Class XII : Maths

Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.6 - NCERT Books

Question 1:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=2 a t^{2}, y=a t^{4}$
Answer
The given equations are $x=2 a t^{2}$ and $y=a t^{4}$
Then, $\frac{d x}{d t}=\frac{d}{d t}\left(2 a t^{2}\right)=2 a \cdot \frac{d}{d t}\left(t^{2}\right)=2 a \cdot 2 t=4 a t$
$\frac{d y}{d t}=\frac{d}{d t}\left(a t^{4}\right)=a \cdot \frac{d}{d t}\left(t^{4}\right)=a \cdot 4 \cdot t^{3}=4 a t^{3}$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{4 a t^{3}}{4 a t}=t^{2}$

Question 2:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=a \cos \theta, y=b \cos \theta$
Answer
The given equations are $x=a \cos \theta$ and $y=b \cos \theta$
Then, $\frac{d x}{d \theta}=\frac{d}{d \theta}(a \cos \theta)=a(-\sin \theta)=-a \sin \theta$
$\frac{d y}{d \theta}=\frac{d}{d \theta}(b \cos \theta)=b(-\sin \theta)=-b \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{-b \sin \theta}{-a \sin \theta}=\frac{b}{a}$

Question 3:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=\sin t, y=\cos 2 t$
Answer
The given equations are $x=\sin t$ and $y=\cos 2 t$
Then, $\frac{d x}{d t}=\frac{d}{d t}(\sin t)=\cos t$
$\frac{d y}{d t}=\frac{d}{d t}(\cos 2 t)=-\sin 2 t \cdot \frac{d}{d t}(2 t)=-2 \sin 2 t$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{-2 \sin 2 t}{\cos t}=\frac{-2 \cdot 2 \sin t \cos t}{\cos t}=-4 \sin t$

Question 4:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=4 t, y=\frac{4}{t}$
Answer
The given equations are $x=4 t$ and $y=\frac{4}{t}$
$\frac{d x}{d t}=\frac{d}{d t}(4 t)=4$
$\frac{d y}{d t}=\frac{d}{d t}\left(\frac{4}{t}\right)=4 \cdot \frac{d}{d t}\left(\frac{1}{t}\right)=4 \cdot\left(\frac{-1}{t^{2}}\right)=\frac{-4}{t^{2}}$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\left(\frac{-4}{t^{2}}\right)}{4}=\frac{-1}{t^{2}}$

Question 5:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.
$x=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \theta$
Answer
The given equations are $x=\cos \theta-\cos 2 \theta$ and $y=\sin \theta-\sin 2 \theta$
Then, $\frac{d x}{d \theta}=\frac{d}{d \theta}(\cos \theta-\cos 2 \theta)=\frac{d}{d \theta}(\cos \theta)-\frac{d}{d \theta}(\cos 2 \theta)$

$$
=-\sin \theta-(-2 \sin 2 \theta)=2 \sin 2 \theta-\sin \theta
$$

$$
\frac{d y}{d \theta}=\frac{d}{d \theta}(\sin \theta-\sin 2 \theta)=\frac{d}{d \theta}(\sin \theta)-\frac{d}{d \theta}(\sin 2 \theta)
$$

$$
=\cos \theta-2 \cos 2 \theta
$$

$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{\cos \theta-2 \cos 2 \theta}{2 \sin 2 \theta-\sin \theta}$

Question 6:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=a(\theta-\sin \theta), y=a(1+\cos \theta)$

Answer
The given equations are $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$
Then, $\frac{d x}{d \theta}=a\left[\frac{d}{d \theta}(\theta)-\frac{d}{d \theta}(\sin \theta)\right]=a(1-\cos \theta)$
$\frac{d y}{d \theta}=a\left[\frac{d}{d \theta}(1)+\frac{d}{d \theta}(\cos \theta)\right]=a[0+(-\sin \theta)]=-a \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{-a \sin \theta}{a(1-\cos \theta)}=\frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=-\cot \frac{\theta}{2}$

Question 7:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.
$x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}, y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}$
Answer
The given equations are $x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}$ and $y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}$

Then, $\frac{d x}{d t}=\frac{d}{d t}\left[\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}\right]$

$$
\begin{aligned}
= & \frac{\sqrt{\cos 2 t} \cdot \frac{d}{d t}\left(\sin ^{3} t\right)-\sin ^{3} t \cdot \frac{d}{d t} \sqrt{\cos 2 t}}{\cos 2 t} \\
& =\frac{\sqrt{\cos 2 t} \cdot 3 \sin ^{2} t \cdot \frac{d}{d t}(\sin t)-\sin ^{3} t \times \frac{1}{2 \sqrt{\cos 2 t}} \cdot \frac{d}{d t}(\cos 2 t)}{\cos 2 t} \\
& =\frac{3 \sqrt{\cos 2 t} \cdot \sin ^{2} t \cos t-\frac{\sin ^{3} t}{2 \sqrt{\cos 2 t}} \cdot(-2 \sin 2 t)}{\cos 2 t} \\
& =\frac{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t \sin 2 t}{\cos 2 t \sqrt{\cos 2 t}} \\
\frac{d y}{d t}= & \frac{d}{d t}\left[\frac{\cos { }^{3} t}{\left.\sqrt{\cos ^{3} t}\right]}\right] \\
= & \frac{\sqrt{\cos 2 t} \cdot \frac{d}{d t}\left(\cos ^{3} t\right)-\cos { }^{3} t \cdot \frac{d}{d t}(\sqrt{\cos 2 t})}{\cos 2 t} \\
= & \frac{\sqrt{\cos 2 t} \cdot 3 \cos ^{2} t \cdot \frac{d}{d t}(\cos t)-\cos { }^{3} t \cdot \frac{1}{2 \sqrt{\cos 2 t}} \cdot \frac{d}{d t}(\cos 2 t)}{\cos 2 t} \\
= & \frac{-3 \sqrt{\cos 2 t} \cdot \cos ^{2} t(-\sin t)-\cos 2 t \cdot \cos ^{2} t \cdot \frac{1}{2 \sqrt{\cos 2 t} t+\cos 3} \cdot(-2 \sin 2 t)}{\cos ^{3} 2 t \cdot \sqrt{\cos 2 t}} \\
= & \frac{\cos 2 t}{\cos ^{3}}
\end{aligned}
$$

$$
\begin{array}{rlr}
\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)} & =\frac{-3 \cos 2 t \cdot \cos ^{2} t \cdot \sin t+\cos ^{3} t \sin 2 t}{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t \sin 2 t} \\
& =\frac{-3 \cos 2 t \cdot \cos ^{2} t \cdot \sin t+\cos ^{3} t(2 \sin t \cos t)}{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t(2 \sin t \cos t)} \\
& =\frac{\sin t \cos t\left[-3 \cos 2 t \cdot \cos t+2 \cos ^{3} t\right]}{\sin t \cos t\left[3 \cos 2 t \sin t+2 \sin ^{3} t\right]} & \\
& =\frac{\left[-3\left(2 \cos ^{2} t-1\right) \cos t+2 \cos ^{3} t\right]}{\left[3\left(1-2 \sin ^{2} t\right) \sin t+2 \sin ^{3} t\right]} & {\left[\begin{array}{l}
\cos 2 t=\left(2 \cos ^{2} t-1\right), \\
\cos 2 t=\left(1-2 \sin ^{2} t\right)
\end{array}\right]} \\
& =\frac{-4 \cos 3^{3} t+3 \cos t}{3 \sin t-4 \sin ^{3} t} & {\left[\begin{array}{l}
\cos 3 t=4 \cos ^{3} t-3 \cos t \\
\sin 3 t=3 \sin t-4 \sin 3
\end{array}\right]} \\
& =\frac{-\cos 3 t}{\sin 3 t} &
\end{array}
$$

Question 8:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \sin t$
Answer
The given equations are $x=a\left(\cos t+\log \tan \frac{t}{2}\right)$ and $y=a \sin t$

Then, $\frac{d x}{d t}=a \cdot\left[\frac{d}{d t}(\cos t)+\frac{d}{d t}\left(\log \tan \frac{t}{2}\right)\right]$

$$
\begin{aligned}
& =a\left[-\sin t+\frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{d t}\left(\tan \frac{t}{2}\right)\right] \\
& =a\left[-\sin t+\cot \frac{t}{2} \cdot \sec ^{2} \frac{t}{2} \cdot \frac{d}{d t}\left(\frac{t}{2}\right)\right]
\end{aligned}
$$

$$
=a\left[-\sin t+\frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos ^{2} \frac{t}{2}} \times \frac{1}{2}\right]
$$

$$
=a\left[-\sin t+\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right]
$$

$$
=a\left(-\sin t+\frac{1}{\sin t}\right)
$$

$$
=a\left(\frac{-\sin ^{2} t+1}{\sin t}\right)
$$

$$
=a \frac{\cos ^{2} t}{\sin t}
$$

$\frac{d y}{d t}=a \frac{d}{d t}(\sin t)=a \cos t$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{a \cos t}{\left(a \frac{\cos ^{2} t}{\sin t}\right)}=\frac{\sin t}{\cos t}=\tan t$

Question 9:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=a \sec \theta, y=b \tan \theta$

Answer
The given equations are $x=a \sec \theta$ and $y=b \tan \theta$
Then, $\frac{d x}{d \theta}=a \cdot \frac{d}{d \theta}(\sec \theta)=a \sec \theta \tan \theta$
$\frac{d y}{d \theta}=b \cdot \frac{d}{d \theta}(\tan \theta)=b \sec ^{2} \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta}=\frac{b}{a} \sec \theta \cot \theta=\frac{b \cos \theta}{a \cos \theta \sin \theta}=\frac{b}{a} \times \frac{1}{\sin \theta}=\frac{b}{a} \operatorname{cosec} \theta$

Question 10:

If x and y are connected parametrically by the equation, without eliminating the
parameter, find $\frac{d y}{d x}$.
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$

Answer

The given equations are $x=a(\cos \theta+\theta \sin \theta)$ and $y=a(\sin \theta-\theta \cos \theta)$
Then, $\frac{d x}{d \theta}=a\left[\frac{d}{d \theta} \cos \theta+\frac{d}{d \theta}(\theta \sin \theta)\right]=a\left[-\sin \theta+\theta \frac{d}{d \theta}(\sin \theta)+\sin \theta \frac{d}{d \theta}(\theta)\right]$
$=a[-\sin \theta+\theta \cos \theta+\sin \theta]=a \theta \cos \theta$
$\frac{d y}{d \theta}=a\left[\frac{d}{d \theta}(\sin \theta)-\frac{d}{d \theta}(\theta \cos \theta)\right]=a\left[\cos \theta-\left\{\theta \frac{d}{d \theta}(\cos \theta)+\cos \theta \cdot \frac{d}{d \theta}(\theta)\right\}\right]$
$=a[\cos \theta+\theta \sin \theta-\cos \theta]$
$=a \theta \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta$

Question 11:

If $x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}$, show that $\frac{d y}{d x}=-\frac{y}{x}$
Answer
The given equations are $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$
$x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$
$\Rightarrow x=\left(a^{\sin ^{-1} t}\right)^{\frac{1}{2}}$ and $y=\left(a^{\cos ^{-1} t}\right)^{\frac{1}{2}}$
$\Rightarrow x=a^{\frac{1}{2} \sin ^{-1} t}$ and $y=a^{\frac{1}{2} \cos ^{-1} t}$
Consider $x=a^{\frac{1}{2} \sin ^{-1},}$
Taking logarithm on both the sides, we obtain
$\log x=\frac{1}{2} \sin ^{-1} t \log a$
$\therefore \frac{1}{x} \cdot \frac{d x}{d t}=\frac{1}{2} \log a \cdot \frac{d}{d t}\left(\sin ^{-1} t\right)$
$\Rightarrow \frac{d x}{d t}=\frac{x}{2} \log a \cdot \frac{1}{\sqrt{1-t^{2}}}$
$\Rightarrow \frac{d x}{d t}=\frac{x \log a}{2 \sqrt{1-t^{2}}}$
Then, consider $y=a^{\frac{1}{2} \cos ^{-1} t}$
Taking logarithm on both the sides, we obtain
$\log y=\frac{1}{2} \cos ^{-1} t \log a$
$\therefore \frac{1}{y} \cdot \frac{d y}{d x}=\frac{1}{2} \log a \cdot \frac{d}{d t}\left(\cos ^{-1} t\right)$
$\Rightarrow \frac{d y}{d t}=\frac{y \log a}{2} \cdot\left(\frac{-1}{\sqrt{1-t^{2}}}\right)$
$\Rightarrow \frac{d y}{d t}=\frac{-y \log a}{2 \sqrt{1-t^{2}}}$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\left(\frac{-y \log a}{2 \sqrt{1-t^{2}}}\right)}{\left(\frac{x \log a}{2 \sqrt{1-t^{2}}}\right)}=-\frac{y}{x}$.
Hence, proved.

