCl_2 and NaCl . Which of the following compound(s) crystallise(s) ?

- NaCl , MgCl_2 and CaCl_2
- Both MgCl_2 and CaCl_2
- Only NaCl
- Only MgCl_2

Ans. (3)

Sol. When HCl is passed through the mixture Cl^- ion concentration increases. Hence ionic product $[\text{Na}^+] [\text{Cl}^-]$ becomes more than solubility product. So NaCl will precipitate out.

Filtrate $\xrightarrow{\text{HCl gas passed}}$ pure NaCl precipitation (common ion effect)

163. The correct option for free expansion of an ideal gas under adiabatic condition is :

- $q > 0$, $\Delta T > 0$ and $w > 0$
- $q = 0$, $\Delta T = 0$ and $w = 0$
- $q = 0$, $\Delta T < 0$ and $w > 0$
- $q < 0$, $\Delta T = 0$ and $w = 0$

Ans. (2)

Sol. free expansion of ideal gas

$$P_{\text{ext}} = 0$$

$$W_{\text{pv}} = 0$$

$$q = 0 \text{ (adiabatic process)}$$

$$\Delta E = q + w$$

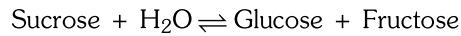
$$\Delta E = 0$$

$$\Delta E = nC_{\text{vm}} \Delta T = 0$$

$$q = 0, \Delta T = 0, w = 0$$

164. Identify the **correct** statements from the following:

- $\text{CO}_2(g)$ is used as refrigerant for ice-cream and frozen food.
- The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
- ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
- CO is colorless and odourless gas.


- (c) and (d) only
- (a) and (b) and (c) only
- (a) and (c) only
- (b) and (c) only

Ans. (1)

Sol. Correct statement are (c) and (d)

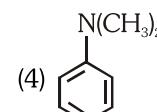
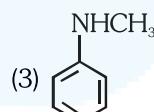
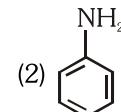
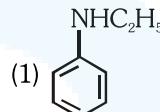
- use of zeolite (3d-silicate)
- CO-neutral, colourless & odourless gas.

165. Hydrolysis of sucrose is given by the following reaction.

If the equilibrium constant (K_c) is 2×10^{13} at 300K, the value of $\Delta_r G^\ominus$ at the same temperature will be:

- $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(4 \times 10^{13})$
- $-8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- $8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$
- $8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} \times \ln(3 \times 10^{13})$

Ans. (2)





$$\text{Sol. } K_c = 2 \times 10^{13}$$

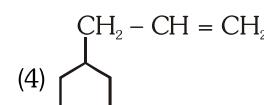
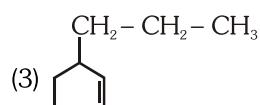
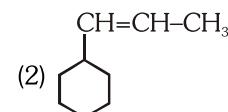
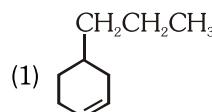
$$T = 300\text{K}$$

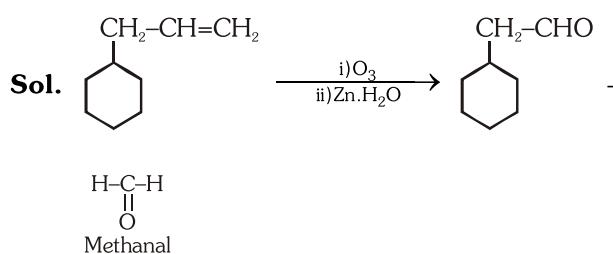
$$\Delta G^\ominus = -RT \ln K_{\text{eq}}$$

$$\Delta G^\ominus = -8.314 \text{ JK}^{-1} \text{ mol}^{-1} \times 300 \text{ K} \times \ln(2 \times 10^{13})$$

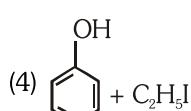
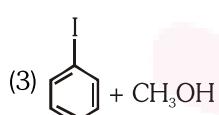
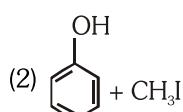
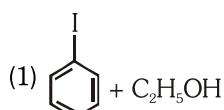
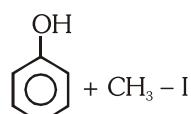
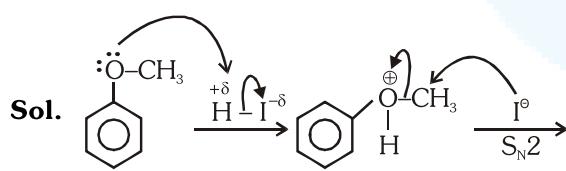
166. Which of the following amine will give the carbylamine test?

Ans. (2)


Sol. Since

is primary amine it gives carbylamine







test (isocyanide test)

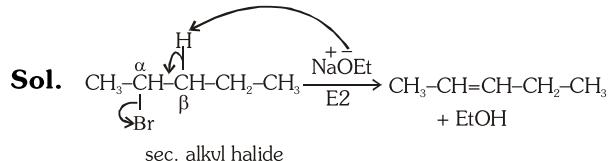
167. An alkene on ozonolysis gives methanal as one of the product. Its structure is :

Ans. (4)

168. Anisole on cleavage with HI gives:

Ans. (2)

169. Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:


- β -Elimination reaction
- Follow Zaitsev rule
- Dehydrohalogenation reaction
- Dehydration reaction

(1) (a), (b), (d)

(2) (a), (b), (c)

(3) (a), (c), (d)

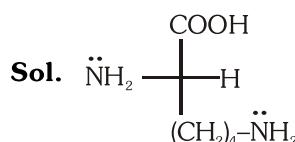
(4) (b), (c), (d)

Ans. (2)

- * This reaction is an example of β -elimination.
- * Hydrogen is removed from β -carbon and halogen from α -carbon, hence, dehydrohalogenation reaction.
- * Generally in E2 reaction Zaitsev alkene is formed as major product (more stable alkene).

170. An increase in the concentration of the reactants of a reaction leads to change in :

- collision frequency
- activation energy
- heat of reaction
- threshold energy


Ans. (1)

Sol. Collision frequency

$Z_{12} \propto$ number of reactant molecules per unit volume.

171. Which of the following is a basic amino acid :

- Lysine
- Serine
- Alanine
- Tyrosine

Ans. (1)

Lysine

Since it contains more number of $-\text{NH}_2$ groups as compared to $-\text{COOH}$ groups hence it is basic amino acid.

172. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responsible for the transmission of nerve signals.

- (1) Potassium
- (2) Iron
- (3) Copper
- (4) Calcium

Ans. (1)

Sol. Biological importance of sodium & potassium.

173. For the reaction $2\text{Cl(g)} \rightarrow \text{Cl}_2\text{(g)}$, the **correct** option is:

- (1) $\Delta_r\text{H} < 0$ and $\Delta_r\text{S} < 0$
- (2) $\Delta_r\text{H} > 0$ and $\Delta_r\text{S} > 0$
- (3) $\Delta_r\text{H} > 0$ and $\Delta_r\text{S} < 0$
- (4) $\Delta_r\text{H} < 0$ and $\Delta_r\text{S} > 0$

Ans. (1)

Sol. $2\text{Cl(g)} \rightarrow \text{Cl}_2\text{(g)}$

$\Delta_r\text{S} < 0$ and $\Delta_r\text{H} < 0$

174. Match the following :

Oxide	Nature
(a) CO	(i) Basic
(b) BaO	(ii) Neutral
(c) Al_2O_3	(iii) Acidic
(d) Cl_2O_7	(iv) Amphoteric

Which of the following is **correct** option?

(a)	(b)	(c)	(d)
(1) (iv)	(iii)	(ii)	(i)
(2) (i)	(ii)	(iii)	(iv)
(3) (ii)	(i)	(iv)	(iii)
(4) (iii)	(iv)	(i)	(ii)

Ans. (3)

Sol. (a) CO (ii) Neutral
 (b) BaO (i) Basic
 (c) Al_2O_3 (iv) Amphoteric
 (d) Cl_2O_7 (iii) Acidic

175. Measuring Zeta potential is useful in determining which property of colloidal solution?

- (1) Size of the colloidal particles
- (2) Viscosity
- (3) Solubility
- (4) Stability of the colloidal particles

Ans. (4)

Sol. Greater the Zeta potential more will be the stability of colloidal particles.

176. A mixture of N_2 and Ar gases in a cylinder contains 7g of N_2 and 8g of Ar. If the total pressure of the mixture of gases in the cylinder is 27 bar, the partial pressure of N_2 is:

[Use atomic masses (in g mol⁻¹) : N = 14, Ar = 40]

- (1) 18 bar
- (2) 9 bar
- (3) 12 bar
- (4) 15 bar

Ans. (4)

Sol. N_2 Ar

$$\begin{array}{ccc} 7 \text{ gram} & & 8 \text{ gram} \\ \text{moles} & \frac{7}{28} = \frac{1}{4} & \frac{8}{40} = \frac{1}{5} \end{array}$$

$$(\text{Partial pressure})_{\text{N}_2} = P_T \times (\text{mole fraction})_{\text{N}_2}$$

$$= 27 \times \frac{1/4}{1/4 + 1/5}$$

$$= 27 \times \frac{1/4}{9/20}$$

$$= 27 \times \frac{20}{4 \times 9}$$

$$= 3 \times 5$$

$$= 15 \text{ bar}$$

177. Which of the following is **not** correct about carbon monoxide?

- (1) It is produced due to incomplete combustion
- (2) It forms carboxyhaemoglobin
- (3) It reduces oxygen carrying ability of blood
- (4) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.

Ans. (4)

Sol. Not correct

Carboxyhaemoglobin (haemoglobin bound to CO) is more stable than oxyhaemoglobin.

178. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is :

$$(1) \frac{4}{\sqrt{2}} \times 288 \text{ pm}$$

$$(2) \frac{\sqrt{3}}{4} \times 288 \text{ pm}$$

$$(3) \frac{\sqrt{2}}{4} \times 288 \text{ pm}$$

$$(4) \frac{4}{\sqrt{3}} \times 288 \text{ pm}$$

Ans. (2)

Sol. $\sqrt{3}a = 4r$ (for bcc lattice)

$$r = \frac{\sqrt{3}}{4} \times 288 \text{ pm}$$

179. Which one of the following has maximum number of atoms?

- (1) 1g of Li(s) [Atomic mass of Li = 7]
- (2) 1g of Ag(s) [Atomic mass of Ag = 108]
- (3) 1g of Mg(s) [Atomic mass of Mg = 24]
- (4) 1g of O₂(g) [Atomic mass of O = 16]

Ans. (1)

Sol. Number of atoms

$$= \frac{w}{\text{molar mass}} \times N_A \times \text{atomicity}$$

$$(1) \frac{1}{7} \times N_A \times 1$$

$$(2) \frac{1}{108} \times N_A \times 1$$

$$(3) \frac{1}{24} \times N_A \times 1$$

$$(4) \frac{1}{32} \times N_A \times 2$$

180. On electrolysis of dil. sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be:

- (1) SO₂ gas
- (2) Hydrogen gas
- (3) Oxygen gas
- (4) H₂S gas

Ans. (3)

Sol. H₂SO₄

At Anode : 2H₂O → O_{2(g)} + 4H⁺_(aq) + 4e⁻
Oxygen gas will liberate at anode