Å

Class XII : Maths Chapter 5 : Continuity And Differentiability

Questions and Solutions | Exercise 5.7 - NCERT Books

Question 1:

Find the second order derivatives of the function.

$$x^{2} + 3x + 2$$

Answer

Let
$$y = x^2 + 3x + 2$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x^2) + \frac{d}{dx}(3x) + \frac{d}{dx}(2) = 2x + 3 + 0 = 2x + 3$$
$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}(2x + 3) = \frac{d}{dx}(2x) + \frac{d}{dx}(3) = 2 + 0 = 2$$

Question 2:

Find the second order derivatives of the function.

$$x^{20}$$

Answer

Let
$$y = x^{20}$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^{20} \right) = 20x^{19}$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(20x^{19} \right) = 20 \frac{d}{dx} \left(x^{19} \right) = 20 \cdot 19 \cdot x^{18} = 380x^{18}$$

Question 3:

Find the second order derivatives of the function.

 $x \cdot \cos x$

Answer

Let
$$y = x \cdot \cos x$$

Then,

Class XII MATH

$$\frac{dy}{dx} = \frac{d}{dx}(x \cdot \cos x) = \cos x \cdot \frac{d}{dx}(x) + x \frac{d}{dx}(\cos x) = \cos x \cdot 1 + x(-\sin x) = \cos x - x \sin x$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx}[\cos x - x \sin x] = \frac{d}{dx}(\cos x) - \frac{d}{dx}(x \sin x)$$
$$= -\sin x - \left[\sin x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\sin x)\right]$$
$$= -\sin x - \left[\sin x + x \cos x\right)$$
$$= -(x \cos x + 2 \sin x)$$

Question 4:

Find the second order derivatives of the function.

 $\log x$

Answer

Let $y = \log x$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} (\log x) = \frac{1}{x}$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} (\frac{1}{x}) = \frac{-1}{x^2}$$

Find the second order derivatives of the function.

 $x^3 \log x$

Answer

Let $y = x^3 \log x$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left[x^3 \log x \right] = \log x \cdot \frac{d}{dx} \left(x^3 \right) + x^3 \cdot \frac{d}{dx} \left(\log x \right)$$
$$= \log x \cdot 3x^2 + x^3 \cdot \frac{1}{x} = \log x \cdot 3x^2 + x^2$$
$$= x^2 \left(1 + 3 \log x \right)$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[x^2 \left(1 + 3 \log x \right) \right]$$
$$= \left(1 + 3 \log x \right) \cdot \frac{d}{dx} \left(x^2 \right) + x^2 \frac{d}{dx} \left(1 + 3 \log x \right)$$
$$= \left(1 + 3 \log x \right) \cdot 2x + x^2 \cdot \frac{3}{x}$$
$$= 2x + 6x \log x + 3x$$
$$= 5x + 6x \log x$$
$$= x \left(5 + 6 \log x \right)$$

Question 6:

Find the second order derivatives of the function.

$e^x \sin 5x$

Answer

Let $y = e^x \sin 5x$

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^x \sin 5x \right) = \sin 5x \cdot \frac{d}{dx} \left(e^x \right) + e^x \frac{d}{dx} (\sin 5x)$$

$$= \sin 5x \cdot e^x + e^x \cdot \cos 5x \cdot \frac{d}{dx} (5x) = e^x \sin 5x + e^x \cos 5x \cdot 5$$

$$= e^x \left(\sin 5x + 5 \cos 5x \right)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[e^x \left(\sin 5x + 5 \cos 5x \right) \right]$$

$$= \left(\sin 5x + 5 \cos 5x \right) \cdot \frac{d}{dx} \left(e^x \right) + e^x \cdot \frac{d}{dx} (\sin 5x + 5 \cos 5x)$$

$$= \left(\sin 5x + 5 \cos 5x \right) e^x + e^x \left[\cos 5x \cdot \frac{d}{dx} (5x) + 5 \left(-\sin 5x \right) \cdot \frac{d}{dx} (5x) \right]$$

$$= e^x \left(\sin 5x + 5 \cos 5x \right) + e^x \left(5 \cos 5x - 25 \sin 5x \right)$$

$$= e^x \left(10 \cos 5x - 24 \sin 5x \right) = 2e^x \left(5 \cos 5x - 12 \sin 5x \right)$$

Then,

*****Saral

Question 7:

Find the second order derivatives of the function.

 $e^{6x}\cos 3x$

Answer

Let $y = e^{6x} \cos 3x$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{6x} \cdot \cos 3x \right) = \cos 3x \cdot \frac{d}{dx} \left(e^{6x} \right) + e^{6x} \cdot \frac{d}{dx} \left(\cos 3x \right)$$

$$= \cos 3x \cdot e^{6x} \cdot \frac{d}{dx} \left(6x \right) + e^{6x} \cdot \left(-\sin 3x \right) \cdot \frac{d}{dx} \left(3x \right)$$

$$= 6e^{6x} \cos 3x - 3e^{6x} \sin 3x \qquad \dots (1)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(6e^{6x} \cos 3x - 3e^{6x} \sin 3x \right) = 6 \cdot \frac{d}{dx} \left(e^{6x} \cos 3x \right) - 3 \cdot \frac{d}{dx} \left(e^{6x} \sin 3x \right)$$

$$= 6 \cdot \left[6e^{6x} \cos 3x - 3e^{6x} \sin 3x \right] - 3 \cdot \left[\sin 3x \cdot \frac{d}{dx} \left(e^{6x} \right) + e^{6x} \cdot \frac{d}{dx} \left(\sin 3x \right) \right] \qquad \left[\text{Using } (1) \right]$$

$$= 36e^{6x} \cos 3x - 18e^{6x} \sin 3x - 3 \left[\sin 3x \cdot e^{6x} \cdot 6 + e^{6x} \cdot \cos 3x \cdot 3 \right]$$

$$= 36e^{6x} \cos 3x - 18e^{6x} \sin 3x - 18e^{6x} \sin 3x - 9e^{6x} \cos 3x$$

$$= 27e^{6x} \cos 3x - 36e^{6x} \sin 3x$$

Question 8:

Find the second order derivatives of the function.

 $\tan^{-1} x$

Answer

Let $y = \tan^{-1} x$ Then,

$$\frac{dy}{dx} = \frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{1}{1+x^2}\right) = \frac{d}{dx} (1+x^2)^{-1} = (-1) \cdot (1+x^2)^{-2} \cdot \frac{d}{dx} (1+x^2)$$

$$= \frac{-1}{(1+x^2)^2} \times 2x = \frac{-2x}{(1+x^2)^2}$$

Question 9:

Find the second order derivatives of the function.

$$\log(\log x)$$

Answer

Let
$$y = \log(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log(\log x) \Big] = \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) = \frac{1}{x \log x} = (x \log x)^{-1}$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \Big[(x \log x)^{-1} \Big] = (-1) \cdot (x \log x)^{-2} \cdot \frac{d}{dx} (x \log x)$$
$$= \frac{-1}{(x \log x)^2} \cdot \Big[\log x \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log x) \Big]$$
$$= \frac{-1}{(x \log x)^2} \cdot \Big[\log x \cdot 1 + x \cdot \frac{1}{x} \Big] = \frac{-(1 + \log x)}{(x \log x)^2}$$

Question 10:

Find the second order derivatives of the function.

```
\sin(\log x)
```

Answer

Let
$$y = \sin(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left[\sin(\log x) \right] = \cos(\log x) \cdot \frac{d}{dx} (\log x) = \frac{\cos(\log x)}{x}$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{\cos(\log x)}{x} \right]$$
$$= \frac{x \cdot \frac{d}{dx} \left[\cos(\log x) \right] - \cos(\log x) \cdot \frac{d}{dx} (x)}{x^2}$$
$$= \frac{x \cdot \left[-\sin(\log x) \cdot \frac{d}{dx} (\log x) \right] - \cos(\log x) \cdot 1}{x^2}$$
$$= \frac{-x \sin(\log x) \cdot \frac{1}{x} - \cos(\log x)}{x^2}$$
$$= \frac{-\left[\sin(\log x) + \cos(\log x) \right]}{x^2}$$

Question 11:

If $y = 5\cos x - 3\sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$ Answer

It is given that, $y = 5\cos x - 3\sin x$ Then,

$$\frac{dy}{dx} = \frac{d}{dx}(5\cos x) - \frac{d}{dx}(3\sin x) = 5\frac{d}{dx}(\cos x) - 3\frac{d}{dx}(\sin x)$$
$$= 5(-\sin x) - 3\cos x = -(5\sin x + 3\cos x)$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[-(5\sin x + 3\cos x) \right]$$
$$= -\left[5 \cdot \frac{d}{dx}(\sin x) + 3 \cdot \frac{d}{dx}(\cos x) \right]$$
$$= -\left[5\cos x + 3(-\sin x) \right]$$
$$= -\left[5\cos x - 3\sin x \right]$$
$$= -y$$
$$\therefore \frac{d^2 y}{dx^2} + y = 0$$

Hence, proved.

Question 12:

Then,

If $y = \cos^{-1} x$, find $\frac{d^2 y}{dx^2}$ in terms of y alone. Answer It is given that, $y = \cos^{-1} x$

Class XII MATH

$$\frac{dy}{dx} = \frac{d}{dx} (\cos^{-1} x) = \frac{-1}{\sqrt{1 - x^2}} = -(1 - x^2)^{\frac{-1}{2}}$$
$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[-(1 - x^2)^{\frac{-1}{2}} \right]$$
$$= -\left(-\frac{1}{2}\right) \cdot (1 - x^2)^{\frac{-3}{2}} \cdot \frac{d}{dx} (1 - x^2)$$
$$= \frac{1}{2\sqrt{(1 - x^2)^3}} \times (-2x)$$
$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{-x}{\sqrt{(1 - x^2)^3}} \qquad \dots (i)$$

 $y = \cos^{-1} x \Longrightarrow x = \cos y$

Putting $x = \cos y$ in equation (i), we obtain

$$\frac{d^2 y}{dx^2} = \frac{-\cos y}{\sqrt{\left(1 - \cos^2 y\right)^3}}$$
$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{-\cos y}{\sqrt{\left(\sin^2 y\right)^3}}$$
$$= \frac{-\cos y}{\sin^3 y}$$
$$= \frac{-\cos y}{\sin y} \times \frac{1}{\sin^2 y}$$
$$\Rightarrow \frac{d^2 y}{dx^2} = -\cot y \cdot \csc^2 y$$

Question 13:

If $y = 3\cos(\log x) + 4\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$ Answer

It is given that, $y = 3\cos(\log x) + 4\sin(\log x)$ Then,

$$y_{1} = 3 \cdot \frac{d}{dx} \Big[\cos(\log x) \Big] + 4 \cdot \frac{d}{dx} \Big[\sin(\log x) \Big] \\= 3 \cdot \Big[-\sin(\log x) \cdot \frac{d}{dx} (\log x) \Big] + 4 \cdot \Big[\cos(\log x) \cdot \frac{d}{dx} (\log x) \Big] \\\therefore y_{1} = \frac{-3\sin(\log x)}{x} + \frac{4\cos(\log x)}{x} = \frac{4\cos(\log x) - 3\sin(\log x)}{x} \\\therefore y_{2} = \frac{d}{dx} \Big(\frac{4\cos(\log x) - 3\sin(\log x)}{x} \Big) \\= \frac{x \{4\cos(\log x) - 3\sin(\log x)\}' - \{4\cos(\log x) - 3\sin(\log x)\}(x)'}{x^{2}} \\= \frac{x \{4\cos(\log x)\}' - 3\{\sin(\log x)\}' - \{4\cos(\log x) - 3\sin(\log x)\}(x)'}{x^{2}} \\= \frac{x \Big[-4\sin(\log x) \cdot (\log x)' - 3(\sin(\log x)) \Big] - \{4\cos(\log x) - 3\sin(\log x)\} \cdot 1 \Big] \\x^{2}} \\= \frac{x \Big[-4\sin(\log x) \cdot (\log x)' - 3\cos(\log x) \cdot (\log x)' \Big] - 4\cos(\log x) + 3\sin(\log x)}{x^{2}} \\= \frac{x \Big[-4\sin(\log x) \cdot \frac{1}{x} - 3\cos(\log x) \cdot \frac{1}{x} \Big] - 4\cos(\log x) + 3\sin(\log x)}{x^{2}} \\= \frac{-4\sin(\log x) - 3\cos(\log x) - 4\cos(\log x) + 3\sin(\log x)}{x^{2}} \\= \frac{-\sin(\log x) - 7\cos(\log x)}{x^{2}} \\\Rightarrow x^{2} y_{2} + xy_{1} + y \\= x^{2} \Big(\frac{-\sin(\log x) - 7\cos(\log x)}{x^{2}} \Big) + x \Big(\frac{4\cos(\log x) - 3\sin(\log x)}{x} \Big) + 3\cos(\log x) + 4\sin(\log x) \\= -\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x) \\= -\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x) \\= 0$$

Hence, proved.

Question 14:

If
$$y = Ae^{mx} + Be^{nx}$$
, show that $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0$

Class XII MATH

Answer

It is given that, $y = Ae^{mx} + Be^{nx}$ Then, $\frac{dy}{dx} = A \cdot \frac{d}{dx} (e^{mx}) + B \cdot \frac{d}{dx} (e^{nx}) = A \cdot e^{mx} \cdot \frac{d}{dx} (mx) + B \cdot e^{nx} \cdot \frac{d}{dx} (nx) = Ame^{mx} + Bne^{nx}$ $\frac{d^2 y}{dx^2} = \frac{d}{dx} (Ame^{mx} + Bne^{nx}) = Am \cdot \frac{d}{dx} (e^{mx}) + Bn \cdot \frac{d}{dx} (e^{nx})$ $= Am \cdot e^{mx} \cdot \frac{d}{dx} (mx) + Bn \cdot e^{nx} \cdot \frac{d}{dx} (nx) = Am^2 e^{mx} + Bn^2 e^{nx}$ $\therefore \frac{d^2 y}{dx^2} - (m+n)\frac{dy}{dx} + mny$ $= Am^2 e^{mx} + Bn^2 e^{nx} - (m+n) \cdot (Ame^{mx} + Bne^{nx}) + mn (Ae^{mx} + Be^{nx})$ $= Am^2 e^{mx} + Bn^2 e^{nx} - Am^2 e^{mx} - Bmne^{nx} - Amne^{mx} - Bn^2 e^{nx} + Amne^{mx} + Bmne^{nx}$ = 0

Hence, proved.

Question 15: If $y = 500e^{7x} + 600e^{-7x}$, show that $\frac{d^2y}{dx^2} = 49y$ Answer $y = 500e^{7x} + 600e^{-7x}$

It is given that, $y = 500e^{7x} + 600e^{-7x}$ Then,

$$\frac{dy}{dx} = 500 \cdot \frac{d}{dx} (e^{7x}) + 600 \cdot \frac{d}{dx} (e^{-7x})$$

$$= 500 \cdot e^{7x} \cdot \frac{d}{dx} (7x) + 600 \cdot e^{-7x} \cdot \frac{d}{dx} (-7x)$$

$$= 3500e^{7x} - 4200e^{-7x}$$

$$\therefore \frac{d^2 y}{dx^2} = 3500 \cdot \frac{d}{dx} (e^{7x}) - 4200 \cdot \frac{d}{dx} (e^{-7x})$$

$$= 3500 \cdot e^{7x} \cdot \frac{d}{dx} (7x) - 4200 \cdot e^{-7x} \cdot \frac{d}{dx} (-7x)$$

$$= 7 \times 3500 \cdot e^{7x} + 7 \times 4200 \cdot e^{-7x}$$

$$= 49 \times 500e^{7x} + 49 \times 600e^{-7x}$$

$$= 49 (500e^{7x} + 600e^{-7x})$$

$$= 49y$$

Hence, proved.

Question 16:

If $e^{y}(x+1) = 1$, show that $\frac{d^{2}y}{dx^{2}} = \left(\frac{dy}{dx}\right)^{2}$ Answer

The given relationship is $e^{y}(x+1)=1$

$$e^{y}(x+1) = 1$$
$$\Rightarrow e^{y} = \frac{1}{x+1}$$

Taking logarithm on both the sides, we obtain

$$y = \log \frac{1}{(x+1)}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{dy}{dx} = (x+1)\frac{d}{dx}\left(\frac{1}{x+1}\right) = (x+1)\cdot\frac{-1}{(x+1)^2} = \frac{-1}{x+1}$$
$$\therefore \frac{d^2y}{dx^2} = -\frac{d}{dx}\left(\frac{1}{x+1}\right) = -\left(\frac{-1}{(x+1)^2}\right) = \frac{1}{(x+1)^2}$$
$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{-1}{x+1}\right)^2$$
$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

Hence, proved.

Question 17:

If
$$y = (\tan^{-1} x)^2$$
, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$
Answer

The given relationship is $y = (\tan^{-1} x)^2$ Then,

$$y_1 = 2 \tan^{-1} x \frac{d}{dx} (\tan^{-1} x)$$
$$\Rightarrow y_1 = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2}$$
$$\Rightarrow (1 + x^2) y_1 = 2 \tan^{-1} x$$

Again differentiating with respect to x on both the sides, we obtain

$$(1+x^2)y_2 + 2xy_1 = 2\left(\frac{1}{1+x^2}\right)$$

 $\Rightarrow (1+x^2)^2 y_2 + 2x(1+x^2)y_1 = 2$

Hence, proved.