Class XII : Maths

Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.3-NCERT Books

Question 1:

Find $\frac{d y}{d x}$:
$2 x+3 y=\sin x$
Answer
The given relationship is $2 x+3 y=\sin x$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(2 x+3 y)=\frac{d}{d x}(\sin x)$
$\Rightarrow \frac{d}{d x}(2 x)+\frac{d}{d x}(3 y)=\cos x$
$\Rightarrow 2+3 \frac{d y}{d x}=\cos x$
$\Rightarrow 3 \frac{d y}{d x}=\cos x-2$
$\therefore \frac{d y}{d x}=\frac{\cos x-2}{3}$

Question 2:

Find $\frac{d y}{d x}$:
$2 x+3 y=\sin y$
Answer
The given relationship is $2 x+3 y=\sin y$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(2 x)+\frac{d}{d x}(3 y)=\frac{d}{d x}(\sin y)$
$\Rightarrow 2+3 \frac{d y}{d x}=\cos y \frac{d y}{d x} \quad$ [By using chain rule]
$\Rightarrow 2=(\cos y-3) \frac{d y}{d x}$
$\therefore \frac{d y}{d x}=\frac{2}{\cos y-3}$

Question 3:

Find $\frac{d y}{d x}$:
$a x+b y^{2}=\cos y$
Answer
The given relationship is $a x+b y^{2}=\cos y$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(a x)+\frac{d}{d x}\left(b y^{2}\right)=\frac{d}{d x}(\cos y)$
$\Rightarrow a+b \frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(\cos y)$
Using chain rule, we obtain $\frac{d}{d x}\left(y^{2}\right)=2 y \frac{d y}{d x}$ and $\frac{d}{d x}(\cos y)=-\sin y \frac{d y}{d x}$
From (1) and (2), we obtain
$a+b \times 2 y \frac{d y}{d x}=-\sin y \frac{d y}{d x}$
$\Rightarrow(2 b y+\sin y) \frac{d y}{d x}=-a$
$\therefore \frac{d y}{d x}=\frac{-a}{2 b y+\sin y}$

Question 4:

Find $\frac{d y}{d x}$:
$x y+y^{2}=\tan x+y$

Answer

The given relationship is $x y+y^{2}=\tan x+y$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}\left(x y+y^{2}\right)=\frac{d}{d x}(\tan x+y)$
$\Rightarrow \frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(\tan x)+\frac{d y}{d x}$
$\Rightarrow\left[y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x} \quad \quad$ [Using product rule and chain rule]
$\Rightarrow y \cdot 1+x \cdot \frac{d y}{d x}+2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}$
$\Rightarrow(x+2 y-1) \frac{d y}{d x}=\sec ^{2} x-y$
$\therefore \frac{d y}{d x}=\frac{\sec ^{2} x-y}{(x+2 y-1)}$

Question 5:

Find $\frac{d y}{d x}$:
$x^{2}+x y+y^{2}=100$
Answer
The given relationship is $x^{2}+x y+y^{2}=100$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}\left(x^{2}+x y+y^{2}\right)=\frac{d}{d x}(100)$
$\Rightarrow \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=0$ [Derivative of constant function is 0]
$\Rightarrow 2 x+\left[y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=0 \quad$ [Using product rule and chain rule]
$\Rightarrow 2 x+y \cdot 1+x \cdot \frac{d y}{d x}+2 y \frac{d y}{d x}=0$
$\Rightarrow 2 x+y+(x+2 y) \frac{d y}{d x}=0$
$\therefore \frac{d y}{d x}=-\frac{2 x+y}{x+2 y}$

Question 6:

Find $\frac{d y}{d x}$:
$x^{3}+x^{2} y+x y^{2}+y^{3}=81$
Answer
The given relationship is $x^{3}+x^{2} y+x y^{2}+y^{3}=81$
Differentiating this relationship with respect to x, we obtain

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)=\frac{d}{d x}(81) \\
& \Rightarrow \frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(x^{2} y\right)+\frac{d}{d x}\left(x y^{2}\right)+\frac{d}{d x}\left(y^{3}\right)=0 \\
& \Rightarrow 3 x^{2}+\left[y \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d y}{d x}\right]+\left[y^{2} \frac{d}{d x}(x)+x \frac{d}{d x}\left(y^{2}\right)\right]+3 y^{2} \frac{d y}{d x}=0 \\
& \Rightarrow 3 x^{2}+\left[y \cdot 2 x+x^{2} \frac{d y}{d x}\right]+\left[y^{2} \cdot 1+x \cdot 2 y \cdot \frac{d y}{d x}\right]+3 y^{2} \frac{d y}{d x}=0 \\
& \Rightarrow\left(x^{2}+2 x y+3 y^{2}\right) \frac{d y}{d x}+\left(3 x^{2}+2 x y+y^{2}\right)=0 \\
& \therefore \frac{d y}{d x}=\frac{-\left(3 x^{2}+2 x y+y^{2}\right)}{\left(x^{2}+2 x y+3 y^{2}\right)}
\end{aligned}
$$

Question 7:

Find $\frac{d y}{d x}$:
$\sin ^{2} y+\cos x y=\pi$

Answer

The given relationship is $\sin ^{2} y+\cos x y=\pi$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}\left(\sin ^{2} y+\cos x y\right)=\frac{d}{d x}(\pi)$
$\Rightarrow \frac{d}{d x}\left(\sin ^{2} y\right)+\frac{d}{d x}(\cos x y)=0$
Using chain rule, we obtain
$\frac{d}{d x}\left(\sin ^{2} y\right)=2 \sin y \frac{d}{d x}(\sin y)=2 \sin y \cos y \frac{d y}{d x}$
$\frac{d}{d x}(\cos x y)=-\sin x y \frac{d}{d x}(x y)=-\sin x y\left[y \frac{d}{d x}(x)+x \frac{d y}{d x}\right]$

$$
\begin{equation*}
=-\sin x y\left[y .1+x \frac{d y}{d x}\right]=-y \sin x y-x \sin x y \frac{d y}{d x} \tag{3}
\end{equation*}
$$

From (1), (2), and (3), we obtain
$2 \sin y \cos y \frac{d y}{d x}-y \sin x y-x \sin x y \frac{d y}{d x}=0$
$\Rightarrow(2 \sin y \cos y-x \sin x y) \frac{d y}{d x}=y \sin x y$
$\Rightarrow(\sin 2 y-x \sin x y) \frac{d y}{d x}=y \sin x y$
$\therefore \frac{d y}{d x}=\frac{y \sin x y}{\sin 2 y-x \sin x y}$

Question 8:

Find $\frac{d y}{d x}$:
$\sin ^{2} x+\cos ^{2} y=1$
Answer
The given relationship is $\sin ^{2} x+\cos ^{2} y=1$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}\left(\sin ^{2} x+\cos ^{2} y\right)=\frac{d}{d x}(1)$
$\Rightarrow \frac{d}{d x}\left(\sin ^{2} x\right)+\frac{d}{d x}\left(\cos ^{2} y\right)=0$
$\Rightarrow 2 \sin x \cdot \frac{d}{d x}(\sin x)+2 \cos y \cdot \frac{d}{d x}(\cos y)=0$
$\Rightarrow 2 \sin x \cos x+2 \cos y(-\sin y) \cdot \frac{d y}{d x}=0$
$\Rightarrow \sin 2 x-\sin 2 y \frac{d y}{d x}=0$
$\therefore \frac{d y}{d x}=\frac{\sin 2 x}{\sin 2 y}$

Question 9:

Find $\frac{d y}{d x}$:
$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Answer

The given relationship is $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \sin y=\frac{2 x}{1+x^{2}}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(\sin y)=\frac{d}{d x}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \cos y \frac{d y}{d x}=\frac{d}{d x}\left(\frac{2 x}{1+x^{2}}\right)$
The function, $\frac{2 x}{1+x^{2}}$, is of the form of $\frac{u}{v}$.
Therefore, by quotient rule, we obtain
$\frac{d}{d x}\left(\frac{2 x}{1+x^{2}}\right)=\frac{\left(1+x^{2}\right) \cdot \frac{d}{d x}(2 x)-2 x \cdot \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
$=\frac{\left(1+x^{2}\right) \cdot 2-2 x \cdot[0+2 x]}{\left(1+x^{2}\right)^{2}}=\frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
Also, $\sin y=\frac{2 x}{1+x^{2}}$
$\Rightarrow \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}=\sqrt{\frac{\left(1+x^{2}\right)^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}}$

$$
\begin{equation*}
=\sqrt{\frac{\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}}=\frac{1-x^{2}}{1+x^{2}} \tag{3}
\end{equation*}
$$

From (1), (2), and (3), we obtain
$\frac{1-x^{2}}{1+x^{2}} \times \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{1+x^{2}}$

Question 10:

Find $\frac{d y}{d x}$:
$y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$
Answer

The given relationship is $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$\Rightarrow \tan y=\frac{3 x-x^{3}}{1-3 x^{2}}$

It is known that, $\quad \tan y=\frac{3 \tan \frac{y}{3}-\tan ^{3} \frac{y}{3}}{1-3 \tan ^{2} \frac{y}{3}}$
Comparing equations (1) and (2), we obtain
$x=\tan \frac{y}{3}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(x)=\frac{d}{d x}\left(\tan \frac{y}{3}\right)$
$\Rightarrow 1=\sec ^{2} \frac{y}{3} \cdot \frac{d}{d x}\left(\frac{y}{3}\right)$
$\Rightarrow 1=\sec ^{2} \frac{y}{3} \cdot \frac{1}{3} \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{3}{\sec ^{2} \frac{y}{3}}=\frac{3}{1+\tan ^{2} \frac{y}{3}}$
$\therefore \frac{d y}{d x}=\frac{3}{1+x^{2}}$

Question 11:

Find $\frac{d y}{d x}$:
$\mathbf{x}=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$
Answer
The given relationship is,

$$
\begin{aligned}
& y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\
& \Rightarrow \cos y=\frac{1-x^{2}}{1+x^{2}} \\
& \Rightarrow \frac{1-\tan ^{2} \frac{y}{2}}{1+\tan ^{2} \frac{y}{2}}=\frac{1-x^{2}}{1+x^{2}}
\end{aligned}
$$

On comparing L.H.S. and R.H.S. of the above relationship, we obtain $\tan \frac{y}{2}=x$

Differentiating this relationship with respect to x, we obtain
$\sec ^{2} \frac{y}{2} \cdot \frac{d}{d x}\left(\frac{y}{2}\right)=\frac{d}{d x}(x)$
$\Rightarrow \sec ^{2} \frac{y}{2} \times \frac{1}{2} \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sec ^{2} \frac{y}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{1+\tan ^{2} \frac{y}{2}}$
$\therefore \frac{d y}{d x}=\frac{1}{1+x^{2}}$

Question 12:

Find $\frac{d y}{d x}$:

$$
y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1
$$

Answer

$$
y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

The given relationship is
$y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$\Rightarrow \sin y=\frac{1-x^{2}}{1+x^{2}}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(\sin y)=\frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
Using chain rule, we obtain
$\frac{d}{d x}(\sin y)=\cos y \cdot \frac{d y}{d x}$
$\cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2}}$
$=\sqrt{\frac{\left(1+x^{2}\right)^{2}-\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}}=\sqrt{\frac{4 x^{2}}{\left(1+x^{2}\right)^{2}}}=\frac{2 x}{1+x^{2}}$
$\therefore \frac{d}{d x}(\sin y)=\frac{2 x}{1+x^{2}} \frac{d y}{d x}$
$\frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\frac{\left(1+x^{2}\right) \cdot\left(1-x^{2}\right)^{\prime}-\left(1-x^{2}\right) \cdot\left(1+x^{2}\right)^{\prime}}{\left(1+x^{2}\right)^{2}} \quad \quad$ [Using quotient rule]
$=\frac{\left(1+x^{2}\right)(-2 x)-\left(1-x^{2}\right) \cdot(2 x)}{\left(1+x^{2}\right)^{2}}$
$=\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1+x^{2}\right)^{2}}$
$=\frac{-4 x}{\left(1+x^{2}\right)^{2}}$
From (1), (2), and (3), we obtain
$\frac{2 x}{1+x^{2}} \frac{d y}{d x}=\frac{-4 x}{\left(1+x^{2}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{1+x^{2}}$

Alternate method

$y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$\Rightarrow \sin y=\frac{1-x^{2}}{1+x^{2}}$
$\Rightarrow\left(1+x^{2}\right) \sin y=1-x^{2}$
$\Rightarrow(1+\sin y) x^{2}=1-\sin y$
$\Rightarrow x^{2}=\frac{1-\sin y}{1+\sin y}$
$\Rightarrow x^{2}=\frac{\left(\cos \frac{y}{2}-\sin \frac{y}{2}\right)^{2}}{\left(\cos \frac{y}{2}+\sin \frac{y}{2}\right)^{2}}$
$\Rightarrow x=\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}}$
$\Rightarrow x=\frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}}$
$\Rightarrow x=\tan \left(\frac{\pi}{4}-\frac{y}{2}\right)$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(x)=\frac{d}{d x} \cdot\left[\tan \left(\frac{\pi}{4}-\frac{y}{2}\right)\right]$
$\Rightarrow 1=\sec ^{2}\left(\frac{\pi}{4}-\frac{y}{2}\right) \cdot \frac{d}{d x}\left(\frac{\pi}{4}-\frac{y}{2}\right)$
$\Rightarrow 1=\left[1+\tan ^{2}\left(\frac{\pi}{4}-\frac{y}{2}\right)\right] \cdot\left(-\frac{1}{2} \frac{d y}{d x}\right)$
$\Rightarrow 1=\left(1+x^{2}\right)\left(-\frac{1}{2} \frac{d y}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{1+x^{2}}$

Question 13:

Find $\frac{d y}{d x}$:
$y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right),-1<x<1$

Answer

The given relationship is $y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \cos y=\frac{2 x}{1+x^{2}}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(\cos y)=\frac{d}{d x} \cdot\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow-\sin y \cdot \frac{d y}{d x}=\frac{\left(1+x^{2}\right) \cdot \frac{d}{d x}(2 x)-2 x \cdot \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}$

$$
\begin{aligned}
& \Rightarrow-\sqrt{1-\cos ^{2} y} \frac{d y}{d x}=\frac{\left(1+x^{2}\right) \times 2-2 x \cdot 2 x}{\left(1+x^{2}\right)^{2}} \\
& \Rightarrow\left[\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}\right] \frac{d y}{d x}=-\left[\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right] \\
& \Rightarrow \sqrt{\frac{\left(1+x^{2}\right)^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}} \frac{d y}{d x}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& \Rightarrow \sqrt{\frac{\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}} \frac{d y}{d x}}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& \Rightarrow \frac{1-x^{2}}{1+x^{2}} \cdot \frac{d y}{d x}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{-2}{1+x^{2}}
\end{aligned}
$$

Question 14:

Find $\frac{d y}{d x}$:
$y=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right),-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$
Answer
lationship is $y=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
$y=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
$\Rightarrow \sin y=2 x \sqrt{1-x^{2}}$
Differentiating this relationship with respect to x, we obtain

$$
\begin{aligned}
& \cos y \frac{d y}{d x}=2\left[x \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)+\sqrt{1-x^{2}} \frac{d x}{d x}\right] \\
& \Rightarrow \sqrt{1-\sin ^{2} y} \frac{d y}{d x}=2\left[\frac{x}{2} \cdot \frac{-2 x}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}}\right] \\
& \Rightarrow \sqrt{1-\left(2 x \sqrt{1-x^{2}}\right)^{2}} \frac{d y}{d x}=2\left[\frac{-x^{2}+1-x^{2}}{\sqrt{1-x^{2}}}\right] \\
& \Rightarrow \sqrt{1-4 x^{2}\left(1-x^{2}\right)} \frac{d y}{d x}=2\left[\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right] \\
& \Rightarrow \sqrt{\left(1-2 x^{2}\right)^{2}} \frac{d y}{d x}=2\left[\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right] \\
& \Rightarrow\left(1-2 x^{2}\right) \frac{d y}{d x}=2\left[\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Question 15:

Find $\frac{d y}{d x}$:
$y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$

Answer

The given relationship is $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$
$y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$
$\Rightarrow \sec y=\frac{1}{2 x^{2}-1}$
$\Rightarrow \cos y=2 x^{2}-1$
$\Rightarrow 2 x^{2}=1+\cos y$
$\Rightarrow 2 x^{2}=2 \cos ^{2} \frac{y}{2}$
$\Rightarrow x=\cos \frac{y}{2}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(x)=\frac{d}{d x}\left(\cos \frac{y}{2}\right)$
$\Rightarrow 1=-\sin \frac{y}{2} \cdot \frac{d}{d x}\left(\frac{y}{2}\right)$
$\Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2} \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-\cos ^{2} \frac{y}{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}$

