Å

Class XII : Maths Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.6 - NCERT Books

Question 1:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$

$$x = 2at^2$$
, $v = at^4$

Answer

The given equations are $x = 2at^2$ and $y = at^4$

Then,
$$\frac{dx}{dt} = \frac{d}{dt} (2at^2) = 2a \cdot \frac{d}{dt} (t^2) = 2a \cdot 2t = 4at$$

 $\frac{dy}{dt} = \frac{d}{dt} (at^4) = a \cdot \frac{d}{dt} (t^4) = a \cdot 4 \cdot t^3 = 4at^3$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{4at^3}{4at} = t^2$

Question 2:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$
.
 $x = a \cos \theta$, $y = b \cos \theta$
Answer
The given equations are $x = a \cos \theta$ and $y = b \cos \theta$
Then, $\frac{dx}{d\theta} = \frac{d}{d\theta} (a \cos \theta) = a(-\sin \theta) = -a \sin \theta$
 $\frac{dy}{d\theta} = \frac{d}{d\theta} (b \cos \theta) = b(-\sin \theta) = -b \sin \theta$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{-b \sin \theta}{-a \sin \theta} = \frac{b}{a}$

Question 3:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$
.
 $x = \sin t$, $y = \cos 2t$
Answer
The given equations are $x = \sin t$ and $y = \cos 2t$
Then, $\frac{dx}{dt} = \frac{d}{dt}(\sin t) = \cos t$
 $\frac{dy}{dt} = \frac{d}{dt}(\sin t) = \cos t$

$$\frac{dy}{dt} = \frac{d}{dt}(\cos 2t) = -\sin 2t \cdot \frac{d}{dt}(2t) = -2\sin 2t$$
$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-2\sin 2t}{\cos t} = \frac{-2\cdot 2\sin t\cos t}{\cos t} = -4\sin t$$

Question 4:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dx}{dx}$$

dv

$$x = 4t, y = \frac{4}{t}$$

Answer

$$x = 4t$$
 and $y = \frac{4}{t}$

The given equations are

$$\frac{dx}{dt} = \frac{d}{dt}(4t) = 4$$

$$\frac{dy}{dt} = \frac{d}{dt}\left(\frac{4}{t}\right) = 4 \cdot \frac{d}{dt}\left(\frac{1}{t}\right) = 4 \cdot \left(\frac{-1}{t^2}\right) = \frac{-4}{t^2}$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-4}{t^2}\right)}{4} = \frac{-1}{t^2}$$

Å

Question 5:

If x and y are connected parametrically by the equation, without eliminating the

 $\frac{dy}{dx}$

parameter, find dx .

 $x = \cos \theta - \cos 2\theta, y = \sin \theta - \sin 2\theta$

Answer

The given equations are $x = \cos \theta - \cos 2\theta$ and $y = \sin \theta - \sin 2\theta$

Then,
$$\frac{dx}{d\theta} = \frac{d}{d\theta} (\cos \theta - \cos 2\theta) = \frac{d}{d\theta} (\cos \theta) - \frac{d}{d\theta} (\cos 2\theta)$$

 $= -\sin \theta - (-2\sin 2\theta) = 2\sin 2\theta - \sin \theta$
 $\frac{dy}{d\theta} = \frac{d}{d\theta} (\sin \theta - \sin 2\theta) = \frac{d}{d\theta} (\sin \theta) - \frac{d}{d\theta} (\sin 2\theta)$
 $= \cos \theta - 2\cos 2\theta$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{\cos \theta - 2\cos 2\theta}{2\sin 2\theta - \sin \theta}$

Question 6:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$
.
 $x = a(\theta - \sin \theta), \ y = a(1 + \cos \theta)$

Answer

The given equations are
$$x = a(\theta - \sin \theta)$$
 and $y = a(1 + \cos \theta)$
Then, $\frac{dx}{d\theta} = a \left[\frac{d}{d\theta}(\theta) - \frac{d}{d\theta}(\sin \theta) \right] = a(1 - \cos \theta)$
 $\frac{dy}{d\theta} = a \left[\frac{d}{d\theta}(1) + \frac{d}{d\theta}(\cos \theta) \right] = a \left[0 + (-\sin \theta) \right] = -a \sin \theta$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta} \right)}{\left(\frac{dx}{d\theta} \right)} = \frac{-a \sin \theta}{a(1 - \cos \theta)} = \frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} = -\cot \frac{\theta}{2}$

Question 7:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$
.

$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, \ y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$$

Answer

The given equations are
$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$$
 and $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$

Class XII MATH

Then,
$$\frac{dx}{dt} = \frac{d}{dt} \left[\frac{\sin^3 t}{\sqrt{\cos 2t}} \right]$$
$$= \frac{\sqrt{\cos 2t} \cdot \frac{d}{dt} (\sin^3 t) - \sin^3 t \cdot \frac{d}{dt} \sqrt{\cos 2t}}{\cos 2t}$$
$$= \frac{\sqrt{\cos 2t} \cdot 3\sin^2 t \cdot \frac{d}{dt} (\sin t) - \sin^3 t \times \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} (\cos 2t)}{\cos 2t}$$
$$= \frac{3\sqrt{\cos 2t} \cdot \sin^2 t \cos t - \frac{\sin^3 t}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$$
$$= \frac{3\cos 2t \sin^2 t \cos t + \sin^3 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$$
$$\frac{dy}{dt} = \frac{d}{dt} \left[\frac{\cos^3 t}{\sqrt{\cos 2t}} \right]$$
$$= \frac{\sqrt{\cos 2t} \cdot \frac{d}{dt} (\cos^3 t) - \cos^3 t \cdot \frac{d}{dt} (\sqrt{\cos 2t})}{\cos 2t}$$
$$= \frac{\sqrt{\cos 2t} \cdot 3\cos^2 t \cdot \frac{d}{dt} (\cos t) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} (\cos 2t)}{\cos 2t}$$
$$= \frac{3\sqrt{\cos 2t} \cdot \cos^2 t (-\sin t) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$$
$$= \frac{3\sqrt{\cos 2t} \cdot \cos^2 t (-\sin t) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$$
$$= \frac{3\sqrt{\cos 2t} \cdot \cos^2 t (-\sin t) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$$

Class XII MATH

www.esaral.com

5

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-3\cos 2t \cdot \cos^2 t \cdot \sin t + \cos^3 t \sin 2t}{3\cos 2t \sin^2 t \cos t + \sin^3 t \sin 2t}$$

$$= \frac{-3\cos 2t \cdot \cos^2 t \cdot \sin t + \cos^3 t (2\sin t \cos t)}{3\cos 2t \sin^2 t \cos t + \sin^3 t (2\sin t \cos t)}$$

$$= \frac{\sin t \cos t \left[-3\cos 2t \cdot \cos t + 2\cos^3 t\right]}{\sin t \cos t \left[3\cos 2t \sin t + 2\sin^3 t\right]}$$

$$= \frac{\left[-3(2\cos^2 t - 1)\cos t + 2\cos^3 t\right]}{\left[3(1 - 2\sin^2 t)\sin t + 2\sin^3 t\right]}$$

$$= \frac{-4\cos^3 t + 3\cos t}{3\sin t - 4\sin^3 t}$$

$$= -\cot 3t$$

$$\begin{bmatrix} \cos 3t = 4\cos^3 t - 3\cos t, \\\sin 3t = 3\sin t - 4\sin^3 t \end{bmatrix}$$

Question 8:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$
.
 $x = a \left(\cos t + \log \tan \frac{t}{2} \right), y = a \sin t$

Answer

$$x = a \left(\cos t + \log \tan \frac{t}{2} \right) \text{ and } y = a \sin t$$

The given equations are

Then,
$$\frac{dx}{dt} = a \cdot \left[\frac{d}{dt} (\cos t) + \frac{d}{dt} \left(\log \tan \frac{t}{2} \right) \right]$$

$$= a \left[-\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{dt} \left(\tan \frac{t}{2} \right) \right]$$

$$= a \left[-\sin t + \cot \frac{t}{2} \cdot \sec^2 \frac{t}{2} \cdot \frac{d}{dt} \left(\frac{t}{2} \right) \right]$$

$$= a \left[-\sin t + \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2} \right]$$

$$= a \left[-\sin t + \frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}} \right]$$

$$= a \left[-\sin t + \frac{1}{\sin t} \right]$$

$$= a \left(-\sin t + \frac{1}{\sin t} \right)$$

$$= a \left(\frac{-\sin t + 1}{\sin t} \right)$$

$$= a \left(\frac{-\sin^2 t + 1}{\sin t} \right)$$

$$= a \frac{\cos^2 t}{\sin t}$$

$$\frac{dy}{dt} = a \frac{d}{dt} (\sin t) = a \cos t$$

$$\therefore \frac{dy}{dx} = \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \right) = \frac{a \cos t}{\left(a \frac{\cos^2 t}{\sin t} \right)} = \frac{\sin t}{\cos t} = \tan t$$

Question 9:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find $\frac{dy}{dx}$. $x = a \sec \theta, \ y = b \tan \theta$

***Saral**

Answer

The given equations are $x = a \sec \theta$ and $y = b \tan \theta$

Then,
$$\frac{dx}{d\theta} = a \cdot \frac{d}{d\theta} (\sec \theta) = a \sec \theta \tan \theta$$

 $\frac{dy}{d\theta} = b \cdot \frac{d}{d\theta} (\tan \theta) = b \sec^2 \theta$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \sec \theta \cot \theta = \frac{b \cos \theta}{a \cos \theta \sin \theta} = \frac{b}{a} \times \frac{1}{\sin \theta} = \frac{b}{a} \operatorname{cosec} \theta$

Question 10:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find
$$\frac{dy}{dx}$$
.
 $x = a(\cos\theta + \theta \sin\theta), y = a(\sin\theta - \theta \cos\theta)$

Answer

The given equations are $x = a(\cos\theta + \theta\sin\theta)$ and $y = a(\sin\theta - \theta\cos\theta)$

Then,
$$\frac{dx}{d\theta} = a \left[\frac{d}{d\theta} \cos \theta + \frac{d}{d\theta} (\theta \sin \theta) \right] = a \left[-\sin \theta + \theta \frac{d}{d\theta} (\sin \theta) + \sin \theta \frac{d}{d\theta} (\theta) \right]$$

$$= a \left[-\sin \theta + \theta \cos \theta + \sin \theta \right] = a \theta \cos \theta$$

$$\frac{dy}{d\theta} = a \left[\frac{d}{d\theta} (\sin \theta) - \frac{d}{d\theta} (\theta \cos \theta) \right] = a \left[\cos \theta - \left\{ \theta \frac{d}{d\theta} (\cos \theta) + \cos \theta \cdot \frac{d}{d\theta} (\theta) \right\} \right]$$

$$= a \left[\cos \theta + \theta \sin \theta - \cos \theta \right]$$

$$= a \theta \sin \theta$$

$$(dy)$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{a\theta\sin\theta}{a\theta\cos\theta} = \tan\theta$$

Ă

Question 11:

$$x = \sqrt{a^{\sin^{-1}t}}, y = \sqrt{a^{\cos^{-1}t}}, \text{ show that } \frac{dy}{dx} = -\frac{y}{x}$$

Answer

The given equations are $x = \sqrt{a^{\sin^{-1}t}}$ and $y = \sqrt{a^{\cos^{-1}t}}$ $x = \sqrt{a^{\sin^{-1}t}}$ and $y = \sqrt{a^{\cos^{-1}t}}$ $\Rightarrow x = (a^{\sin^{-1}t})^{\frac{1}{2}}$ and $y = (a^{\cos^{-1}t})^{\frac{1}{2}}$ $\Rightarrow x = a^{\frac{1}{2}\sin^{-1}t}$ and $y = a^{\frac{1}{2}\cos^{-1}t}$ Consider $x = a^{\frac{1}{2}\sin^{-1}t}$

Taking logarithm on both the sides, we obtain

$$\log x = \frac{1}{2} \sin^{-1} t \log a$$
$$\therefore \frac{1}{x} \cdot \frac{dx}{dt} = \frac{1}{2} \log a \cdot \frac{d}{dt} (\sin^{-1} t)$$
$$\Rightarrow \frac{dx}{dt} = \frac{x}{2} \log a \cdot \frac{1}{\sqrt{1 - t^2}}$$
$$\Rightarrow \frac{dx}{dt} = \frac{x \log a}{2\sqrt{1 - t^2}}$$

Then, consider $y = a^{\frac{1}{2}\cos^{-1}t}$

Taking logarithm on both the sides, we obtain

$$\log y = \frac{1}{2} \cos^{-1} t \log a$$
$$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2} \log a \cdot \frac{d}{dt} (\cos^{-1} t)$$
$$\Rightarrow \frac{dy}{dt} = \frac{y \log a}{2} \cdot \left(\frac{-1}{\sqrt{1 - t^2}}\right)$$
$$\Rightarrow \frac{dy}{dt} = \frac{-y \log a}{2\sqrt{1 - t^2}}$$
$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-y \log a}{2\sqrt{1 - t^2}}\right)}{\left(\frac{x \log a}{2\sqrt{1 - t^2}}\right)} = -\frac{y}{x}$$

Hence, proved.