Class XII : Maths
Chapter 3 : Matrices

Questions and Solutions | Exercise 3.3 - NCERT Books

Question 1:

Find the transpose of each of the following matrices:
(i) $\left[\begin{array}{c}5 \\ \frac{1}{2} \\ -1\end{array}\right]$ (ii) $\left[\begin{array}{l}1 \\ 2\end{array}\right.$ $\left.\begin{array}{r}-1 \\ 3\end{array}\right]$ (iii) $\left[\begin{array}{cc}-1 & 5 \\ \sqrt{3} & 5 \\ 2 & 3\end{array}\right.$ $\left.\begin{array}{c}6 \\ 6 \\ -1\end{array}\right]$
(i) Let $A=\left[\begin{array}{c}5 \\ \frac{1}{2} \\ -1\end{array}\right]$, then $A^{\mathrm{T}}=\left[\begin{array}{lll}5 & \frac{1}{2} & -1\end{array}\right]$
(ii) Let $A=\left[\begin{array}{lr}1 & -1 \\ 2 & 3\end{array}\right]$, then $A^{\mathrm{T}}=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$
(iii) Let $A=\left[\begin{array}{ccc}-1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1\end{array}\right]$, then $A^{\mathrm{T}}=\left[\begin{array}{ccc}-1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1\end{array}\right]$

Question 2:

If $A=\left[\begin{array}{rrr}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrr}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]$, then verify that
(i) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$

Answer
We have:

$$
A^{\prime}=\left[\begin{array}{rrr}
-1 & 5 & -2 \\
2 & 7 & 1 \\
3 & 9 & 1
\end{array}\right], B^{\prime}=\left[\begin{array}{rrr}
-4 & 1 & 1 \\
1 & 2 & 3 \\
-5 & 0 & 1
\end{array}\right]
$$

(i)
$A+B=\left[\begin{array}{rll}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]+\left[\begin{array}{rrr}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]=\left[\begin{array}{rrr}-5 & 3 & -2 \\ 6 & 9 & 9 \\ -1 & 4 & 2\end{array}\right]$
$\therefore(A+B)^{\prime}=\left[\begin{array}{rrr}-5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2\end{array}\right]$
$A^{\prime}+B^{\prime}=\left[\begin{array}{rrr}-1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{array}\right]+\left[\begin{array}{rrr}-4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}-5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2\end{array}\right]$

Hence, we have verified that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(ii)
$A-B=\left[\begin{array}{rrr}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]-\left[\begin{array}{rrr}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]=\left[\begin{array}{rrr}3 & 1 & 8 \\ 4 & 5 & 9 \\ -3 & -2 & 0\end{array}\right]$
$\therefore(A-B)^{\prime}=\left[\begin{array}{llr}3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0\end{array}\right]$
$A^{\prime}-B^{\prime}=\left[\begin{array}{rrr}-1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{array}\right]-\left[\begin{array}{rrr}-4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{array}\right]=\left[\begin{array}{llr}3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0\end{array}\right]$

Hence, we have verified that $(A-B)^{\prime}=A^{\prime}-B^{\prime}$.

Question 3:

If $A^{\prime}=\left[\begin{array}{rr}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]_{\text {and }} B=\left[\begin{array}{rrr}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$, then verify that
(i) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$

Answer
(i) It is known that $A=\left(A^{\prime}\right)^{\prime}$

Therefore, we have:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right] \\
& B^{\prime}=\left[\begin{array}{rr}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right] \\
& A+B=\left[\begin{array}{lll}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right]+\left[\begin{array}{rr}
-1 & 2 \\
1 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 1 \\
5 & 4 & 4
\end{array}\right] \\
& \therefore(A+B)^{\prime}=\left[\begin{array}{rr}
2 & 5 \\
1 & 4 \\
1 & 4
\end{array}\right] \\
& A^{\prime}+B^{\prime}=\left[\begin{array}{rr}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 5 \\
1 & 4 \\
1 & 4
\end{array}\right]
\end{aligned}
$$

Thus, we have verified that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$.
(ii)

$$
\begin{aligned}
& A-B=\left[\begin{array}{rrr}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right]-\left[\begin{array}{rrr}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{rrr}
4 & -3 & -1 \\
3 & 0 & -2
\end{array}\right] \\
& \therefore(A-B)^{\prime}=\left[\begin{array}{rr}
4 & 3 \\
-3 & 0 \\
-1 & -2
\end{array}\right] \\
& A^{\prime}-B^{\prime}=\left[\begin{array}{rr}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right]-\left[\begin{array}{rr}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{rr}
4 & 3 \\
-3 & 0 \\
-1 & -2
\end{array}\right]
\end{aligned}
$$

Thus, we have verified that $(A-B)^{\prime}=A^{\prime}-B^{\prime}$.

Question 4:

If $A^{\prime}=\left[\begin{array}{rr}-2 & 3 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 0 \\ 1 & 2\end{array}\right]$, then find $(A+2 B)^{\prime}$
Answer
We know that $A=\left(A^{\prime}\right)^{\prime}$
$\therefore A=\left[\begin{array}{rr}-2 & 1 \\ 3 & 2\end{array}\right]$
$\therefore A+2 B=\left[\begin{array}{rr}-2 & 1 \\ 3 & 2\end{array}\right]+2\left[\begin{array}{rr}-1 & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{rr}-2 & 1 \\ 3 & 2\end{array}\right]+\left[\begin{array}{rr}-2 & 0 \\ 2 & 4\end{array}\right]=\left[\begin{array}{rr}-4 & 1 \\ 5 & 6\end{array}\right]$
$\therefore(A+2 B)^{\prime}=\left[\begin{array}{rr}-4 & 5 \\ 1 & 6\end{array}\right]$

Question 5:

For the matrices A and B, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$ where
(i)
$A=\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right], B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$
(ii) $A=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], B=\left[\begin{array}{lll}1 & 5 & 7\end{array}\right]$

Answer
(i)
$A B=\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right]\left[\begin{array}{lll}{[-1} & 2 & \left.1]=\left[\begin{array}{rrr}-1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3\end{array}\right], ~\right] ~\end{array}\right.$
$\therefore(A B)^{\prime}=\left[\begin{array}{rrr}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]$
Now, $A^{\prime}=\left[\begin{array}{lll}1 & -4 & 3\end{array}\right], B^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$
$\therefore B^{\prime} A^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & -4 & 3\end{array}\right]=\left[\begin{array}{rrr}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]$

Hence, we have verified that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
(ii)
$A B=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & 5 & 7\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14\end{array}\right]$
$\therefore(A B)^{\prime}=\left[\begin{array}{llr}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right]$

Now, $A^{\prime}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right], B^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right]$
$\therefore B^{\prime} A^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right]\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right]$

Hence, we have verified that $(A B)^{\prime}=B^{\prime} A^{\prime}$.

Question 6:

If (i) $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then verify that $A^{\prime} A=I$
(ii) $A=\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right]$, then verify that $A^{\prime} A=I$

Answer
(i)

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& \therefore A^{\prime}=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& A^{\prime} A=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{ll}
(\cos \alpha)(\cos \alpha)+(-\sin \alpha)(-\sin \alpha) & (\cos \alpha)(\sin \alpha)+(-\sin \alpha)(\cos \alpha) \\
(\sin \alpha)(\cos \alpha)+(\cos \alpha)(-\sin \alpha) & (\sin \alpha)(\sin \alpha)+(\cos \alpha)(\cos \alpha)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos { }^{2} \alpha+\sin ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

Hence, we have verified that $A^{\prime} A=I$.
(ii)
$A=\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right]$
$\therefore A^{\prime}=\left[\begin{array}{rr}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]$
$A^{\prime} A=\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{lr}
\sin \alpha & -\cos \alpha \\
\cos \alpha & \sin \alpha
\end{array}\right]\left[\begin{array}{cc}
\sin \alpha & \cos \alpha \\
-\cos \alpha & \sin \alpha
\end{array}\right]} \\
& =\left[\begin{array}{ll}
(\sin \alpha)(\sin \alpha)+(-\cos \alpha)(-\cos \alpha) & (\sin \alpha)(\cos \alpha)+(-\cos \alpha)(\sin \alpha) \\
(\cos \alpha)(\sin \alpha)+(\sin \alpha)(-\cos \alpha) & (\cos \alpha)(\cos \alpha)+(\sin \alpha)(\sin \alpha)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\sin ^{2} \alpha+\cos ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \cos ^{2} \alpha+\sin ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

Hence, we have verified that $A^{\prime} A=I$.

Question 7:

(i) Show that the matrix $A=\left[\begin{array}{ccc}1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3\end{array}\right]_{\text {is a symmetric matrix }}$
(ii) Show that the matrix $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]_{\text {is a skew symmetric matrix }}$

Answer
(i) We have:

$$
A^{\prime}=\left[\begin{array}{ccc}
1 & -1 & 5 \\
-1 & 2 & 1 \\
5 & 1 & 3
\end{array}\right]=A
$$

$\therefore A^{\prime}=A$
Hence, A is a symmetric matrix.
(ii) We have:
$A^{\prime}=\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right]=-\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]=-A$
$\therefore A^{\prime}=-A$
Hence, A is a skew-symmetric matrix.

Question 8:

For the matrix $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$, verify that
(i) $\left(A+A^{\prime}\right)$ is a symmetric matrix
(ii) $\left(A-A^{\prime}\right)$ is a skew symmetric matrix

Answer

$$
\begin{aligned}
& A^{\prime}=\left[\begin{array}{ll}
1 & 6 \\
5 & 7
\end{array}\right] \\
& \text { (i) } A+A^{\prime}=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right]+\left[\begin{array}{ll}
1 & 6 \\
5 & 7
\end{array}\right]=\left[\begin{array}{ll}
2 & 11 \\
11 & 14
\end{array}\right]
\end{aligned}
$$

$$
\therefore\left(A+A^{\prime}\right)^{\prime}=\left[\begin{array}{ll}
2 & 11 \\
11 & 14
\end{array}\right]=A+A^{\prime}
$$

Hence, $\left(A+A^{\prime}\right)$ is a symmetric matrix.
(ii) $A-A^{\prime}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]-\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
$\left(A-A^{\prime}\right)^{\prime}=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]=-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=-\left(A-A^{\prime}\right)$
Hence, $\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.

Question 9:

Find $\frac{1}{2}\left(A+A^{\prime}\right)$ and $\frac{1}{2}\left(A-A^{\prime}\right)$, when $A=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$
Answer
The given matrix is $A=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$
$\therefore A^{\prime}=\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right]$
$A+A^{\prime}=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]+\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\therefore \frac{1}{2}\left(A+A^{\prime}\right)=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Now, $A-A^{\prime}=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]-\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 2 a & 2 b \\ -2 a & 0 & 2 c \\ -2 b & -2 c & 0\end{array}\right]$
$\therefore \frac{1}{2}\left(A-A^{\prime}\right)=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$

Question 10:

Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
(i) $\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]$
(ii) $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
(iii) $\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$
(iv) $\left[\begin{array}{rr}1 & 5 \\ -1 & 2\end{array}\right]$

Answer
(i)

Let $A=\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]$, then $A^{\prime}=\left[\begin{array}{rr}3 & 1 \\ 5 & -1\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]+\left[\begin{array}{rr}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{rr}6 & 6 \\ 6 & -2\end{array}\right]$

Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{rr}6 & 6 \\ 6 & -2\end{array}\right]=\left[\begin{array}{rr}3 & 3 \\ 3 & -1\end{array}\right]$
Now, $P^{\prime}=\left[\begin{array}{rr}3 & 3 \\ 3 & -1\end{array}\right]=P$
Thus, $\quad P=\frac{1}{2}\left(A+A^{\prime}\right)$ is a symmetric matrix.

Now, $A-A^{\prime}=\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]-\left[\begin{array}{rr}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{rr}0 & 4 \\ -4 & 0\end{array}\right]$

Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{rr}0 & 4 \\ -4 & 0\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right]$

Now, $Q^{\prime}=\left[\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing A as the sum of P and Q :
$P+Q=\left[\begin{array}{rr}3 & 3 \\ 3 & -1\end{array}\right]+\left[\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right]=\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]=A$
(ii)

Let $A=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$, then $A^{\prime}=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]+\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=\left[\begin{array}{rrr}12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6\end{array}\right]$

Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{rrr}12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6\end{array}\right]=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

Now, $P^{\prime}=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=P$
Thus, $P=\frac{1}{2}\left(A+A^{\prime}\right)$ is a symmetric matrix.

Now, $A-A^{\prime}=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]+\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Now, $Q^{\prime}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing A as the sum of P and Q :
$P+Q=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=A$
(iii)

Let $A=\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$, then $A^{\prime}=\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]+\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4\end{array}\right]$

Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{rrr}6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4\end{array}\right]=\left[\begin{array}{rrr}3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{array}\right]$

Now, $P^{\prime}=\left[\begin{array}{rrr}3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{array}\right]=P$
Thus, $P=\frac{1}{2}\left(A+A^{\prime}\right)$ is a symmetric matrix.
Now, $A-A^{\prime}=\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]-\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0\end{array}\right]$

Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{ccc}0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0\end{array}\right]$

Now, $Q^{\prime}=\left[\begin{array}{ccc}0 & -\frac{5}{2} & -\frac{3}{2} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.

Representing A as the sum of P and Q :
$P+Q=\left[\begin{array}{rrr}3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{array}\right]+\left[\begin{array}{ccc}0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0\end{array}\right]=\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]=A$
(iv)

Let $A=\left[\begin{array}{rr}1 & 5 \\ -1 & 2\end{array}\right]$, then $A^{\prime}=\left[\begin{array}{rr}1 & -1 \\ 5 & 2\end{array}\right]$

Now $A+A^{\prime}=\left[\begin{array}{rr}1 & 5 \\ -1 & 2\end{array}\right]+\left[\begin{array}{rr}1 & -1 \\ 5 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 4 & 4\end{array}\right]$

Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$

Now, $P^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]=P$
Thus, $\quad P=\frac{1}{2}\left(A+A^{\prime}\right)$ is a symmetric matrix.
Now, $A-A^{\prime}=\left[\begin{array}{rr}1 & 5 \\ -1 & 2\end{array}\right]-\left[\begin{array}{rr}1 & -1 \\ 5 & 2\end{array}\right]=\left[\begin{array}{rr}0 & 6 \\ -6 & 0\end{array}\right]$

Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\left[\begin{array}{rr}0 & 3 \\ -3 & 0\end{array}\right]$

Now, $Q^{\prime}=\left[\begin{array}{rr}0 & -3 \\ 3 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing A as the sum of P and Q :

$$
P+Q=\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right]+\left[\begin{array}{rr}
0 & 3 \\
-3 & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & 5 \\
-1 & 2
\end{array}\right]=A
$$

Question 11:

If A, B are symmetric matrices of same order, then $A B-B A$ is a
A. Skew symmetric matrix B. Symmetric matrix
C. Zero matrix D. Identity matrix

Answer

The correct answer is A.
A and B are symmetric matrices, therefore, we have:

$$
\begin{equation*}
A^{\prime}=A \text { and } B^{\prime}=B \tag{1}
\end{equation*}
$$

Consider $(A B-B A)^{\prime}=(A B)^{\prime}-(B A)^{\prime}$

$$
\left[(A-B)^{\prime}=A^{\prime}-B^{\prime}\right]
$$

$$
=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}
$$

$$
\left[(A B)^{\prime}=B^{\prime} A^{\prime}\right]
$$

$$
=B A-A B
$$

$$
[\text { by }(1)]
$$

$$
=-(A B-B A)
$$

$\therefore(A B-B A)^{\prime}=-(A B-B A)$
Thus, $(A B-B A)$ is a skew-symmetric matrix.

Question 12:

If $A=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then $A+A^{\prime}=I$, if the value of a is
A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$
C. $п$ D. ${ }^{\frac{3 \pi}{2}}$

Answer

The correct answer is B.
$A=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow A^{\prime}=\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$

Now, $A+A^{\prime}=I$
$\therefore\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{lc}2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Comparing the corresponding elements of the two matrices, we have:
$2 \cos \alpha=1$
$\Rightarrow \cos \alpha=\frac{1 \pi}{2}=\cos \frac{-}{3}$
$\therefore \alpha=\frac{\pi}{3}$

