FINAL JEE-MAIN EXAMINATION - AUGUST, 2021
Held On Tuesday 31st August, 2021
TIME: 9:00 AM to 12:00 NOON

SECTION-A

1. The correct order of reactivity of the given chlorides with acetate in acetic acid is :
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Sol. As it is example of SN^{1}. so carbocation stability \uparrow, reaction rate \uparrow

2. Select the graph that correctly describes the adsorption isotherms at two temperatures T_{1} and T_{2} ($\mathrm{T}_{1}>\mathrm{T}_{2}$) for a gas :
(x - mass of the gas adsorbed ; m - mass of adsorbent ; P - pressure)
(1)

(2)

(3)

(4)

Official Ans. by NTA (4)
Sol. $\quad \frac{\mathrm{x}}{\mathrm{m}} \alpha \mathrm{P}^{1 / \mathrm{n}}\left(0<\frac{1}{\mathrm{n}}<1\right)$
On Increasing temperature $\frac{x}{m}$ decreases.
\because adsorption is generally exothermic

3. The major component/ingredient of Portland Cement is :
(1) tricalcium aluminate
(2) tricalcium silicate
(3) dicalcium aluminate
(4) dicalcium silicate

Official Ans. by NTA (2)
Sol. Major component of portland cement is "Tricalcium silicate ($51 \%, 3 \mathrm{CaO} . \mathrm{SiO}_{2}$)
4. In the structure of the dichromate ion, there is a :
(1) linear symmetrical $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond.
(2) non-linear symmetrical $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond.
(3) linear unsymmetrical $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond.
(4) non-linear unsymmetrical $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond.

Official Ans. by NTA (2)

Sol.

dichromate ion contain non-linear symmetrical $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ Bond
5. Which one of the following compounds contains $\beta-\mathrm{C}_{1}-\mathrm{C}_{4}$ glycosidic linkage ?
(1) Lactose
(2) Sucrose
(3) Maltose
(4) Amylose

Official Ans. by NTA (1)
Sol. In Lactose it is $\beta \mathrm{C}_{1}-\mathrm{C}_{4}$ glycosidic linkage.
In Maltose, Amylose $\alpha \mathrm{C}_{1}-\mathrm{C}_{4}$ glycosidic linkage is present
6. The major products A and B in the following set of reactions are :

(1) $\mathrm{A}=$

(2) $\mathrm{A}=$

(3) $\mathrm{A}=$

(4) $\mathrm{A}=$

Official Ans. by NTA (3)
Sol.

7. Which one of the following lanthanides exhibits +2 oxidation state with diamagnetic nature ? (Given Z for $\mathrm{Nd}=60, \mathrm{Yb}=70, \mathrm{La}=57, \mathrm{Ce}=58$)
(1) Nd
(2) Yb
(3) La
(4) Ce

Official Ans. by NTA (2)

Sol. Ytterbium shows +2 oxidation state with diamagnetic nature

So ans is 2
8. Given below are two statements : one is labelled as

Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Aluminium is extracted from bauxite by the electrolysis of molten mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with cryolite.
Reason (R): The oxidation state of Al in cryolite is +3 .
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) (A) is true but (R) is false
(2) (A) is false but (\mathbf{R}) is true.
(3) Both (A) and (\mathbf{R}) are correct and (\mathbf{R}) is the correct explanation of (A)
(4) Both (A) and (R) are correct but (\mathbf{R}) is not the correct explanation of (A)
Official Ans. by NTA (4)
Sol. (A) Aluminium is reactive metal so Aluminium is extracted by electrolysis of Alumina with molten mixture of Cryolite
(B) Cryolite, $\mathrm{Na}_{3} \mathrm{AlF}_{6}$

Here Al is in +3 O.S.
So Answer is 4
9. The major product formed in the following reaction is :

(1)

(2)

(3)

(4)

Official Ans. by NTA (2)

Sol.

10. Monomer of Novolac is:
(1) 3-Hydroxybutanoic acid
(2) phenol and melamine
(3) o-Hydroxymethylphenol
(4) 1,3-Butadiene and styrene

Official Ans. by NTA (3)
Sol. Monomer of Novolac is

O-hydroxy methyl phenol
11. Given below are two statements :

Statement-I : The process of producing syn-gas is called gasification of coal.
Statement-II : The composition of syn-gas is $\mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2}(1: 1: 1)$
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement-I is false but Statement-II is true
(2) Statement-I is true but Statement-II is false
(3) Both Statement-I and Statement-II are false
(4) Both Statement-I and Statement-II are true Official Ans. by NTA (2)
Sol. The process of producing syn-gas from coal is called gasification of coal.

Syn-gas having composition of $\mathrm{CO} \& \mathrm{H}_{2}$ in $1: 1$
12. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Treatment of bromine water with propene yields 1-bromopropan-2-ol.

Reason (R) : Attack of water on bromonium ion follows Markovnikov rule and results in 1-bromopropan-2-ol.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
(2) (A) is false but (R) is true.
(3) Both (\mathbf{A}) and (\mathbf{R}) are true and (\mathbf{R}) is the correct explanation of (A)
(4) (A) is true but (R) is false

Official Ans. by NTA (3)

Sol.

Its IUPAC name 1-bromopropan-2-ol
A and R are true and (R) is the correct explanation of (A)
13. The denticity of an organic ligand, biuret is :
(1) 2
(2) 4
(3) 3
(4) 6

Official Ans. by NTA (1)
Sol.

Biuret :- Bidentate ligand
The denticity of organic ligand is 2 .
14. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Metallic character decreases and non-metallic character increases on moving from left to right in a period.

Reason (R): It is due to increase in ionisation enthalpy and decrease in electron gain enthalpy, when one moves from left to right in a period.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) (A) is false but (R) is true.
(2) (A) is true but (R) is false
(3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)

Official Ans. by NTA (2)
Sol. From left to right in periodic table :-
Metallic character decreases
Non-metallic character increases
\Rightarrow It is due to increase in ionization enthalpy and increase in electron gain enthalpy.
15. Choose the correct name for compound given below :

(1) (4E)-5-Bromo-hex-4-en-2-yne
(2) (2E)-2-Bromo-hex-4-yn-2-ene
(3) (2E)-2-Bromo-hex-2-en-4-yne
(4) (4E)-5-Bromo-hex-2-en-4-yne

Official Ans. by NTA (3)

Sol.

h.p. \Rightarrow higher priority
1.p. \Rightarrow lower priority

2E-2- bromo hex -2- en-4-yne
16. Which one of the following is the correct PV vs P plot at constant temperature for an ideal gas? (P and V stand for pressure and volume of the gas respectively)
(1)

(2)

(3)

(4)

Official Ans. by NTA (1)

Sol. $\quad \mathrm{PV}=\mathrm{nRT}(\mathrm{n}, \mathrm{T}$ constant)
$\mathrm{PV}=$ constant

17. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R) :

Assertion (A) : A simple distillation can be used to separate a mixture of propanol and propanone.
Reason (R) : Two liquids with a difference of more than $20^{\circ} \mathrm{C}$ in their boiling points can be separated by simple distillations.

In the light of the above statements, choose the most appropriate answer from the options given below:
(1) (A) is false but (R) is true.
(2) Both (A) and (R) are correct but (\mathbf{R}) is not the correct explanation of (A)
(3) (A) is true but (R) is false
(4) Both (A) and (R) are correct and (R) is the correct explanation of (A)

Official Ans. by NTA (4)

Sol. Both assertion \& reason are correct \& (R) is the correct explanation of (A)
18. Which one of the following 0.10 M aqueous solutions will exhibit the largest freezing point depression?
(1) hydrazine
(2) glucose
(3) glycine
(4) KHSO_{4}

Official Ans. by NTA (4)
18. \because Van't Hoff factor is highest for KHSO_{4}
\therefore colligative property $\left(\Delta \mathrm{T}_{\mathrm{f}}\right)$ will be highest for KHSO_{4}
19. BOD values (in ppm) for clean water (A) and polluted water (B) are expected respectively :
(1) $\mathrm{A}>50, \mathrm{~B}<27$
(2) $\mathrm{A}>25, \mathrm{~B}<17$
(3) $\mathrm{A}<5, \mathrm{~B}>17$
(4) $\mathrm{A}>15, \mathrm{~B}>47$

Official Ans. by NTA (3)
Sol. BOD values of clean water (A) is less than 5 ppm
So

$$
\mathrm{A}<5
$$

BOD values of polluted water (B is greater than 17 ppm

So $\quad \mathrm{B}>17$
So Ans. is 3
20. The structure of product C , formed by the following sequence of reactions is :

(1)

(2)

(3)

(4)

Official Ans. by NTA (1)
Sol.

SECTION-B

1. Consider the following cell reaction :

$$
\mathrm{Cd}_{(s)}+\mathrm{Hg}_{2} \mathrm{SO}_{4(s)}+\frac{9}{5} \mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CdSO}_{4} \cdot \frac{9}{5} \mathrm{H}_{2} \mathrm{O}_{(s)}+2 \mathrm{Hg}_{(l)}
$$

The value of $\mathrm{E}_{\text {cell }}^{0}$ is 4.315 V at $25^{\circ} \mathrm{C}$. If $\Delta \mathrm{H}^{\circ}=-825.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the standard entropy change $\Delta \mathrm{S}^{\circ}$ in $\mathrm{J} \mathrm{K}^{-1}$ is \qquad . (Nearest integer)
[Given : Faraday constant $=96487 \mathrm{C} \mathrm{mol}^{-1}$]
Official Ans. by NTA (25)
Sol. $\quad \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$=\frac{\Delta \mathrm{H}^{\circ}+\mathrm{nFE}^{\circ}}{\mathrm{T}}$
$=\frac{\left(-825.2 \times 10^{3}\right)+(2 \times 96487 \times 4.315)}{298}$
$=\frac{-825.2 \times 10^{3}+832.682 \times 10^{3}}{298}$
$=\frac{7.483 \times 10^{3}}{298}=25.11 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
\therefore Nearest integer answer is 25
2. The molarity of the solution prepared by dissolving 6.3 g of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 250 mL of water in $\mathrm{mol} \mathrm{L}^{-1}$ is $\mathrm{x} \times 10^{-2}$. The value of x is
\qquad . (Nearest integer)
[Atomic mass : $\mathrm{H}: 1.0, \mathrm{C}: 12.0, \mathrm{O}: 16.0]$
Official Ans. by NTA (20)
Sol. $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]=\frac{\text { weight } / \mathrm{M}_{\mathrm{w}}}{\mathrm{V}(\mathrm{L})}$
$\Rightarrow \mathrm{x} \times 10^{-2}=\frac{6.3 / 126}{250 / 1000}$
$\mathrm{x}=20$
3. Consider the sulphides $\mathrm{HgS}, \mathrm{PbS}, \mathrm{CuS}, \mathrm{Sb}_{2} \mathrm{~S}_{3}$, $\mathrm{As}_{2} \mathrm{~S}_{3}$ and CdS . Number of these sulphides soluble in $50 \% \mathrm{HNO}_{3}$ is \qquad .

Official Ans. by NTA (4)
Sol. Pbs, $\mathrm{CuS}, \mathrm{As}_{2} \mathrm{~S}_{3}, \mathrm{CdS}$ are soluble in $50 \% \mathrm{HNO}_{3}$ $\mathrm{HgS}, \mathrm{Sb}_{2} \mathrm{~S}_{3}$ are insoluble in $50 \% \mathrm{HNO}_{3}$

So Answer is 4.
4. The total number of reagents from those given below, that can convert nitrobenzene into aniline is
\qquad . (Integer answer)
I. $\mathrm{Sn}-\mathrm{HCl}$
II. $\mathrm{Sn}-\mathrm{NH}_{4} \mathrm{OH}$
III. $\mathrm{Fe}-\mathrm{HCl}$
IV. $\mathrm{Zn}-\mathrm{HCl}$
V. $\mathrm{H}_{2}-\mathrm{Pd}$
VI. $\mathrm{H}_{2}-$ Raney Nickel

Official Ans. by NTA (5)
Sol.

(i) $\mathrm{Sn}+\mathrm{HCl}$
(ii) $\mathrm{Fe}+\mathrm{HCl}$
(iii) $\mathrm{Zn}+\mathrm{HCl}$
(iv) $\mathrm{H}_{2}-\mathrm{Pd}$
(v) H_{2} (Raney Ni)
5. The number of halogen/(s) forming halic (V) acid is \qquad .

Official Ans. by NTA (3)
Sol. The number of halogen forming halic (V) acid
HClO_{3}
HBrO_{3}
HIO_{3}
So Answer is 3
6. For a first order reaction, the ratio of the time for 75% completion of a reaction to the time for 50% completion is \qquad . (Integer answer)
Official Ans. by NTA (2)
Sol. $k=\frac{2.303}{t} \log \frac{a}{a-x}$
$\frac{2.303}{t_{50 \%}} \log \frac{100}{100-50}=\frac{2.303}{t_{75 \%}} \log \frac{100}{100-75}$
$\mathrm{t}_{75^{5} \%}=2 \mathrm{t}_{50 \%}$
7. The number of hydrogen bonded water molecule(s) associated with stoichiometry $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
\qquad .

Official Ans. by NTA (1)

Sol.

One hydrogen bonded $\mathrm{H}_{2} \mathrm{O}$ molecule
8. According to the following figure, the magnitude of the enthalpy change of the reaction
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{M}+\mathrm{N}$ in $\mathrm{kJ} \mathrm{mol}^{-1}$
is equal to \qquad . (Integer answer)

Official Ans. by NTA (45)

Sol.

$\Delta H=\mathrm{E}_{\mathrm{a}_{\mathrm{f}}}-\mathrm{E}_{\mathrm{a}_{\mathrm{b}}}$
$=20-65$
$=-45 \mathrm{KJ} / \mathrm{mol}$
$|\Delta \mathrm{H}|=45 \mathrm{KJ} / \mathrm{mol}$
9. $\operatorname{Ge}(Z=32)$ in its ground state electronic configuration has x completely filled orbitals with $\mathrm{m}_{l}=0$. The value of x is \qquad .
Official Ans. by NTA (7)
Sol.
$1 s^{2} 2 s^{2} \quad 2 p^{6} \quad 3 \mathrm{~s} \quad 3 \mathrm{p}^{6} \quad 4 \mathrm{~s}^{2} \quad 3 \mathrm{~d}^{10} \quad 4 \mathrm{p}^{2}$

$\mathrm{m}=0 \quad 0 \quad-10+1 \quad 0-1 \quad 0+10-2-10+1+2$
(1) (1)
(1)
(1) (1)
(1)
(1)

Completely filled orbital with $\mathrm{m}_{\ell}=0$ are
$=1+1+1+1+1+1+1$
$=7$
So Answer is 7
10. $A_{3} B_{2}$ is a sparingly soluble salt of molar mass $\mathrm{M}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ and solubility $\mathrm{xg} \mathrm{L}^{-1}$. The solubility product satisfies $\mathrm{K}_{\mathrm{sp}}=a\left(\frac{\mathrm{x}}{\mathrm{M}}\right)^{5}$. The value of a is
\qquad . (Integer answer)
Official Ans. by NTA (108)
Sol. $\quad \mathrm{A}_{3} \mathrm{~B}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{~A}_{\text {(aq) }}^{+2}+2 \mathrm{~B}_{\text {(aq) }}^{-3}$

$$
3 \mathrm{~s} \quad 2 \mathrm{~s}
$$

$\mathrm{K}_{\mathrm{sp}}=(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}$
$\mathrm{K}_{\mathrm{SP}}=108 \mathrm{~S}^{5} \& \mathrm{~s}=(\mathrm{X} / \mathrm{M})$
$\mathrm{K}_{\mathrm{SP}}=108\left(\frac{\mathrm{x}}{\mathrm{m}}\right)^{5}$
given $\mathrm{K}_{\mathrm{SP}}=\mathrm{a}\left(\frac{\mathrm{x}}{\mathrm{m}}\right)^{5}$
comparing $\mathrm{a}=108$

