Class XII : Maths Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.4 - NCERT Books

Question 1:

Differentiate the following w.r.t. x:

 $\frac{e^x}{\sin x}$

Answer

 $y = \frac{e^x}{\sin x}$

By using the quotient rule, we obtain

$$\frac{dy}{dx} = \frac{\sin x \frac{d}{dx} (e^x) - e^x \frac{d}{dx} (\sin x)}{\sin^2 x}$$
$$= \frac{\sin x \cdot (e^x) - e^x \cdot (\cos x)}{\sin^2 x}$$
$$= \frac{e^x (\sin x - \cos x)}{\sin^2 x}, x \neq n\pi, n \in \mathbf{Z}$$

Question 2:

Differentiate the following w.r.t. x:

 $e^{\sin^{-1}x}$

Answer

Let $y = e^{\sin^{-1}x}$

By using the chain rule, we obtain

*****Saral

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\sin^{-1}x} \right)$$
$$\Rightarrow \frac{dy}{dx} = e^{\sin^{-1}x} \cdot \frac{d}{dx} \left(\sin^{-1}x \right)$$
$$= e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1 - x^2}}$$
$$= \frac{e^{\sin^{-1}x}}{\sqrt{1 - x^2}}$$
$$\therefore \frac{dy}{dx} = \frac{e^{\sin^{-1}x}}{\sqrt{1 - x^2}}, x \in (-1, 1)$$

Question 2:

Show that the function given by $f(x) = e^{2x}$ is strictly increasing on **R**. Answer

Let x_1 and x_2 be any two numbers in **R**.

Then, we have:

$$x_1 < x_2 \Longrightarrow 2x_1 < 2x_2 \Longrightarrow e^{2x_1} < e^{2x_2} \Longrightarrow f(x_1) < f(x_2)$$

Hence, f is strictly increasing on **R**.

Question 3:

Differentiate the following w.r.t. x:

 e^{x^3}

.

Answer

Let $y = e^{x^3}$

.

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx}\left(e^{x^3}\right) = e^{x^3} \cdot \frac{d}{dx}\left(x^3\right) = e^{x^3} \cdot 3x^2 = 3x^2 e^{x^3}$$

Question 4: Differentiate the following w.r.t. x: $\sin(\tan^{-1}e^{-x})$

Class XII MATH

www.esaral.com

Answer

Let
$$y = \sin(\tan^{-1} e^{-x})$$

By using the chain rule, we obtain
 $\frac{dy}{dx} = \frac{d}{dx} \left[\sin(\tan^{-1} e^{-x}) \right]$
 $= \cos(\tan^{-1} e^{-x}) \cdot \frac{d}{dx} (\tan^{-1} e^{-x})$
 $= \cos(\tan^{-1} e^{-x}) \cdot \frac{1}{1 + (e^{-x})^2} \cdot \frac{d}{dx} (e^{-x})$
 $= \frac{\cos(\tan^{-1} e^{-x})}{1 + e^{-2x}} \cdot e^{-x} \cdot \frac{d}{dx} (-x)$
 $= \frac{e^{-x} \cos(\tan^{-1} e^{-x})}{1 + e^{-2x}} \times (-1)$
 $= \frac{-e^{-x} \cos(\tan^{-1} e^{-x})}{1 + e^{-2x}}$

Question 5:

Differentiate the following w.r.t. x:

 $\log(\cos e^x)$

Answer

Let $y = \log(\cos e^x)$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log(\cos e^x) \Big]$$
$$= \frac{1}{\cos e^x} \cdot \frac{d}{dx} (\cos e^x)$$
$$= \frac{1}{\cos e^x} \cdot (-\sin e^x) \cdot \frac{d}{dx} (e^x)$$
$$= \frac{-\sin e^x}{\cos e^x} \cdot e^x$$
$$= -e^x \tan e^x, e^x \neq (2n+1)\frac{\pi}{2}, n \in \mathbf{N}$$

Class XII MATH

www.esaral.com

***Saral**

Question 6:

Differentiate the following w.r.t. x:

 $e^{x} + e^{x^{2}} + \dots + e^{x^{5}}$

Answer

$$\frac{d}{dx}\left(e^{x} + e^{x^{2}} + \dots + e^{x^{5}}\right)$$

$$= \frac{d}{dx}\left(e^{x}\right) + \frac{d}{dx}\left(e^{x^{2}}\right) + \frac{d}{dx}\left(e^{x^{5}}\right) + \frac{d}{dx}\left(e^{x^{4}}\right) + \frac{d}{dx}\left(e^{x^{5}}\right)$$

$$= e^{x} + \left[e^{x^{2}} \times \frac{d}{dx}\left(x^{2}\right)\right] + \left[e^{x^{3}} \cdot \frac{d}{dx}\left(x^{3}\right)\right] + \left[e^{x^{4}} \cdot \frac{d}{dx}\left(x^{4}\right)\right] + \left[e^{x^{5}} \cdot \frac{d}{dx}\left(x^{5}\right)\right]$$

$$= e^{x} + \left(e^{x^{2}} \times 2x\right) + \left(e^{x^{3}} \times 3x^{2}\right) + \left(e^{x^{4}} \times 4x^{3}\right) + \left(e^{x^{5}} \times 5x^{4}\right)$$

$$= e^{x} + 2xe^{x^{2}} + 3x^{2}e^{x^{3}} + 4x^{3}e^{x^{4}} + 5x^{4}e^{x^{5}}$$

Question 7:

Differentiate the following w.r.t. x:

$$\sqrt{e^{\sqrt{x}}}, x > 0$$

Answer

Let
$$y = \sqrt{e^{\sqrt{3}}}$$

Then, $y^2 = e^{\sqrt{x}}$

By differentiating this relationship with respect to x, we obtain

[By applying the chain rule]

Å

 $y^{2} = e^{\sqrt{x}}$ $\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{d}{dx} (\sqrt{x})$ $\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{1}{2} \cdot \frac{1}{\sqrt{x}}$ $\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4y\sqrt{x}}$ $\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}\sqrt{x}}$ $\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}\sqrt{x}}, x > 0$

Question 8:

Differentiate the following w.r.t. x:

$$\log(\log x), x > 1$$

Answer

Let
$$y = \log(\log x)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \left[\log(\log x) \right]$$
$$= \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$
$$= \frac{1}{\log x} \cdot \frac{1}{x}$$
$$= \frac{1}{x \log x}, x > 1$$

Question 9:

Differentiate the following w.r.t. x:

 $\frac{\cos x}{\log x}, x > 0$

Answer

$$y = \frac{\cos x}{\log x}$$

By using the quotient rule, we obtain

$$\frac{dy}{dx} = \frac{\frac{d}{dx}(\cos x) \times \log x - \cos x \times \frac{d}{dx}(\log x)}{(\log x)^2}$$
$$= \frac{-\sin x \log x - \cos x \times \frac{1}{x}}{(\log x)^2}$$
$$= \frac{-[x \log x . \sin x + \cos x]}{x(\log x)^2}, x > 0$$

Question 10:

Differentiate the following w.r.t. x:

$$\cos(\log x + e^x), x > 0$$

Answer

$$\int_{\text{Let}} y = \cos\left(\log x + e^x\right)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = -\sin\left(\log x + e^x\right) \cdot \frac{d}{dx} \left(\log x + e^x\right)$$
$$= -\sin\left(\log x + e^x\right) \cdot \left[\frac{d}{dx} \left(\log x\right) + \frac{d}{dx} \left(e^x\right)\right]$$
$$= -\sin\left(\log x + e^x\right) \cdot \left(\frac{1}{x} + e^x\right)$$
$$= -\left(\frac{1}{x} + e^x\right) \sin\left(\log x + e^x\right), x > 0$$

Class XII MATH