Class XII : Maths
 Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.5 - NCERT Books

Question 1:

Differentiate the function with respect to x.
$\cos x \cdot \cos 2 x \cdot \cos 3 x$
Answer
Let $y=\cos x \cdot \cos 2 x \cdot \cos 3 x$
Taking logarithm on both the sides, we obtain
$\log y=\log (\cos x \cdot \cos 2 x \cdot \cos 3 x)$
$\Rightarrow \log y=\log (\cos x)+\log (\cos 2 x)+\log (\cos 3 x)$
Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)+\frac{1}{\cos 2 x} \cdot \frac{d}{d x}(\cos 2 x)+\frac{1}{\cos 3 x} \cdot \frac{d}{d x}(\cos 3 x)$
$\Rightarrow \frac{d y}{d x}=y\left[-\frac{\sin x}{\cos x}-\frac{\sin 2 x}{\cos 2 x} \cdot \frac{d}{d x}(2 x)-\frac{\sin 3 x}{\cos 3 x} \cdot \frac{d}{d x}(3 x)\right]$
$\therefore \frac{d y}{d x}=-\cos x \cdot \cos 2 x \cdot \cos 3 x[\tan x+2 \tan 2 x+3 \tan 3 x]$

Question 2:
Differentiate the function with respect to x.
$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$
Answer
Let $y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$
Taking logarithm on both the sides, we obtain

$$
\begin{aligned}
& \log y=\log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \\
& \Rightarrow \log y=\frac{1}{2} \log \left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}\right] \\
& \Rightarrow \log y=\frac{1}{2}[\log \{(x-1)(x-2)\}-\log \{(x-3)(x-4)(x-5)\}] \\
& \Rightarrow \log y=\frac{1}{2}[\log (x-1)+\log (x-2)-\log (x-3)-\log (x-4)-\log (x-5)]
\end{aligned}
$$

Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[\begin{array}{l}\frac{1}{x-1} \cdot \frac{d}{d x}(x-1)+\frac{1}{x-2} \cdot \frac{d}{d x}(x-2)-\frac{1}{x-3} \cdot \frac{d}{d x}(x-3) \\ -\frac{1}{x-4} \cdot \frac{d}{d x}(x-4)-\frac{1}{x-5} \cdot \frac{d}{d x}(x-5)\end{array}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{y}{2}\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right)$
$\therefore \frac{d y}{d x}=\frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]$

Question 3:

Differentiate the function with respect to x.
$(\log x)^{\cos x}$

Answer

Let $y=(\log x)^{\cos x}$
Taking logarithm on both the sides, we obtain
$\log y=\cos x \cdot \log (\log x)$
Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d}{d x}(\cos x) \times \log (\log x)+\cos x \times \frac{d}{d x}[\log (\log x)]$
$\Rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=-\sin x \log (\log x)+\cos x \times \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d y}{d x}=y\left[-\sin x \log (\log x)+\frac{\cos x}{\log x} \times \frac{1}{x}\right]$
$\therefore \frac{d y}{d x}=(\log x)^{\cos x}\left[\frac{\cos x}{x \log x}-\sin x \log (\log x)\right]$

Question 4:

Differentiate the function with respect to x.
$x^{x}-2^{\sin x}$
Answer
Let $y=x^{x}-2^{\sin x}$
Also, let $x^{x}=u$ and $2^{\sin x}=v$
$\therefore y=u-v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}-\frac{d v}{d x}$
$u=x^{x}$
Taking logarithm on both the sides, we obtain
$\log u=x \log x$
Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\left[\frac{d}{d x}(x) \times \log x+x \times \frac{d}{d x}(\log x)\right]$
$\Rightarrow \frac{d u}{d x}=u\left[1 \times \log x+x \times \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=x^{x}(\log x+1)$
$\Rightarrow \frac{d u}{d x}=x^{x}(1+\log x)$
$v=2^{\sin x}$
Taking logarithm on both the sides with respect to x, we obtain
$\log v=\sin x \cdot \log 2$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\log 2 \cdot \frac{d}{d x}(\sin x)$
$\Rightarrow \frac{d v}{d x}=v \log 2 \cos x$
$\Rightarrow \frac{d v}{d x}=2^{\sin x} \cos x \log 2$
$\therefore \frac{d y}{d x}=x^{x}(1+\log x)-2^{\sin x} \cos x \log 2$

Question 5:

Differentiate the function with respect to x.
$(x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}$

Answer

Let $y=(x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}$
Taking logarithm on both the sides, we obtain
$\log y=\log (x+3)^{2}+\log (x+4)^{3}+\log (x+5)^{4}$
$\Rightarrow \log y=2 \log (x+3)+3 \log (x+4)+4 \log (x+5)$
Differentiating both sides with respect to x, we obtain

$$
\begin{aligned}
& \frac{1}{y} \cdot \frac{d y}{d x}=2 \cdot \frac{1}{x+3} \cdot \frac{d}{d x}(x+3)+3 \cdot \frac{1}{x+4} \cdot \frac{d}{d x}(x+4)+4 \cdot \frac{1}{x+5} \cdot \frac{d}{d x}(x+5) \\
& \Rightarrow \frac{d y}{d x}=y\left[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}\right] \\
& \Rightarrow \frac{d y}{d x}=(x+3)^{2}(x+4)^{3}(x+5)^{4} \cdot\left[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}\right] \\
& \Rightarrow \frac{d y}{d x}=(x+3)^{2}(x+4)^{3}(x+5)^{4} \cdot\left[\frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)}\right] \\
& \Rightarrow \frac{d y}{d x}=(x+3)(x+4)^{2}(x+5)^{3} \cdot\left[2\left(x^{2}+9 x+20\right)+3\left(x^{2}+8 x+15\right)+4\left(x^{2}+7 x+12\right)\right] \\
& \therefore \frac{d y}{d x}=(x+3)(x+4)^{2}(x+5)^{3}\left(9 x^{2}+70 x+133\right)
\end{aligned}
$$

Question 6:

Differentiate the function with respect to x.
$\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}$
Answer
Let $y=\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}$
Also, let $u=\left(x+\frac{1}{x}\right)^{x}$ and $v=x^{\left(1+\frac{1}{x}\right)}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
Then, $u=\left(x+\frac{1}{x}\right)^{x}$
$\Rightarrow \log u=\log \left(x+\frac{1}{x}\right)^{x}$
$\Rightarrow \log u=x \log \left(x+\frac{1}{x}\right)$
Differentiating both sides with respect to x, we obtain

$$
\begin{aligned}
& \frac{1}{u} \cdot \frac{d u}{d x}=\frac{d}{d x}(x) \times \log \left(x+\frac{1}{x}\right)+x \times \frac{d}{d x}\left[\log \left(x+\frac{1}{x}\right)\right] \\
& \Rightarrow \frac{1}{u} \frac{d u}{d x}=1 \times \log \left(x+\frac{1}{x}\right)+x \times \frac{1}{\left(x+\frac{1}{x}\right)} \cdot \frac{d}{d x}\left(x+\frac{1}{x}\right) \\
& \Rightarrow \frac{d u}{d x}=u\left[\log \left(x+\frac{1}{x}\right)+\frac{x}{\left(x+\frac{1}{x}\right)} \times\left(1-\frac{1}{x^{2}}\right)\right] \\
& \Rightarrow \frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\log \left(x+\frac{1}{x}\right)+\frac{\left(x-\frac{1}{x}\right)}{\left(x+\frac{1}{x}\right)}\right] \\
& \Rightarrow \frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\log \left(x+\frac{1}{x}\right)+\frac{x^{2}-1}{x^{2}+1}\right] \\
& \Rightarrow \frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right] \\
& v=\left(1+\frac{1}{x}\right) \\
& \Rightarrow \log v=\log \left[x^{\left(1+\frac{1}{x}\right)}\right] \\
& \Rightarrow \log v=\left(1+\frac{1}{x}\right) \log x
\end{aligned}
$$

Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\left[\frac{d}{d x}\left(1+\frac{1}{x}\right)\right] \times \log x+\left(1+\frac{1}{x}\right) \cdot \frac{d}{d x} \log x$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=\left(-\frac{1}{x^{2}}\right) \log x+\left(1+\frac{1}{x}\right) \cdot \frac{1}{x}$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\frac{\log x}{x^{2}}+\frac{1}{x}+\frac{1}{x^{2}}$
$\Rightarrow \frac{d v}{d x}=v\left[\frac{-\log x+x+1}{x^{2}}\right]$
$\Rightarrow \frac{d v}{d x}=x^{\left(1+\frac{1}{x}\right)}\left(\frac{x+1-\log x}{x^{2}}\right)$
Therefore, from (1), (2), and (3), we obtain
$\frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right]+x^{\left(1+\frac{1}{x}\right)}\left(\frac{x+1-\log x}{x^{2}}\right)$

Question 7:

Differentiate the function with respect to x.
$(\log x)^{x}+x^{\log x}$

Answer

Let $y=(\log x)^{x}+x^{\log x}$
Also, let $u=(\log x)^{x}$ and $v=x^{\log x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=(\log x)^{x}$
$\Rightarrow \log u=\log \left[(\log x)^{x}\right]$
$\Rightarrow \log u=x \log (\log x)$
Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \times \log (\log x)+x \cdot \frac{d}{d x}[\log (\log x)] \\
& \Rightarrow \frac{d u}{d x}=u\left[1 \times \log (\log x)+x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{x}{\log x} \cdot \frac{1}{x}\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\frac{\log (\log x) \cdot \log x+1}{\log x}\right] \\
& \Rightarrow \frac{d u}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)] \tag{2}\\
& v=x^{\log x} \\
& \Rightarrow \log v=\log \left(x^{\log x}\right) \\
& \Rightarrow \log v=\log x \log x=(\log x)^{2}
\end{align*}
$$

Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\frac{d}{d x}\left[(\log x)^{2}\right]$
$\Rightarrow \frac{1}{v} \cdot \frac{d v}{d x}=2(\log x) \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d v}{d x}=2 v(\log x) \cdot \frac{1}{x}$
$\Rightarrow \frac{d v}{d x}=2 x^{\log x} \frac{\log x}{x}$
$\Rightarrow \frac{d v}{d x}=2 x^{\log x-1} \cdot \log x$
Therefore, from (1), (2), and (3), we obtain
$\frac{d y}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]+2 x^{\log x-1} \cdot \log x$

Question 8:

Differentiate the function with respect to x.
$(\sin x)^{x}+\sin ^{-1} \sqrt{x}$

Answer

Let $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$
Also, let $u=(\sin x)^{x}$ and $v=\sin ^{-1} \sqrt{x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=(\sin x)^{x}$
$\Rightarrow \log u=\log (\sin x)^{x}$
$\Rightarrow \log u=x \log (\sin x)$
Differentiating both sides with respect to x, we obtain
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \times \log (\sin x)+x \times \frac{d}{d x}[\log (\sin x)]$
$\Rightarrow \frac{d u}{d x}=u\left[1 \cdot \log (\sin x)+x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{d u}{d x}=(\sin x)^{x}\left[\log (\sin x)+\frac{x}{\sin x} \cdot \cos x\right]$
$\Rightarrow \frac{d u}{d x}=(\sin x)^{x}(x \cot x+\log \sin x)$
$v=\sin ^{-1} \sqrt{x}$
Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{d v}{d x}=\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \cdot \frac{d}{d x}(\sqrt{x}) \\
& \Rightarrow \frac{d v}{d x}=\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}} \\
& \Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{x-x^{2}}} \tag{3}
\end{align*}
$$

Therefore, from (1), (2), and (3), we obtain
$\frac{d y}{d x}=(\sin x)^{x}(x \cot x+\log \sin x)+\frac{1}{2 \sqrt{x-x^{2}}}$

Question 9:

Differentiate the function with respect to x.
$x^{\sin x}+(\sin x)^{\cos x}$
Answer
Let $y=x^{\sin x}+(\sin x)^{\cos x}$
Also, let $u=x^{\sin x}$ and $v=(\sin x)^{\cos x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=x^{\sin x}$
$\Rightarrow \log u=\log \left(x^{\sin x}\right)$
$\Rightarrow \log u=\sin x \log x$
Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(\sin x) \cdot \log x+\sin x \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d u}{d x}=u\left[\cos x \log x+\sin x \cdot \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=x^{\sin x}\left[\cos x \log x+\frac{\sin x}{x}\right]$
$v=(\sin x)^{\cos x}$
$\Rightarrow \log v=\log (\sin x)^{\cos x}$
$\Rightarrow \log v=\cos x \log (\sin x)$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \frac{d v}{d x}=\frac{d}{d x}(\cos x) \times \log (\sin x)+\cos x \times \frac{d}{d x}[\log (\sin x)]$
$\Rightarrow \frac{d v}{d x}=v\left[-\sin x \cdot \log (\sin x)+\cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{d v}{d x}=(\sin x)^{\cos x}\left[-\sin x \log \sin x+\frac{\cos x}{\sin x} \cos x\right]$
$\Rightarrow \frac{d v}{d x}=(\sin x)^{\cos x}[-\sin x \log \sin x+\cot x \cos x]$
$\Rightarrow \frac{d v}{d x}=(\sin x)^{\cos x}[\cot x \cos x-\sin x \log \sin x]$
From (1), (2), and (3), we obtain
$\frac{d y}{d x}=x^{\sin x}\left(\cos x \log x+\frac{\sin x}{x}\right)+(\sin x)^{\cos x}[\cos x \cot x-\sin x \log \sin x]$

Question 10:

Differentiate the function with respect to x.
$x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$
Answer
Let $y=x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$
Also, let $u=x^{x \cos x}$ and $v=\frac{x^{2}+1}{x^{2}-1}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=x^{x \cos x}$
$\Rightarrow \log u=\log \left(x^{x \cos x}\right)$
$\Rightarrow \log u=x \cos x \log x$
Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \cdot \cos x \cdot \log x+x \cdot \frac{d}{d x}(\cos x) \cdot \log x+x \cos x \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d u}{d x}=u\left[1 \cdot \cos x \cdot \log x+x \cdot(-\sin x) \log x+x \cos x \cdot \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=x^{x \operatorname{cosx} x}(\cos x \log x-x \sin x \log x+\cos x)$
$\Rightarrow \frac{d u}{d x}=x^{x \cos x}[\cos x(1+\log x)-x \sin x \log x]$
$v=\frac{x^{2}+1}{x^{2}-1}$
$\Rightarrow \log v=\log \left(x^{2}+1\right)-\log \left(x^{2}-1\right)$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \frac{d v}{d x}=\frac{2 x}{x^{2}+1}-\frac{2 x}{x^{2}-1}$
$\Rightarrow \frac{d v}{d x}=v\left[\frac{2 x\left(x^{2}-1\right)-2 x\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{2}-1\right)}\right]$
$\Rightarrow \frac{d v}{d x}=\frac{x^{2}+1}{x^{2}-1} \times\left[\frac{-4 x}{\left(x^{2}+1\right)\left(x^{2}-1\right)}\right]$
$\Rightarrow \frac{d v}{d x}=\frac{-4 x}{\left(x^{2}-1\right)^{2}}$
From (1), (2), and (3), we obtain
$\frac{d y}{d x}=x^{x \cos x}[\cos x(1+\log x)-x \sin x \log x]-\frac{4 x}{\left(x^{2}-1\right)^{2}}$

Question 11:

Differentiate the function with respect to x.
$(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$

Answer
Let $y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$
Also, let $u=(x \cos x)^{x}$ and $v=(x \sin x)^{\frac{1}{x}}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=(x \cos x)^{x}$
$\Rightarrow \log u=\log (x \cos x)^{x}$
$\Rightarrow \log u=x \log (x \cos x)$
$\Rightarrow \log u=x[\log x+\log \cos x]$
$\Rightarrow \log u=x \log x+x \log \cos x$
Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x \log x)+\frac{d}{d x}(x \log \cos x) \\
& \Rightarrow \frac{d u}{d x}=u\left[\left\{\log x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log x)\right\}+\left\{\log \cos x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log \cos x)\right\}\right] \\
& \Rightarrow \frac{d u}{d x}=(x \cos x)^{x}\left[\left(\log x \cdot 1+x \cdot \frac{1}{x}\right)+\left\{\log \cos x \cdot 1+x \cdot \frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)\right\}\right] \\
& \Rightarrow \frac{d u}{d x}=(x \cos x)^{x}\left[(\log x+1)+\left\{\log \cos x+\frac{x}{\cos x} \cdot(-\sin x)\right\}\right] \\
& \Rightarrow \frac{d u}{d x}=(x \cos x)^{x}[(1+\log x)+(\log \cos x-x \tan x)] \\
& \Rightarrow \frac{d u}{d x}=(x \cos x)^{x}[1-x \tan x+(\log x+\log \cos x)] \\
& \Rightarrow \frac{d u}{d x}=(x \cos x)^{x}[1-x \tan x+\log (x \cos x)] \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& v=(x \sin x)^{\frac{1}{x}} \\
& \Rightarrow \log v=\log (x \sin x)^{\frac{1}{x}} \\
& \Rightarrow \log v=\frac{1}{x} \log (x \sin x) \\
& \Rightarrow \log v=\frac{1}{x}(\log x+\log \sin x) \\
& \Rightarrow \log v=\frac{1}{x} \log x+\frac{1}{x} \log \sin x
\end{aligned}
$$

Differentiating both sides with respect to x, we obtain

$$
\begin{align*}
& \frac{1}{v} \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{x} \log x\right)+\frac{d}{d x}\left[\frac{1}{x} \log (\sin x)\right] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\left[\log x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)+\frac{1}{x} \cdot \frac{d}{d x}(\log x)\right]+\left[\log (\sin x) \cdot \frac{d}{d x}\left(\frac{1}{x}\right)+\frac{1}{x} \cdot \frac{d}{d x}\{\log (\sin x)\}\right] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\left[\log x \cdot\left(-\frac{1}{x^{2}}\right)+\frac{1}{x} \cdot \frac{1}{x}\right]+\left[\log (\sin x) \cdot\left(-\frac{1}{x^{2}}\right)+\frac{1}{x} \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right] \\
& \Rightarrow \frac{1}{v} \frac{d v}{d x}=\frac{1}{x^{2}}(1-\log x)+\left[-\frac{\log (\sin x)}{x^{2}}+\frac{1}{x \sin x} \cdot \cos x\right] \\
& \Rightarrow \frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log x}{x^{2}}+\frac{-\log (\sin x)+x \cot x}{x^{2}}\right] \\
& \Rightarrow \frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log x-\log (\sin x)+x \cot x}{x^{2}}\right] \\
& \Rightarrow \frac{d v}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log (x \sin x)+x \cot x}{x^{2}}\right] \tag{3}
\end{align*}
$$

From (1), (2), and (3), we obtain

$$
\frac{d y}{d x}=(x \cos x)^{x}[1-x \tan x+\log (x \cos x)]+(x \sin x)^{\frac{1}{x}}\left[\frac{x \cot x+1-\log (x \sin x)}{x^{2}}\right]
$$

Question 12:

Find $\frac{d y}{d x}$ of function.
$x^{y}+y^{x}=1$
Answer
The given function is $x^{y}+y^{x}=1$
Let $x^{y}=u$ and $y^{x}=v$
Then, the function becomes $u+v=1$
$\therefore \frac{d u}{d x}+\frac{d v}{d x}=0$
$u=x^{y}$
$\Rightarrow \log u=\log \left(x^{y}\right)$
$\Rightarrow \log u=y \log x$
Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\log x \frac{d y}{d x}+y \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d u}{d x}=u\left[\log x \frac{d y}{d x}+y \cdot \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=x^{y}\left(\log x \frac{d y}{d x}+\frac{y}{x}\right)$
$v=y^{x}$
$\Rightarrow \log v=\log \left(y^{x}\right)$
$\Rightarrow \log v=x \log y$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\log y \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log y)$
$\Rightarrow \frac{d v}{d x}=v\left(\log y \cdot 1+x \cdot \frac{1}{y} \cdot \frac{d y}{d x}\right)$
$\Rightarrow \frac{d v}{d x}=y^{x}\left(\log y+\frac{x}{y} \frac{d y}{d x}\right)$
From (1), (2), and (3), we obtain
$x^{y}\left(\log x \frac{d y}{d x}+\frac{y}{x}\right)+y^{x}\left(\log y+\frac{x}{y} \frac{d y}{d x}\right)=0$
$\Rightarrow\left(x^{y} \log x+x y^{x-1}\right) \frac{d y}{d x}=-\left(y x^{y-1}+y^{x} \log y\right)$
$\therefore \frac{d y}{d x}=-\frac{y x^{y-1}+y^{x} \log y}{x^{y} \log x+x y^{x-1}}$

Question 13:

Find $\frac{d y}{d x}$ of function.
$y^{x}=x^{y}$
Answer
The given function is $y^{x}=x^{y}$
Taking logarithm on both the sides, we obtain
$x \log y=y \log x$
Differentiating both sides with respect to x, we obtain

$$
\begin{aligned}
& \log y \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log y)=\log x \cdot \frac{d}{d x}(y)+y \cdot \frac{d}{d x}(\log x) \\
& \Rightarrow \log y \cdot 1+x \cdot \frac{1}{y} \cdot \frac{d y}{d x}=\log x \cdot \frac{d y}{d x}+y \cdot \frac{1}{x} \\
& \Rightarrow \log y+\frac{x}{y} \frac{d y}{d x}=\log x \frac{d y}{d x}+\frac{y}{x} \\
& \Rightarrow\left(\frac{x}{y}-\log x\right) \frac{d y}{d x}=\frac{y}{x}-\log y \\
& \Rightarrow\left(\frac{x-y \log x}{y}\right) \frac{d y}{d x}=\frac{y-x \log y}{x} \\
& \therefore \frac{d y}{d x}=\frac{y}{x}\left(\frac{y-x \log y}{x-y \log x}\right)
\end{aligned}
$$

Question 14:

Find $\frac{d y}{d x}$ of function.
$(\cos x)^{y}=(\cos y)^{x}$

Answer

The given function is $(\cos x)^{y}=(\cos y)^{x}$
Taking logarithm on both the sides, we obtain
$y \log \cos x=x \log \cos y$
Differentiating both sides, we obtain
$\log \cos x \cdot \frac{d y}{d x}+y \cdot \frac{d}{d x}(\log \cos x)=\log \cos y \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log \cos y)$
$\Rightarrow \log \cos x \frac{d y}{d x}+y \cdot \frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)=\log \cos y \cdot 1+x \cdot \frac{1}{\cos y} \cdot \frac{d}{d x}(\cos y)$
$\Rightarrow \log \cos x \frac{d y}{d x}+\frac{y}{\cos x} \cdot(-\sin x)=\log \cos y+\frac{x}{\cos y}(-\sin y) \cdot \frac{d y}{d x}$
$\Rightarrow \log \cos x \frac{d y}{d x}-y \tan x=\log \cos y-x \tan y \frac{d y}{d x}$
$\Rightarrow(\log \cos x+x \tan y) \frac{d y}{d x}=y \tan x+\log \cos y$
$\therefore \frac{d y}{d x}=\frac{y \tan x+\log \cos y}{x \tan y+\log \cos x}$

Question 15:

Find $\frac{d y}{d x}$ of function.
$x y=e^{(x-y)}$

Answer

The given function is $x y=e^{(x-y)}$
Taking logarithm on both the sides, we obtain

$$
\begin{aligned}
& \log (x y)=\log \left(e^{x-y}\right) \\
& \Rightarrow \log x+\log y=(x-y) \log e \\
& \Rightarrow \log x+\log y=(x-y) \times 1 \\
& \Rightarrow \log x+\log y=x-y
\end{aligned}
$$

Differentiating both sides with respect to x, we obtain
$\frac{d}{d x}(\log x)+\frac{d}{d x}(\log y)=\frac{d}{d x}(x)-\frac{d y}{d x}$
$\Rightarrow \frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=1-\frac{d y}{d x}$
$\Rightarrow\left(1+\frac{1}{y}\right) \frac{d y}{d x}=1-\frac{1}{x}$
$\Rightarrow\left(\frac{y+1}{y}\right) \frac{d y}{d x}=\frac{x-1}{x}$
$\therefore \frac{d y}{d x}=\frac{y(x-1)}{x(y+1)}$

Question 16:

Find the derivative of the function given by $f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)$ and hence find $f^{\prime}(1)$.

Answer
The given relationship is $f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)$
Taking logarithm on both the sides, we obtain

$$
\log f(x)=\log (1+x)+\log \left(1+x^{2}\right)+\log \left(1+x^{4}\right)+\log \left(1+x^{8}\right)
$$

Differentiating both sides with respect to x, we obtain

$$
\begin{aligned}
& \frac{1}{f(x)} \cdot \frac{d}{d x}[f(x)]=\frac{d}{d x} \log (1+x)+\frac{d}{d x} \log \left(1+x^{2}\right)+\frac{d}{d x} \log \left(1+x^{4}\right)+\frac{d}{d x} \log \left(1+x^{8}\right) \\
& \Rightarrow \frac{1}{f(x)} \cdot f^{\prime}(x)=\frac{1}{1+x} \cdot \frac{d}{d x}(1+x)+\frac{1}{1+x^{2}} \cdot \frac{d}{d x}\left(1+x^{2}\right)+\frac{1}{1+x^{4}} \cdot \frac{d}{d x}\left(1+x^{4}\right)+\frac{1}{1+x^{8}} \cdot \frac{d}{d x}\left(1+x^{8}\right) \\
& \Rightarrow f^{\prime}(x)=f(x)\left[\frac{1}{1+x}+\frac{1}{1+x^{2}} \cdot 2 x+\frac{1}{1+x^{4}} \cdot 4 x^{3}+\frac{1}{1+x^{8}} \cdot 8 x^{7}\right] \\
& \therefore f^{\prime}(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left[\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}\right]
\end{aligned}
$$

$$
\text { Hence, } f^{\prime}(1)=(1+1)\left(1+1^{2}\right)\left(1+1^{4}\right)\left(1+1^{8}\right)\left[\frac{1}{1+1}+\frac{2 \times 1}{1+1^{2}}+\frac{4 \times 1^{3}}{1+1^{4}}+\frac{8 \times 1^{7}}{1+1^{8}}\right]
$$

$$
=2 \times 2 \times 2 \times 2\left[\frac{1}{2}+\frac{2}{2}+\frac{4}{2}+\frac{8}{2}\right]
$$

$$
=16 \times\left(\frac{1+2+4+8}{2}\right)
$$

$$
=16 \times \frac{15}{2}=120
$$

Question 17:

Differentiate $\left(x^{5}-5 x+8\right)\left(x^{3}+7 x+9\right)$ in three ways mentioned below
(i) By using product rule.
(ii) By expanding the product to obtain a single polynomial.
(iii By logarithmic differentiation.
Do they all give the same answer?
Answer
Let $y=\left(x^{5}-5 x+8\right)\left(x^{3}+7 x+9\right)$
(i)

Let $x^{2}-5 x+8=u$ and $x^{3}+7 x+9=v$

$$
\begin{aligned}
& \therefore y=u v \\
& \Rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot v+u \cdot \frac{d v}{d x} \quad \quad \quad \text { By using product rule) } \\
& \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x^{2}-5 x+8\right) \cdot\left(x^{3}+7 x+9\right)+\left(x^{2}-5 x+8\right) \cdot \frac{d}{d x}\left(x^{3}+7 x+9\right) \\
& \Rightarrow \frac{d y}{d x}=(2 x-5)\left(x^{3}+7 x+9\right)+\left(x^{2}-5 x+8\right)\left(3 x^{2}+7\right) \\
& \Rightarrow \frac{d y}{d x}=2 x\left(x^{3}+7 x+9\right)-5\left(x^{3}+7 x+9\right)+x^{2}\left(3 x^{2}+7\right)-5 x\left(3 x^{2}+7\right)+8\left(3 x^{2}+7\right) \\
& \Rightarrow \frac{d y}{d x}=\left(2 x^{4}+14 x^{2}+18 x\right)-5 x^{3}-35 x-45+\left(3 x^{4}+7 x^{2}\right)-15 x^{3}-35 x+24 x^{2}+56 \\
& \therefore \frac{d y}{d x}=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right) \\
& =x^{2}\left(x^{3}+7 x+9\right)-5 x\left(x^{3}+7 x+9\right)+8\left(x^{3}+7 x+9\right) \\
& =x^{5}+7 x^{3}+9 x^{2}-5 x^{4}-35 x^{2}-45 x+8 x^{3}+56 x+72 \\
& =x^{5}-5 x^{4}+15 x^{3}-26 x^{2}+11 x+72
\end{aligned}
$$

$$
\therefore \frac{d y}{d x}=\frac{d}{d x}\left(x^{5}-5 x^{4}+15 x^{3}-26 x^{2}+11 x+72\right)
$$

$$
=\frac{d}{d x}\left(x^{5}\right)-5 \frac{d}{d x}\left(x^{4}\right)+15 \frac{d}{d x}\left(x^{3}\right)-26 \frac{d}{d x}\left(x^{2}\right)+11 \frac{d}{d x}(x)+\frac{d}{d x}(72)
$$

$$
=5 x^{4}-5 \times 4 x^{3}+15 \times 3 x^{2}-26 \times 2 x+11 \times 1+0
$$

$$
=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11
$$

(iii) $y=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)$

Taking logarithm on both the sides, we obtain
$\log y=\log \left(x^{2}-5 x+8\right)+\log \left(x^{3}+7 x+9\right)$
Differentiating both sides with respect to x, we obtain

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=\frac{d}{d x} \log \left(x^{2}-5 x+8\right)+\frac{d}{d x} \log \left(x^{3}+7 x+9\right) \\
& \Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}-5 x+8} \cdot \frac{d}{d x}\left(x^{2}-5 x+8\right)+\frac{1}{x^{3}+7 x+9} \cdot \frac{d}{d x}\left(x^{3}+7 x+9\right) \\
& \Rightarrow \frac{d y}{d x}=y\left[\frac{1}{x^{2}-5 x+8} \times(2 x-5)+\frac{1}{x^{3}+7 x+9} \times\left(3 x^{2}+7\right)\right] \\
& \Rightarrow \frac{d y}{d x}=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\left[\frac{2 x-5}{x^{2}-5 x+8}+\frac{3 x^{2}+7}{x^{3}+7 x+9}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\left[\frac{(2 x-5)\left(x^{3}+7 x+9\right)+\left(3 x^{2}+7\right)\left(x^{2}-5 x+8\right)}{\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)}\right] \\
& \Rightarrow \frac{d y}{d x}=2 x\left(x^{3}+7 x+9\right)-5\left(x^{3}+7 x+9\right)+3 x^{2}\left(x^{2}-5 x+8\right)+7\left(x^{2}-5 x+8\right) \\
& \Rightarrow \frac{d y}{d x}=\left(2 x^{4}+14 x^{2}+18 x\right)-5 x^{3}-35 x-45+\left(3 x^{4}-15 x^{3}+24 x^{2}\right)+\left(7 x^{2}-35 x+56\right) \\
& \Rightarrow \frac{d y}{d x}=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11
\end{aligned}
$$

From the above three observations, it can be concluded that all the results of $\frac{d y}{d x}$ are same.

Question 18:

If u, v and w are functions of x, then show that

$$
\frac{d}{d x}(u \cdot v \cdot w)=\frac{d u}{d x} v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}
$$

in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Answer
Let $y=u \cdot v \cdot w=u .(v \cdot w)$
By applying product rule, we obtain
$\frac{d y}{d x}=\frac{d u}{d x} \cdot(v \cdot w)+u \cdot \frac{d}{d x}(v \cdot w)$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x} v \cdot w+u\left[\frac{d v}{d x} \cdot w+v \cdot \frac{d w}{d x}\right]$
(Again applying product rule)
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x} \cdot v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}$
By taking logarithm on both sides of the equation ${ }^{y=u \cdot v \cdot w}$, we obtain $\log y=\log u+\log v+\log w$

Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \cdot \frac{d y}{d x}=\frac{d}{d x}(\log u)+\frac{d}{d x}(\log v)+\frac{d}{d x}(\log w)$
$\Rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}$
$\Rightarrow \frac{d y}{d x}=y\left(\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=u \cdot v \cdot w \cdot\left(\frac{1}{u} \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \frac{d w}{d x}\right)$
$\therefore \frac{d y}{d x}=\frac{d u}{d x} \cdot v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}$

