Class XII : Maths Chapter 2 : Inverse Trignometric Functions

Questions and Solutions | Exercise 2.2 - NCERT Books

```
Question 1:
Prove 3\sin^{-1} x = \sin^{-1}(3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]
Answer
To prove: 3\sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in [-\frac{1}{2}, \frac{1}{2}]
Let x = \sin \sigma. men, \sin^{-1} x = \theta.
We have,
R.H.S. = \sin^{-1}(3x - 4x^3) = \sin^{-1}(3\sin\theta - 4\sin^3\theta)
=\sin^{-1}(\sin 3\theta)
= 3θ
= 3 \sin^{-1} x
= L.H.S.
Question 2:
Prove 3\cos^{-1}x = \cos^{-1}(4x^3 - 3x), x \in \frac{1}{2}, 1
Answer
To prove: 3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \left| \frac{1}{2}, 1 \right|
Let x = \cos\theta. Then, \cos^{-1} x = \theta.
We have,
R.H.S. = \cos^{-1}\left(4x^3 - 3x\right)
         =\cos^{-1}(4\cos^3\theta-3\cos\theta)
         =\cos^{-1}(\cos 3\theta)
         =3\theta
          =3\cos^{-1}x
         = L.H.S.
```


Write the function in the simplest form:

$$\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}, x \neq 0$$

Answer

$$\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$$
Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$

$$\therefore \tan^{-1} \frac{\sqrt{1+x^2}-1}{x} = \tan^{-1} \left(\frac{\sqrt{1+\tan^2 \theta}-1}{\tan \theta} \right)$$

$$= \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{1-\cos \theta}{\sin \theta} \right)$$

$$= \tan^{-1} \left(\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} \right)$$

$$= \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$$

Question 4:

Write the function in the simplest form:

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$

Answer

$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), \ x < \pi$$
$$\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(\sqrt{\frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}}\right)$$
$$= \tan^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right) = \tan^{-1}\left(\tan \frac{x}{2}\right)$$
$$= \frac{x}{2}$$

Question 5:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right), \frac{-\pi}{4} < x < \frac{3\pi}{4}$$

Answer

The given function is
$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$

Now,

$$\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right) = \tan^{-1}\left(\frac{1 - \frac{\sin x}{\cos x}}{1 + \frac{\sin x}{\cos x}}\right) = \tan^{-1}\left(\frac{1 - \tan x}{1 + \tan x}\right)$$
$$= \tan^{-1}\left(\frac{1 - \tan x}{1 + 1 \cdot \tan x}\right) = \tan^{-1}\left(\frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \cdot \tan x}\right)$$
$$= \tan^{-1}\left[\tan\left(\frac{\pi}{4} - x\right)\right] = \frac{\pi}{4} - x$$

Class XII MATH

Question 6:

Write the function in the simplest form:

$$\tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}, \ |x| < a$$

Answer

$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
Put $x = a \sin \theta \Rightarrow \frac{x}{a} = \sin \theta \Rightarrow \theta = \sin^{-1} \left(\frac{x}{a}\right)$

$$\therefore \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}}\right)$$

$$= \tan^{-1} \left(\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}}\right) = \tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta}\right)$$

$$= \tan^{-1} (\tan \theta) = \theta = \sin^{-1} \frac{x}{a}$$

Question 7:

Write the function in the simplest form:

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right), \ a > 0; \ \frac{-a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$$

Answer

<mark>∛S</mark>aral

$$\tan^{-1}\left(\frac{3a^{2}x - x^{3}}{a^{3} - 3ax^{2}}\right)$$
Put $x = a \tan \theta \Rightarrow \frac{x}{a} = \tan \theta \Rightarrow \theta = \tan^{-1} \frac{x}{a}$

$$\tan^{-1}\left(\frac{3a^{2}x - x^{3}}{a^{3} - 3ax^{2}}\right) = \tan^{-1}\left(\frac{3a^{2} \cdot a \tan \theta - a^{3} \tan^{3} \theta}{a^{3} - 3a \cdot a^{2} \tan^{2} \theta}\right)$$

$$= \tan^{-1}\left(\frac{3a^{3} \tan \theta - a^{3} \tan^{3} \theta}{a^{3} - 3a^{3} \tan^{2} \theta}\right)$$

$$= \tan^{-1}\left(\frac{3\tan \theta - \tan^{3} \theta}{1 - 3\tan^{2} \theta}\right)$$

$$= \tan^{-1}\left(\tan 3\theta\right)$$

$$= 3\theta$$

Question 8:

Find the value of
$$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right]$$

Let
$$\sin^{-1}\frac{1}{2} = x$$
. Then,
$$\sin x = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right).$$
$$\therefore \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$
$$\therefore \tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6}\right)\right]$$
$$= \tan^{-1}\left[2\cos\frac{\pi}{3}\right] = \tan^{-1}\left[2\times\frac{1}{2}\right]$$
$$= \tan^{-1}1 = \frac{\pi}{4}$$

Class XII MATH

***Saral**

Find the value of $\cot(\tan^{-1}a + \cot^{-1}a)$ Answer $\cot(\tan^{-1}a + \cot^{-1}a)$ $= \cot\left(\frac{\pi}{2}\right) \qquad \qquad \left[\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}\right]$ = 0

Question 9:

Find the value of
$$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right]$$
, $|x| < 1$, $y > 0$ and $xy < 1$
Answer

Let $x = \tan \theta$. Then, $\theta = \tan^{-1} x$.

$$\therefore \sin^{-1} \frac{2x}{1+x^2} = \sin^{-1} \left(\frac{2 \tan \theta}{1+\tan^2 \theta} \right) = \sin^{-1} \left(\sin 2\theta \right) = 2\theta = 2 \tan^{-1} x$$

Let $y = \tan \phi$. Then, $\phi = \tan^{-1} y$.

$$\therefore \cos^{-1} \frac{1 - y^2}{1 + y^2} = \cos^{-1} \left(\frac{1 - \tan^2 \phi}{1 + \tan^2 \phi} \right) = \cos^{-1} \left(\cos 2\phi \right) = 2\phi = 2 \tan^{-1} y$$

$$\therefore \tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1 + x^2} + \cos^{-1} \frac{1 - y^2}{1 + y^2} \right]$$

$$= \tan \frac{1}{2} \left[2 \tan^{-1} x + 2 \tan^{-1} y \right]$$

$$= \tan \left[\tan^{-1} x + \tan^{-1} y \right]$$

$$= \tan \left[\tan^{-1} \left(\frac{x + y}{1 - xy} \right) \right]$$

Class XII MATH

Å

Question 10:

Find the values of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ Answer

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

We know that $\sin^{-1}(\sin x) = x$ if $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin^{-1}x$.

Here, $\frac{2\pi}{3} \notin \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Now, $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)_{\text{can be written as:}}$

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin\frac{\pi}{3}\right) \text{ where } \frac{\pi}{3} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
$$\therefore \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$$

Question 11:

Find the values of $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$ Answer

 $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$

We know that $\tan^{-1}(\tan x) = x$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan^{-1}x$.

Here,
$$\frac{3\pi}{4} \notin \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
.

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$
 can be written as:

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left[-\tan\left(\frac{-3\pi}{4}\right)\right] = \tan^{-1}\left[-\tan\left(\pi-\frac{\pi}{4}\right)\right]$$
$$= \tan^{-1}\left[-\tan\frac{\pi}{4}\right] = \tan^{-1}\left[\tan\left(-\frac{\pi}{4}\right)\right] \text{ where } -\frac{\pi}{4} \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

Class XII MATH

$$\therefore \tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left[\tan\left(\frac{-\pi}{4}\right)\right] = \frac{-\pi}{4}$$

Question 12:

Find the values of $\tan\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right)$ Answer Let $\sin^{-1}\frac{3}{5} = x$. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \sin^2 x} = \frac{4}{5} \Rightarrow \sec x = \frac{5}{4}$. $\therefore \tan x = \sqrt{\sec^2 x - 1} = \sqrt{\frac{25}{16} - 1} = \frac{3}{4}$ $\therefore x = \tan^{-1}\frac{3}{4}$...(i) Now, $\cot^{-1}\frac{3}{2} = \tan^{-1}\frac{2}{3}$...(ii) $\left[\tan^{-1}\frac{1}{x} = \cot^{-1}x\right]$ Hence, $\tan\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right)$ $= \tan\left(\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\right)$ [Using (i) and (ii)] $= \tan\left(\tan^{-1}\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \cdot \frac{2}{3}}\right)$ [$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x + y}{1 - xy}$] $= \tan\left(\tan^{-1}\frac{9 + 8}{12 - 6}\right)$ $= \tan\left(\tan^{-1}\frac{17}{6}\right) = \frac{17}{6}$

Question 13:

Find the values of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to

(A)
$$\frac{7\pi}{6}$$
 (B) $\frac{5\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

Answer

We know that $\cos^{-1}(\cos x) = x$ if $x \in [0, \pi]$, which is the principal value branch of $\cos x$ ^{-1}x .

$$\frac{7\pi}{6} \notin x \in [0, \pi].$$

Here,

Now,

 $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)_{\text{can be written as:}}$

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{-7\pi}{6}\right) = \cos^{-1}\left[\cos\left(2\pi - \frac{7\pi}{6}\right)\right] \quad \left[\cos\left(2\pi + x\right) = \cos x\right]$$
$$= \cos^{-1}\left[\cos\frac{5\pi}{6}\right] \text{ where } \frac{5\pi}{6} \in [0, \pi]$$
$$\therefore \cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

The correct answer is B.

Question 14:

Find the values of $\sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) 1

Answer

Let
$$\sin^{-1}\left(\frac{-1}{2}\right) = x$$
. Then, $\sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\frac{-\pi}{6}\right)$.
We know that the range of the principal value branch of \sin^{-1} is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Class XII MATH

$$\sin^{-1}\left(\frac{-1}{2}\right) = \frac{-\pi}{6}$$
$$\therefore \sin\left(\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

The correct answer is D.

Question 15:

 $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ is equal to (A) π (B) $-\frac{\pi}{2}$ (C)0 (D) $2\sqrt{3}$

Answer

Given that $\tan^{-1} \sqrt{3} - \cot^{-1}(-\sqrt{3})$ We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and \cot^{-1} is $(0, \pi)$.

$$\therefore \tan^{-1} \sqrt{3} - \cot^{-1}(-\sqrt{3}) = \tan^{-1} \left(\tan \frac{\pi}{3} \right) - \cot^{-1} \left(-\cot \frac{\pi}{6} \right) = \frac{\pi}{3} - \cot^{-1} \left[\cot \left(\pi - \frac{\pi}{6} \right) \right] = \frac{\pi}{3} - \cot^{-1} \left(\cot \frac{5\pi}{6} \right) = \frac{\pi}{3} - \frac{5\pi}{6} = \frac{2\pi - 5\pi}{6} = -\frac{3\pi}{6} = -\frac{\pi}{2}$$

Hence, $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3}) = -\frac{\pi}{2}$