Class XII : Maths
Chapter 2 : Inverse Trignometric Functions

Questions and Solutions | Exercise 2.2 - NCERT Books

Question 1:

Prove $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
Answer

To prove: $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
Let $x=\sin \sigma$. ו пеп, $\sin ^{-1} x=\theta$.
We have,
R.H.S. $=\sin ^{-1}\left(3 x-4 x^{3}\right)=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)$
$=\sin ^{-1}(\sin 3 \theta)$
$=3 \theta$
$=3 \sin ^{-1} x$
= L.H.S.

Question 2:

Prove $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$
Answer
To prove: $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$
Let $x=\cos \theta$. Then, $\cos ^{-1} x=\theta$.
We have,

$$
\begin{aligned}
\text { R.H.S. } & =\cos ^{-1}\left(4 x^{3}-3 x\right) \\
& =\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right) \\
& =\cos ^{-1}(\cos 3 \theta) \\
& =3 \theta \\
& =3 \cos ^{-1} x \\
& =\text { L.H.S. }
\end{aligned}
$$

Question 3:

Write the function in the simplest form:

$$
\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0
$$

Answer

$$
\begin{aligned}
& \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x} \\
& \text { Put } x=\tan \theta \Rightarrow \theta=\tan ^{-1} x \\
& \therefore \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right) \\
& =\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x
\end{aligned}
$$

Question 4:

Write the function in the simplest form:
$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), x<\pi$
Answer
$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), x<\pi$
$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\tan ^{-1}\left(\sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right)$
$=\tan ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)=\tan ^{-1}\left(\tan \frac{x}{2}\right)$
$=\frac{x}{2}$

Question 5:

Write the function in the simplest form:
$\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), \frac{-\pi}{4}<x<\frac{3 \pi}{4}$

Answer

The given function is $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)$
Now,
$\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)=\tan ^{-1}\left(\frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}}\right)=\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)$
$=\tan ^{-1}\left(\frac{1-\tan x}{1+1 \cdot \tan x}\right)=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \cdot \tan x}\right)$
$=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}-\mathrm{x}\right)\right]=\frac{\pi}{4}-\mathrm{x}$

Question 6:

Write the function in the simplest form:
$\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<a$
Answer

$$
\begin{aligned}
& \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}} \\
& \text { Put } x=a \sin \theta \Rightarrow \frac{x}{a}=\sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{x}{a}\right) \\
& \therefore \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right)=\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right) \\
& =\tan ^{-1}(\tan \theta)=\theta=\sin ^{-1} \frac{x}{a}
\end{aligned}
$$

Question 7:

Write the function in the simplest form:

$$
\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}} \leq x \leq \frac{a}{\sqrt{3}}
$$

Answer

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right) \\
& \text { Put } x=a \tan \theta \Rightarrow \frac{x}{a}=\tan \theta \Rightarrow \theta=\tan ^{-1} \frac{x}{a} \\
& \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)=\tan ^{-1}\left(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\
& =\tan ^{-1}(\tan 3 \theta) \\
& =3 \theta \\
& =3 \tan ^{-1} \frac{x}{a}
\end{aligned}
$$

Question 8:

Find the value of $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$

Answer

Let $\sin ^{-1} \frac{1}{2}=x$. Then, $\sin x=\frac{1}{2}=\sin \left(\frac{\pi}{6}\right)$.
$\therefore \sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
$\therefore \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]$
$=\tan ^{-1}\left[2 \cos \frac{\pi}{3}\right]=\tan ^{-1}\left[2 \times \frac{1}{2}\right]$
$=\tan ^{-1} 1=\frac{\pi}{4}$

Find the value of $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$
Answer

$$
\begin{aligned}
& \cot \left(\tan ^{-1} a+\cot ^{-1} a\right) \\
& =\cot \left(\frac{\pi}{2}\right) \quad\left[\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right] \\
& =0
\end{aligned}
$$

Question 9:

Find the value of $\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right],|x|<1, y>0$ and $x y<1$

Answer

Let $x=\tan \theta$. Then, $\theta=\tan ^{-1} x$.
$\therefore \sin ^{-1} \frac{2 x}{1+x^{2}}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x$
Let $y=\tan \Phi$. Then, $\Phi=\tan ^{-1} y$.
$\therefore \cos ^{-1} \frac{1-y^{2}}{1+y^{2}}=\cos ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)=\cos ^{-1}(\cos 2 \phi)=2 \phi=2 \tan ^{-1} y$
$\therefore \tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]$
$=\tan \frac{1}{2}\left[2 \tan ^{-1} x+2 \tan ^{-1} y\right]$
$=\tan \left[\tan ^{-1} x+\tan ^{-1} y\right]$
$=\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]$
$=\frac{x+y}{1-x y}$

Question 10:

Find the values of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
Answer
$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
We know that $\sin ^{-1}(\sin x)=x$ if $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin ^{-1} x$.

Here, $\frac{2 \pi}{3} \notin\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Now, $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$ can be written as:
$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left[\sin \left(\pi-\frac{2 \pi}{3}\right)\right]=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)$ where $\frac{\pi}{3} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$\therefore \sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}$

Question 11:

Find the values of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
Answer
$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
We know that $\tan ^{-1}(\tan x)=x$ if $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan ^{-1} x$.

Here, $\frac{3 \pi}{4} \notin\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
Now, $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ can be written as:
$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left[-\tan \left(\frac{-3 \pi}{4}\right)\right]=\tan ^{-1}\left[-\tan \left(\pi-\frac{\pi}{4}\right)\right]$
$=\tan ^{-1}\left[-\tan \frac{\pi}{4}\right]=\tan ^{-1}\left[\tan \left(-\frac{\pi}{4}\right)\right]$ where $-\frac{\pi}{4} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
$\therefore \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left[\tan \left(\frac{-\pi}{4}\right)\right]=\frac{-\pi}{4}$

Question 12:

Find the values of $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$
Answer
Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5} \Rightarrow \cos x=\sqrt{1-\sin ^{2} x}=\frac{4}{5} \Rightarrow \sec x=\frac{5}{4}$.
$\therefore \tan x=\sqrt{\sec ^{2} x-1}=\sqrt{\frac{25}{16}-1}=\frac{3}{4}$
$\therefore x=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, $\cot ^{-1} \frac{3}{2}=\tan ^{-1} \frac{2}{3}$
...(ii) $\quad\left[\tan ^{-1} \frac{1}{x}=\cot ^{-1} x\right]$
Hence, $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$
$=\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$
[Using (i) and (ii)]
$=\tan \left(\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right)$

$$
\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]
$$

$=\tan \left(\tan ^{-1} \frac{9+8}{12-6}\right)$
$=\tan \left(\tan ^{-1} \frac{17}{6}\right)=\frac{17}{6}$

Question 13:

Find the values of $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to
(A) $\frac{7 \pi}{6}$ (B) $\frac{5 \pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

Answer

We know that $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi]$, which is the principal value branch of \cos ${ }^{-1} x$.
Here, $\frac{7 \pi}{6} \notin x \in[0, \pi]$.
Now, $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ can be written as:

$$
\begin{aligned}
& \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \frac{-7 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi-\frac{7 \pi}{6}\right)\right] \quad[\cos (2 \pi+x)=\cos x] \\
& =\cos ^{-1}\left[\cos \frac{5 \pi}{6}\right] \text { where } \frac{5 \pi}{6} \in[0, \pi] \\
& \therefore \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)=\frac{5 \pi}{6}
\end{aligned}
$$

The correct answer is B.

Question 14:

Find the values of $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to
(A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) 1

Answer

Let $\sin ^{-1}\left(\frac{-1}{2}\right)=x$. Then, $\sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\frac{-\pi}{6}\right)$.
We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
$\therefore \quad \sin ^{-1}\left(\frac{-1}{2}\right)=\frac{-\pi}{6}$
$\therefore \sin \left(\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right)=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin \left(\frac{3 \pi}{6}\right)=\sin \left(\frac{\pi}{2}\right)=1$
The correct answer is D.

Question 15:

$\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(A) π
(B) $-\frac{\pi}{2}$
(C) 0
(D) $2 \sqrt{3}$

Answer

Given that $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\cot ^{-1}$ is $(0, \pi)$.

$$
\begin{aligned}
& \therefore \tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) \\
& =\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\cot ^{-1}\left(-\cot \frac{\pi}{6}\right) \\
& =\frac{\pi}{3}-\cot ^{-1}\left[\cot \left(\pi-\frac{\pi}{6}\right)\right] \\
& =\frac{\pi}{3}-\cot ^{-1}\left(\cot \frac{5 \pi}{6}\right) \\
& =\frac{\pi}{3}-\frac{5 \pi}{6}=\frac{2 \pi-5 \pi}{6}=-\frac{3 \pi}{6}=-\frac{\pi}{2}
\end{aligned}
$$

Hence, $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})=-\frac{\pi}{2}$

