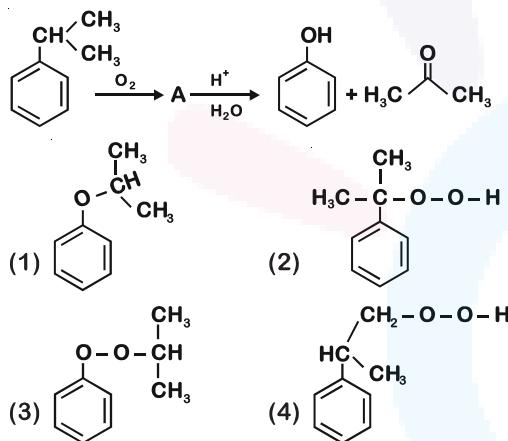
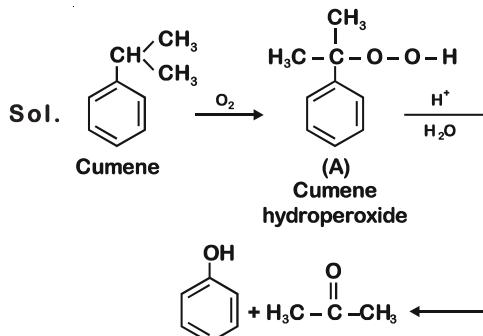


CHEMISTRY TEST PAPER WITH ANSWER & SOLUTIONS
 FINAL NEET(UG)-2019 (EXAMINATION)

46. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is

- 10 σ bonds and 3 π bonds
- 8 σ bonds and 5 π bonds
- 11 σ bonds and 2 π bonds
- 13 σ bonds and no π bonds

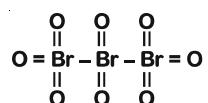

Answer (1)


Number of σ bonds = 10

and number of π bonds = 3

47. The structure of intermediate A in the following reaction, is

Answer (2)



48. The correct structure of tribromooctaoxide is

- $\text{O}=\text{Br}-\text{Br}-\text{Br}=\text{O}$
- $\text{O}=\text{Br}-\text{Br}-\text{Br}-\text{O}^-$
- $-\text{O}^-\text{Br}-\text{Br}-\text{Br}=\text{O}$
- $\text{O}=\text{Br}-\text{Br}-\text{Br}-\text{O}^-$

Answer (1)

Sol. The correct structure is

Tribromooctaoxide

49. 4d, 5p, 5f and 6p orbitals are arranged in the order of decreasing energy. The correct option is

- 5f > 6p > 5p > 4d
- 6p > 5f > 5p > 4d
- 6p > 5f > 4d > 5p
- 5f > 6p > 4d > 5p

Answer (1)

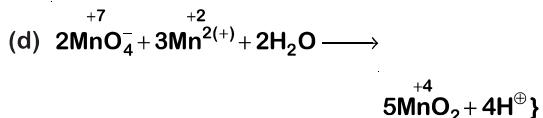
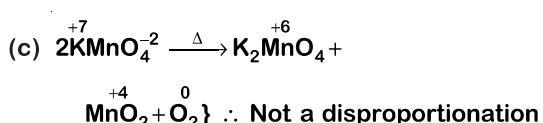
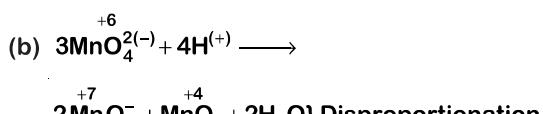
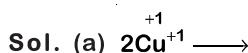
Sol. ($n + l$) values for, 4d = 4 + 2 = 6

$$5p = 5 + 1 = 6$$

$$5f = 5 + 3 = 8$$

$$6p = 6 + 1 = 7$$

∴ Correct order of energy would be
 5f > 6p > 5p > 4d





50. Which of the following reactions are disproportionation reaction?

- $2\text{Cu}^+ \longrightarrow \text{Cu}^{2+} + \text{Cu}^0$
- $3\text{MnO}_4^{2-} + 4\text{H}^+ \longrightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$
- $2\text{KMnO}_4 \xrightarrow{\Delta} \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2$
- $2\text{MnO}_4^- + 3\text{Mn}^{2+} + 2\text{H}_2\text{O} \longrightarrow 5\text{MnO}_2 + 4\text{H}^+$

Select the correct option from the following

- (a) and (b) only
- (a), (b) and (c)
- (a), (c) and (d)
- (a) and (d) only

Answer (1)

Which of the following is the correct option?

- (a) (b) (c) (d)
- (1) (i) (ii) (iii) (iv)
- (2) (ii) (iv) (i) (iii)
- (3) (iii) (iv) (ii) (i)
- (4) (iv) (iii) (ii) (i)

Answer (4)

Sol. (a) Pure nitrogen : Sodium azide or Barium azide

- (b) Haber process : Ammonia
- (c) Contact process : Sulphuric acid
- (d) Deacon's process : Chlorine

59. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?

- (1) O₂ (2) N₂
- (3) C₂ (4) Be₂

Answer (3)

Sol. MO configuration C₂ is:

$$\sigma 1s^2, \sigma^*1s^2, \sigma 2s^2, \sigma^*2s^2, \pi 2p_x^2 = \pi 2p_y^2$$

60. For the second period elements the correct increasing order of first ionisation enthalpy is:

- (1) Li < Be < B < C < N < O < F < Ne
- (2) Li < B < Be < C < O < N < F < Ne
- (3) Li < B < Be < C < N < O < F < Ne
- (4) Li < Be < B < C < O < N < F < Ne

Answer (2)

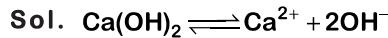
Sol. 'Be' and 'N' have comparatively more stable valence sub-shell than 'B' and 'O'.

∴ Correct order of first ionisation enthalpy is:

$$\text{Li} < \text{B} < \text{Be} < \text{C} < \text{O} < \text{N} < \text{F} < \text{Ne}$$

61. The biodegradable polymer is:

- (1) Nylon-6,6 (2) Nylon-2-Nylon 6
- (3) Nylon-6 (4) Buna-S


Answer (2)

Sol. Nylon-2-Nylon 6

62. pH of a saturated solution of Ca(OH)₂ is 9. The solubility product (K_{sp}) of Ca(OH)₂ is:

- (1) 0.5×10^{-15} (2) 0.25×10^{-10}
- (3) 0.125×10^{-15} (4) 0.5×10^{-10}

Answer (1)

$$\text{pH} = 9 \quad \text{Hence} \quad \text{pOH} = 14 - 9 = 5$$

$$[\text{OH}^-] = 10^{-5} \text{ M}$$

$$\text{Hence } [\text{Ca}^{2+}] = \frac{10^{-5}}{2}$$

$$\text{Thus } K_{\text{sp}} = [\text{Ca}^{2+}][\text{OH}^-]^2$$

$$= \left(\frac{10^{-5}}{2}\right)(10^{-5})^2$$

$$= 0.5 \times 10^{-15}$$

63. If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by:

- (1) $t = 0.693/k$
- (2) $t = 6.909/k$
- (3) $t = 4.606/k$
- (4) $t = 2.303/k$

Answer (3)

Sol. First order rate constant is given as,

$$k = \frac{2.303}{t} \log \frac{[\text{A}_0]}{[\text{A}]_t}$$

99% completed reaction,

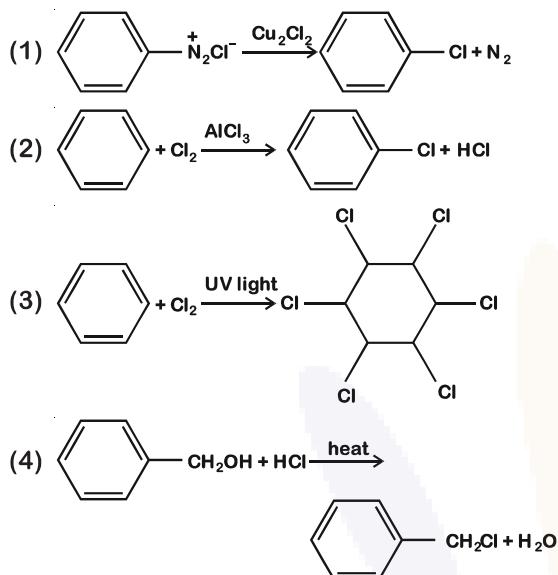
$$k = \frac{2.303}{t} \log \frac{100}{1}$$

$$= \frac{2.303}{t} \log 10^2$$

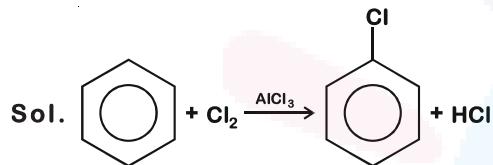
$$k = \frac{2.303}{t} \times 2 \log 10$$

$$t = \frac{2.303}{k} \times 2 = \frac{4.606}{k}$$

$$t = \frac{4.606}{k}$$


64. The non-essential amino acid among the following is:

- (1) Valine
- (2) Leucine
- (3) Alanine
- (4) Lysine


Answer (3)

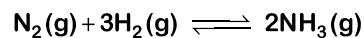
Sol. Alanine

65. Among the following, the reaction that proceeds through an electrophilic substitution, is:

Answer (2)

Generation of electrophile:

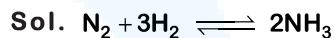
66. The mixture that forms maximum boiling azeotrope is:


- (1) Water + Nitric acid
- (2) Ethanol + Water
- (3) Acetone + Carbon disulphide
- (4) Heptane + Octane

Answer (1)

Sol. Solutions showing negative deviation from Raoult's law form maximum boiling azeotrope

Water and Nitric acid \rightarrow forms maximum boiling azeotrope


67. For the chemical reaction

The correct option is:

- (1) $-\frac{1}{3} \frac{d[\text{H}_2]}{dt} = -\frac{1}{2} \frac{d[\text{NH}_3]}{dt}$
- (2) $-\frac{d[\text{N}_2]}{dt} = 2 \frac{d[\text{NH}_3]}{dt}$
- (3) $-\frac{d[\text{N}_2]}{dt} = \frac{1}{2} \frac{d[\text{NH}_3]}{dt}$
- (4) $3 \frac{d[\text{H}_2]}{dt} = 2 \frac{d[\text{NH}_3]}{dt}$

Answer (3)

Rate of reaction is given as

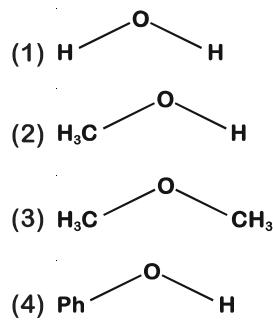
$$-\frac{d[\text{N}_2]}{dt} = -\frac{1}{3} \frac{d[\text{H}_2]}{dt} = +\frac{1}{2} \frac{d[\text{NH}_3]}{dt}$$

68. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :

- (1) 10
- (2) 20
- (3) 30
- (4) 40

Answer (3)

Sol. Haber's process



20 moles need to be produced

2 moles of $\text{NH}_3 \rightarrow 3$ moles of H_2

$$\text{Hence } 20 \text{ moles of } \text{NH}_3 \rightarrow \frac{3 \times 20}{2} = 30 \text{ moles of } \text{H}_2$$

69. The compound that is most difficult to protonate is :

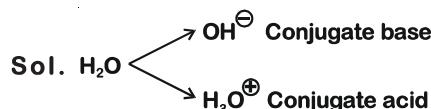
Answer (4)

Sol. Due to involvement of lone pair of electrons in resonance in phenol, it will have positive charge (partial), hence incoming proton will not be able to attack easily.

70. For an ideal solution, the correct option is :

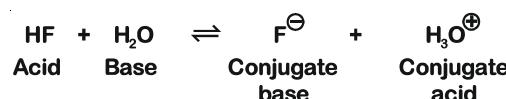
(1) $\Delta_{\text{mix}} S = 0$ at constant T and P
 (2) $\Delta_{\text{mix}} V \neq 0$ at constant T and P
 (3) $\Delta_{\text{mix}} H = 0$ at constant T and P
 (4) $\Delta_{\text{mix}} G = 0$ at constant T and P

Answer (3)


Sol. For ideal solution,

$$\begin{aligned} \Delta_{\text{mix}} H &= 0 \\ \Delta_{\text{mix}} S &> 0 \\ \Delta_{\text{mix}} G &< 0 \\ \Delta_{\text{mix}} V &= 0 \end{aligned}$$

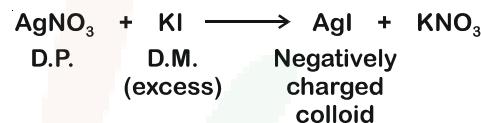
71. Conjugate base for Brönsted acids H_2O and HF are :


(1) OH^- and H_2F^+ , respectively
 (2) H_3O^+ and F^- , respectively
 (3) OH^- and F^- , respectively
 (4) H_3O^+ and H_2F^+ , respectively

Answer (3)

HF on loss of H^+ ion becomes F^- is the conjugate base of HF

Example :

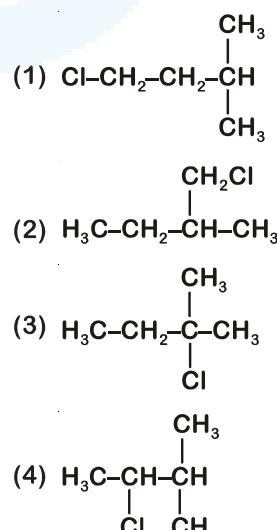


72. Which mixture of the solutions will lead to the formation of negatively charged colloidal $[\text{AgI}]^-$ sol ?

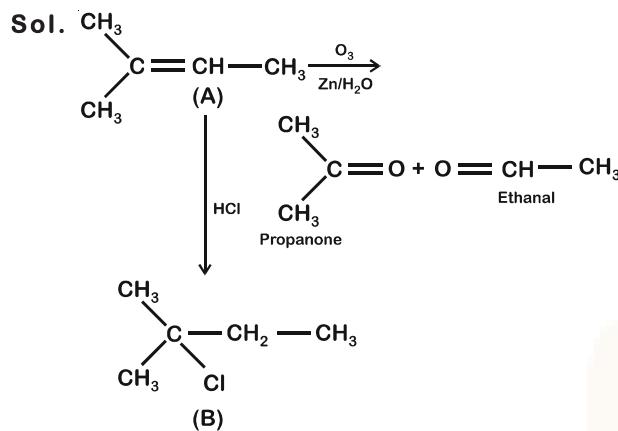
(1) 50 mL of 1 M AgNO_3 + 50 mL of 1.5 M KI
 (2) 50 mL of 1 M AgNO_3 + 50 mL of 2 M KI
 (3) 50 mL of 2 M AgNO_3 + 50 mL of 1.5 M KI
 (4) 50 mL of 0.1 M AgNO_3 + 50 mL of 0.1 M KI

Answer (2)

Sol. Generally charge present on the colloid is due to adsorption of common ion from dispersion medium. Millimole of KI is maximum in option (2) ($50 \times 2 = 100$) so act as solvent and anion I^- is adsorbed by the colloid AgI formed


73. Among the following, the narrow spectrum antibiotic is :

(1) Penicillin G
 (2) Ampicillin
 (3) Amoxycillin
 (4) Chloramphenicol

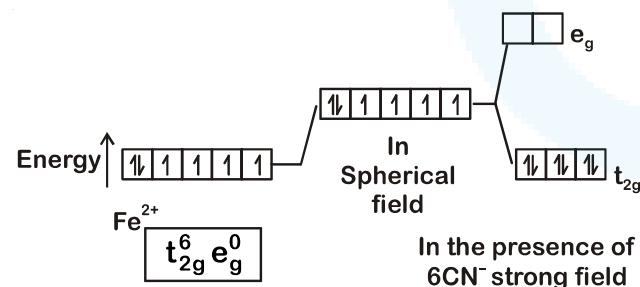

Answer (1)

Sol. Penicillin G

74. An alkene "A" on reaction with O_3 and $\text{Zn}-\text{H}_2\text{O}$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is:

Answer (3)

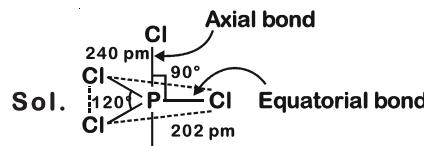
75. What is the correct electronic configuration of the central atom in $\text{K}_4[\text{Fe}(\text{CN})_6]$ based on crystal field theory?

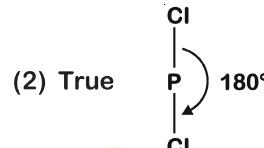

- $t_{2g}^4 e_g^2$
- $t_{2g}^6 e_g^0$
- $e^3 t_2^3$
- $e^4 t_2^2$

Answer (2)

Sol. $\text{K}_4[\text{Fe}(\text{CN})_6]$

Fe ground state: $[\text{Ar}]3\text{d}^64\text{s}^2$


Fe^{2+} : $3\text{d}^64\text{s}^0$


76. Identify the incorrect statement related to PCl_5 from the following:

- Three equatorial P-Cl bonds make an angle of 120° with each other
- Two axial P-Cl bonds make an angle of 180° with each other
- Axial P-Cl bonds are longer than equatorial P-Cl bonds
- PCl_5 molecule is non-reactive

Answer (4)

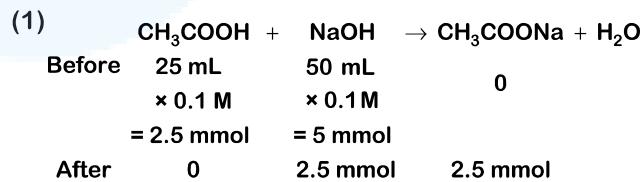
(1) True

(3) True

Axial bond : 240 pm

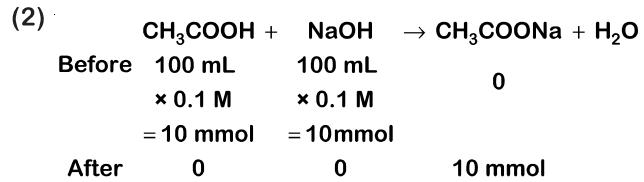
Equatorial bond : 202 pm

(4) False


Due to longer and hence weaker axial bonds, PCl_5 is a reactive molecule.

77. Which will make basic buffer?

- 50 mL of 0.1 M $\text{NaOH} + 25 \text{ mL of } 0.1 \text{ M } \text{CH}_3\text{COOH}$
- 100 mL of 0.1 M $\text{CH}_3\text{COOH} + 100 \text{ mL of } 0.1 \text{ M NaOH}$
- 100 mL of 0.1 M $\text{HCl} + 200 \text{ mL of } 0.1 \text{ M NH}_4\text{OH}$
- 100 mL of 0.1 M $\text{HCl} + 100 \text{ mL of } 0.1 \text{ M NaOH}$


Answer (3)

Sol.

This is basic solution due to NaOH .

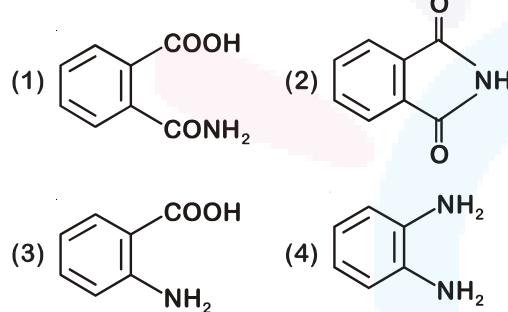
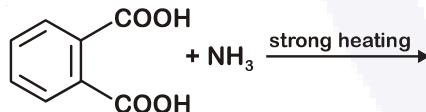
This is not basic buffer.

Hydrolysis of salt takes place.

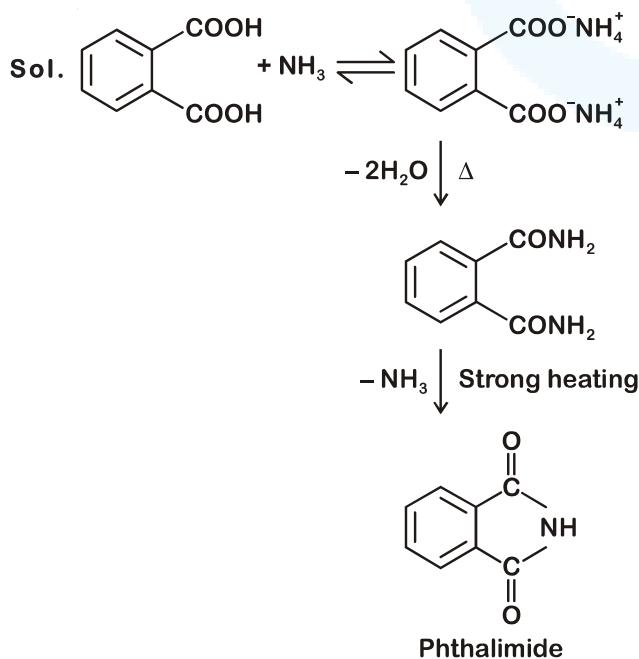
This is not basic buffer.

(3)	HCl	+	NH ₄ OH	→	NH ₄ Cl	+ H ₂ O
Before	100 mL		200 mL		0	
	× 0.1 M		× 0.1 M			
	= 10 mmol		= 20 mmol			

After 0 10 mmol 10 mmol



This is basic buffer

(4)	HCl	+	NaOH	→	NaCl	+ H ₂ O
Before	100 mL		100 mL		0	
	× 0.1 M		× 0.1 M			
	= 10 mmol		= 10 mmol			

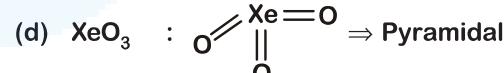
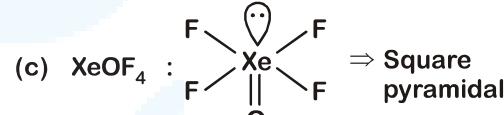
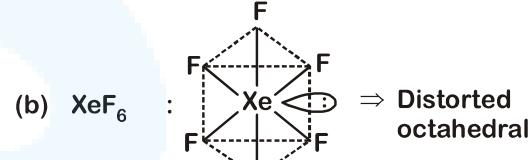
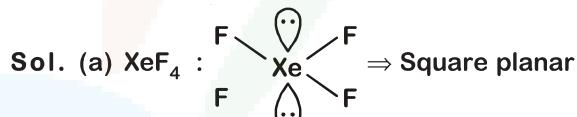

After 0 0 10 mmol

⇒ Neutral solution

78. The major product of the following reaction is:

Answer (2)

79. Match the Xenon compounds in Column-I with its structure in Column-II and assign the correct code:

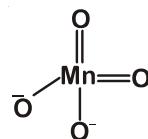




Column-I

(a) XeF₄
 (b) XeF₆
 (c) XeOF₄
 (d) XeO₃

Code:

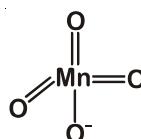
(a) (b) (c) (d)
 (1) (i) (ii) (iii) (iv)
 (2) (ii) (iii) (iv) (i)
 (3) (ii) (iii) (i) (iv)
 (4) (iii) (iv) (i) (ii)

Answer (2)



80. The manganate and permanganate ions are tetrahedral, due to :

(1) The π -bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
 (2) There is no π -bonding
 (3) The π -bonding involves overlap of p-orbitals of oxygen with p-orbitals of manganese
 (4) The π -bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese


Answer (1)

Sol. • Manganate (MnO_4^{2-}) :

$\Rightarrow \pi$ -bonds are of $d\pi-p\pi$ type

• Permanganate (MnO_4^-) :

$\Rightarrow \pi$ -bonds are of $d\pi-p\pi$ type

81. Which of the following species is not stable?

- (1) $[SiF_6]^{2-}$
- (2) $[GeCl_6]^{2-}$
- (3) $[Sn(OH)_6]^{2-}$
- (4) $[SiCl_6]^{2-}$

Answer (4)

Sol. • Due to presence of d-orbital in Si, Ge and Sn they form species like SiF_6^{2-} , $[GeCl_6]^{2-}$, $[Sn(OH)_6]^{2-}$
 • $SiCl_6^{2-}$ does not exist because six large chloride ions cannot be accommodated around Si^{4+} due to limitation of its size.

82. For a cell involving one electron $E_{cell}^\circ = 0.59$ V at 298 K, the equilibrium constant for the cell reaction is :

$$\left[\text{Given that } \frac{2.303 RT}{F} = 0.059 \text{ V at } T = 298 \text{ K} \right]$$

- (1) 1.0×10^2
- (2) 1.0×10^5
- (3) 1.0×10^{10}
- (4) 1.0×10^{30}

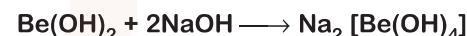
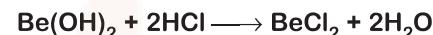
Answer (3)

$$\text{Sol. } E_{cell} = E_{cell}^\circ - \frac{0.059}{n} \log Q \quad \dots(i)$$

(At equilibrium, $Q = K_{eq}$ and $E_{cell} = 0$)

$$0 = E_{cell}^\circ - \frac{0.059}{1} \log K_{eq} \quad (\text{from equation (i)})$$

$$\log K_{eq} = \frac{E_{cell}^\circ}{0.059} = \frac{0.59}{0.059} = 10$$



$$K_{eq} = 10^{10} = 1 \times 10^{10}$$

83. Which of the following is an amphoteric hydroxide?

- (1) $Sr(OH)_2$
- (2) $Ca(OH)_2$
- (3) $Mg(OH)_2$
- (4) $Be(OH)_2$

Answer (4)

Sol. $Be(OH)_2$ amphoteric in nature, since it can react both with acid and base

84. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The correct option about the gas and its compressibility factor (Z) is :

- (1) $Z > 1$ and attractive forces are dominant
- (2) $Z > 1$ and repulsive forces are dominant
- (3) $Z < 1$ and attractive forces are dominant
- (4) $Z < 1$ and repulsive forces are dominant

Answer (3)

$$\text{Sol. } \bullet \text{ Compressibility factor (Z)} = \frac{V_{\text{real}}}{V_{\text{ideal}}}$$

$\because V_{\text{real}} < V_{\text{ideal}}$; Hence $Z < 1$

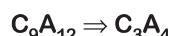
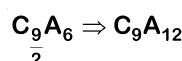
- If $Z < 1$, attractive forces are dominant among gaseous molecules and liquefaction of gas will be easy.

85. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :

- (1) C_2A_3
- (2) C_3A_2
- (3) C_3A_4
- (4) C_4A_3

Answer (3)

Sol. • Anions(A) are in hcp, so number of anions (A) = 6



Cations(C) are in 75% O.V., so number of cations (C)

$$= 6 \times \frac{3}{4}$$

$$= \frac{18}{4}$$

$$= \frac{9}{2}$$

- So formula of compound will be

86. In which case change in entropy is negative?

- Evaporation of water
- Expansion of a gas at constant temperature
- Sublimation of solid to gas
- $2H(g) \rightarrow H_2(g)$

Answer (4)

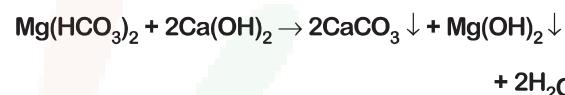
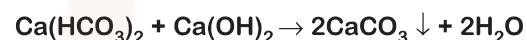
Sol. • $H_2O(l) \rightleftharpoons H_2O(v)$, $\Delta S > 0$

- Expansion of gas at constant temperature, $\Delta S > 0$
- Sublimation of solid to gas, $\Delta S > 0$
- $2H(g) \rightarrow H_2(g)$, $\Delta S < 0$ ($\because \Delta n_g < 0$)

87. Which of the following series of transitions in the spectrum of hydrogen atom fall in visible region?

- Lyman series
- Balmer series
- Paschen series
- Brackett series

Answer (2)



Sol. In H-spectrum, Balmer series transitions fall in visible region.

88. The method used to remove temporary hardness of water is :

- Calgon's method
- Clark's method
- Ion-exchange method
- Synthetic resins method

Answer (2)

Sol. Clark's method is used to remove temporary hardness of water, in which bicarbonates of calcium and magnesium are reacted with slaked lime $Ca(OH)_2$

89. Which one is malachite from the following?

- $CuFeS_2$
- $Cu(OH)_2$
- Fe_3O_4
- $CuCO_3 \cdot Cu(OH)_2$

Answer (4)

Sol. Malachite : $CuCO_3 \cdot Cu(OH)_2$ (Green colour)

90. The correct order of the basic strength of methyl substituted amines in aqueous solution is :

- $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$
- $(CH_3)_3N > CH_3NH_2 > (CH_3)_2NH$
- $(CH_3)_3N > (CH_3)_2NH > CH_3NH_2$
- $CH_3NH_2 > (CH_3)_2NH > (CH_3)_3N$

Answer (1)

Sol. In aqueous solution, electron donating inductive effect, solvation effect (H-bonding) and steric hindrance all together affect basic strength of substituted amines

Basic character :

2° 1° 3°