Class XII : Maths
 Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.2 - NCERT Books

Question 1:

Differentiate the functions with respect to x.
$\sin \left(x^{2}+5\right)$
Answer
Let $f(x)=\sin \left(x^{2}+5\right), u(x)=x^{2}+5$, and $v(t)=\sin t$
Then, $($ vou $)(x)=v(u(x))=v\left(x^{2}+5\right)=\tan \left(x^{2}+5\right)=f(x)$
Thus, f is a composite of two functions.
Put $t=u(x)=x^{2}+5$
Then, we obtain
$\frac{d v}{d t}=\frac{d}{d t}(\sin t)=\cos t=\cos \left(x^{2}+5\right)$
$\frac{d t}{d x}=\frac{d}{d x}\left(x^{2}+5\right)=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(5)=2 x+0=2 x$
Therefore, by chain rule, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\cos \left(x^{2}+5\right) \times 2 x=2 x \cos \left(x^{2}+5\right)$

Alternate method

$$
\begin{aligned}
\frac{d}{d x}\left[\sin \left(x^{2}+5\right)\right] & =\cos \left(x^{2}+5\right) \cdot \frac{d}{d x}\left(x^{2}+5\right) \\
& =\cos \left(x^{2}+5\right) \cdot\left[\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(5)\right] \\
& =\cos \left(x^{2}+5\right) \cdot[2 x+0] \\
& =2 x \cos \left(x^{2}+5\right)
\end{aligned}
$$

Question 2:

Differentiate the functions with respect to x.
$\cos (\sin x)$

Answer
Let $f(x)=\cos (\sin x), u(x)=\sin x$, and $v(t)=\cos t$
Then, $($ vou $)(x)=v(u(x))=v(\sin x)=\cos (\sin x)=f(x)$
Thus, f is a composite function of two functions.
Put $t=u(x)=\sin x$
$\therefore \frac{d v}{d t}=\frac{d}{d t}[\cos t]=-\sin t=-\sin (\sin x)$
$\frac{d t}{d x}=\frac{d}{d x}(\sin x)=\cos x$
By chain rule, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=-\sin (\sin x) \cdot \cos x=-\cos x \sin (\sin x)$

Alternate method

$\frac{d}{d x}[\cos (\sin x)]=-\sin (\sin x) \cdot \frac{d}{d x}(\sin x)=-\sin (\sin x) \cdot \cos x=-\cos x \sin (\sin x)$

Question 3:

Differentiate the functions with respect to x.
$\sin (a x+b)$
Answer
Let $f(x)=\sin (a x+b), u(x)=a x+b$, and $v(t)=\sin t$
Then, $($ vou $)(x)=v(u(x))=v(a x+b)=\sin (a x+b)=f(x)$
Thus, f is a composite function of two functions, u and v.
Put $t=u(x)=a x+b$
Therefore,
$\frac{d v}{d t}=\frac{d}{d t}(\sin t)=\cos t=\cos (a x+b)$
$\frac{d t}{d x}=\frac{d}{d x}(a x+b)=\frac{d}{d x}(a x)+\frac{d}{d x}(b)=a+0=a$
Hence, by chain rule, we obtain
$\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\cos (a x+b) \cdot a=a \cos (a x+b)$

Alternate method

$$
\begin{aligned}
\frac{d}{d x}[\sin (a x+b)] & =\cos (a x+b) \cdot \frac{d}{d x}(a x+b) \\
& =\cos (a x+b) \cdot\left[\frac{d}{d x}(a x)+\frac{d}{d x}(b)\right] \\
& =\cos (a x+b) \cdot(a+0) \\
& =a \cos (a x+b)
\end{aligned}
$$

Question 4:

Differentiate the functions with respect to x.
$\sec (\tan (\sqrt{x}))$
Answer
Let $f(x)=\sec (\tan \sqrt{x}), u(x)=\sqrt{x}, v(t)=\tan t$, and $w(s)=\sec s$
Then, $($ wovou $)(x)=w[v(u(x))]=w[v(\sqrt{x})]=w(\tan \sqrt{x})=\sec (\tan \sqrt{x})=f(x)$
Thus, f is a composite function of three functions, u, v, and w.
Put $s=v(t)=\tan t$ and $t=u(x)=\sqrt{x}$
Then, $\frac{d w}{d s}=\frac{d}{d s}(\sec s)=\sec s \tan s=\sec (\tan t) \cdot \tan (\tan t) \quad[s=\tan t]$

$$
=\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \quad[t=\sqrt{x}]
$$

$\frac{d s}{d t}=\frac{d}{d t}(\tan t)=\sec ^{2} t=\sec ^{2} \sqrt{x}$
$\frac{d t}{d x}=\frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} \cdot x^{\frac{1}{2}-1}=\frac{1}{2 \sqrt{x}}$
Hence, by chain rule, we obtain

$$
\begin{aligned}
& \frac{d t}{d x}=\frac{d w}{d s} \cdot \frac{d s}{d t} \cdot \frac{d t}{d x} \\
& =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \times \sec ^{2} \sqrt{x} \times \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}} \sec ^{2} \sqrt{x} \sec (\tan \sqrt{x}) \tan (\tan \sqrt{x}) \\
& =\frac{\sec ^{2} \sqrt{x} \sec (\tan \sqrt{x}) \tan (\tan \sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Alternate method

$$
\begin{aligned}
\frac{d}{d x}[\sec (\tan \sqrt{x})] & =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \cdot \frac{d}{d x}(\tan \sqrt{x}) \\
& =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \cdot \sec ^{2}(\sqrt{x}) \cdot \frac{d}{d x}(\sqrt{x}) \\
& =\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \cdot \sec ^{2}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{\sec (\tan \sqrt{x}) \cdot \tan (\tan \sqrt{x}) \sec ^{2}(\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Question 5:

Differentiate the functions with respect to x.
$\frac{\sin (a x+b)}{\cos (c x+d)}$
Answer
The given function is $f(x)=\frac{\sin (a x+b)}{\cos (c x+d)}=\frac{g(x)}{h(x)}$, where $g(x)=\sin (a x+b)$ and
$h(x)=\cos (c x+d)$
$\therefore f^{\prime}=\frac{g^{\prime} h-g h^{\prime}}{h^{2}}$
Consider $g(x)=\sin (a x+b)$
Let $u(x)=a x+b, v(t)=\sin t$
Then, $($ vou $)(x)=v(u(x))=v(a x+b)=\sin (a x+b)=g(x)$
$\therefore g$ is a composite function of two functions, u and v.
Put $t=u(x)=a x+b$
$\frac{d v}{d t}=\frac{d}{d t}(\sin t)=\cos t=\cos (a x+b)$
$\frac{d t}{d x}=\frac{d}{d x}(a x+b)=\frac{d}{d x}(a x)+\frac{d}{d x}(b)=a+0=a$
Therefore, by chain rule, we obtain
$g^{\prime}=\frac{d g}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=\cos (a x+b) \cdot a=a \cos (a x+b)$
Consider $h(x)=\cos (c x+d)$
Let $p(x)=c x+d, q(y)=\cos y$
Then, $(q \circ p)(x)=q(p(x))=q(c x+d)=\cos (c x+d)=h(x)$
$\therefore h$ is a composite function of two functions, p and q.

Put $y=p(x)=c x+d$
$\frac{d q}{d y}=\frac{d}{d y}(\cos y)=-\sin y=-\sin (c x+d)$
$\frac{d y}{d x}=\frac{d}{d x}(c x+d)=\frac{d}{d x}(c x)+\frac{d}{d x}(d)=c$
Therefore, by chain rule, we obtain
$h^{\prime}=\frac{d h}{d x}=\frac{d q}{d y} \cdot \frac{d y}{d x}=-\sin (c x+d) \times c=-c \sin (c x+d)$

$$
\begin{aligned}
\therefore f^{\prime} & =\frac{a \cos (a x+b) \cdot \cos (c x+d)-\sin (a x+b)\{-c \sin (c x+d)\}}{[\cos (c x+d)]^{2}} \\
& =\frac{a \cos (a x+b)}{\cos (c x+d)}+c \sin (a x+b) \cdot \frac{\sin (c x+d)}{\cos (c x+d)} \times \frac{1}{\cos (c x+d)} \\
& =a \cos (a x+b) \sec (c x+d)+c \sin (a x+b) \tan (c x+d) \sec (c x+d)
\end{aligned}
$$

Question 6:

Differentiate the functions with respect to x.
$\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)$

Answer

The given function is $\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)$.
$\frac{d}{d x}\left[\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)\right]=\sin ^{2}\left(x^{5}\right) \times \frac{d}{d x}\left(\cos x^{3}\right)+\cos x^{3} \times \frac{d}{d x}\left[\sin ^{2}\left(x^{5}\right)\right]$
$=\sin ^{2}\left(x^{5}\right) \times\left(-\sin x^{3}\right) \times \frac{d}{d x}\left(x^{3}\right)+\cos x^{3} \times 2 \sin \left(x^{5}\right) \cdot \frac{d}{d x}\left[\sin x^{5}\right]$
$=-\sin x^{3} \sin ^{2}\left(x^{5}\right) \times 3 x^{2}+2 \sin x^{5} \cos x^{3} \cdot \cos x^{5} \times \frac{d}{d x}\left(x^{5}\right)$
$=-3 x^{2} \sin x^{3} \cdot \sin ^{2}\left(x^{5}\right)+2 \sin x^{5} \cos x^{5} \cos x^{3} \cdot \times 5 x^{4}$
$=10 x^{4} \sin x^{5} \cos x^{5} \cos x^{3}-3 x^{2} \sin x^{3} \sin ^{2}\left(x^{5}\right)$

Question 7:

Differentiate the functions with respect to x.
$2 \sqrt{\cot \left(x^{2}\right)}$

Answer

$$
\begin{aligned}
& \frac{d}{d x}\left[2 \sqrt{\cot \left(x^{2}\right)}\right] \\
& =2 \cdot \frac{1}{2 \sqrt{\cot \left(x^{2}\right)}} \times \frac{d}{d x}\left[\cot \left(x^{2}\right)\right] \\
& =\sqrt{\frac{\sin \left(x^{2}\right)}{\cos \left(x^{2}\right)}} \times-\operatorname{cosec}^{2}\left(x^{2}\right) \times \frac{d}{d x}\left(x^{2}\right) \\
& =-\sqrt{\frac{\sin \left(x^{2}\right)}{\cos \left(x^{2}\right)}} \times \frac{1}{\sin ^{2}\left(x^{2}\right)} \times(2 x) \\
& =\frac{-2 x}{\sqrt{\cos x^{2}} \sqrt{\sin x^{2}} \sin x^{2}} \\
& =\frac{-2 \sqrt{2} x}{\sqrt{2 \sin x^{2} \cos x^{2}} \sin x^{2}} \\
& =\frac{-2 \sqrt{2} x}{\sin x^{2} \sqrt{\sin 2 x^{2}}}
\end{aligned}
$$

Question 8:

Differentiate the functions with respect to x.
$\cos (\sqrt{x})$
Answer
Let $f(x)=\cos (\sqrt{x})$
Also, let $u(x)=\sqrt{x}$
And, $v(t)=\cos t$
Then, $($ vou $)(x)=v(u(x))$

$$
\begin{aligned}
& =v(\sqrt{x}) \\
& =\cos \sqrt{x} \\
& =f(x)
\end{aligned}
$$

Clearly, f is a composite function of two functions, u and v, such that $t=u(x)=\sqrt{x}$

Then, $\frac{d t}{d x}=\frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}}$

$$
=\frac{1}{2 \sqrt{x}}
$$

And, $\frac{d v}{d t}=\frac{d}{d t}(\cos t)=-\sin t$

$$
=-\sin (\sqrt{x})
$$

By using chain rule, we obtain

$$
\begin{aligned}
& \frac{d t}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x} \\
& =-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \\
& =-\frac{1}{2 \sqrt{x}} \sin (\sqrt{x}) \\
& =-\frac{\sin (\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

Alternate method

$$
\begin{aligned}
\frac{d}{d x}[\cos (\sqrt{x})] & =-\sin (\sqrt{x}) \cdot \frac{d}{d x}(\sqrt{x}) \\
& =-\sin (\sqrt{x}) \times \frac{d}{d x}\left(x^{\frac{1}{2}}\right) \\
& =-\sin \sqrt{x} \times \frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{-\sin \sqrt{x}}{2 \sqrt{x}}
\end{aligned}
$$

Question 9:

Prove that the function f given by
$f(x)=|x-1|, x \in \mathbf{R}$ is notdifferentiable at $x=1$.
Answer
The given function is $f(x)=|x-1|, x \in \mathbf{R}$

It is known that a function f is differentiable at a point $x=c$ in its domain if both
$\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}$ and $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ are finite and equal.
To check the differentiability of the given function at $x=1$,
consider the left hand limit of f at $x=1$

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|1+h-1|-|1-1|}{h} \\
& \begin{aligned}
=\lim _{h \rightarrow 0^{-}} \frac{|h|-0}{h} & =\lim _{h \rightarrow 0^{-}} \frac{-h}{h} \quad(h<0 \Rightarrow|h|=-h) \\
& =-1
\end{aligned}
\end{aligned}
$$

Consider the right hand limit of f at $x=1$

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{|1+h-1|-|1-1|}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{|h|-0}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h} \quad(h>0 \Rightarrow|h|=h) \\
& =1
\end{aligned}
$$

Since the left and right hand limits of f at $x=1$ are not equal, f is not differentiable at x $=1$

Question 10:

Prove that the greatest integer function defined by $f(x)=[x], 0<x<3$ is not differentiable at $x=1$ and $x=2$.

Answer
The given function f is $f(x)=[x], 0<x<3$
It is known that a function f is differentiable at a point $x=c$ in its domain if both
$\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}$ and $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ are finite and equal.
To check the differentiability of the given function at $x=1$, consider the left hand limit of
f at $x=1$
$\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[1+h]-[1]}{h}$
$=\lim _{h \rightarrow 0^{0}} \frac{0-1}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}=\infty$
Consider the right hand limit of f at $x=1$
$\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[1+h]-[1]}{h}$
$=\lim _{h \rightarrow 0^{+}} \frac{1-1}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=1$ are not equal, f is not differentiable at $x=1$
To check the differentiability of the given function at $x=2$, consider the left hand limit of f at $x=2$
$\lim _{h \rightarrow 0^{-}} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[2+h]-[2]}{h}$
$=\lim _{h \rightarrow 0^{-}} \frac{1-2}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}=\infty$
Consider the right hand limit of f at $x=1$
$\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[2+h]-[2]}{h}$
$=\lim _{h \rightarrow 0^{+}} \frac{2-2}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=2$ are not equal, f is not differentiable at x = 2

