Class XII : Maths
 Chapter 5 : Continuity And Differentiability

Question 1:

Find the second order derivatives of the function.
$x^{2}+3 x+2$
Answer
Let $y=x^{2}+3 x+2$
Then,
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3 x)+\frac{d}{d x}(2)=2 x+3+0=2 x+3$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}(2 x+3)=\frac{d}{d x}(2 x)+\frac{d}{d x}(3)=2+0=2$

Question 2:

Find the second order derivatives of the function.
x^{20}
Answer
Let $y=x^{20}$
Then,
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{20}\right)=20 x^{19}$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(20 x^{19}\right)=20 \frac{d}{d x}\left(x^{19}\right)=20 \cdot 19 \cdot x^{18}=380 x^{18}$

Question 3:

Find the second order derivatives of the function.
$x \cdot \cos x$
Answer
Let $y=x \cdot \cos x$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}(x \cdot \cos x)=\cos x \cdot \frac{d}{d x}(x)+x \frac{d}{d x}(\cos x)=\cos x \cdot 1+x(-\sin x)=\cos x-x \sin x \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}[\cos x-x \sin x]=\frac{d}{d x}(\cos x)-\frac{d}{d x}(x \sin x) \\
& =-\sin x-\left[\sin x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\sin x)\right] \\
& =-\sin x-(\sin x+x \cos x) \\
& =-(x \cos x+2 \sin x)
\end{aligned}
\end{aligned}
$$

Question 4:

Find the second order derivatives of the function.
$\log x$
Answer
Let $y=\log x$
Then,
$\frac{d y}{d x}=\frac{d}{d x}(\log x)=\frac{1}{x}$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{1}{x}\right)=\frac{-1}{x^{2}}$

Question 5:

Find the second order derivatives of the function.
$x^{3} \log x$
Answer
Let $y=x^{3} \log x$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left[x^{3} \log x\right]=\log x \cdot \frac{d}{d x}\left(x^{3}\right)+x^{3} \cdot \frac{d}{d x}(\log x) \\
& = \\
& =\log x \cdot 3 x^{2}+x^{3} \cdot \frac{1}{x}=\log x \cdot 3 x^{2}+x^{2} \\
& \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left[x^{2}(1+3 \log x)\right. \\
& =(1+3 \log x)] \cdot \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}(1+3 \log x) \\
& =(1+3 \log x) \cdot 2 x+x^{2} \cdot \frac{3}{x} \\
& =2 x+6 x \log x+3 x \\
& =5 x+6 x \log x \\
& =x(5+6 \log x)
\end{aligned}
\end{aligned}
$$

Question 6:

Find the second order derivatives of the function.
$e^{x} \sin 5 x$
Answer
Let $y=e^{x} \sin 5 x$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(e^{x} \sin 5 x\right)=\sin 5 x \cdot \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\sin 5 x) \\
& =\sin 5 x \cdot e^{x}+e^{x} \cdot \cos 5 x \cdot \frac{d}{d x}(5 x)=e^{x} \sin 5 x+e^{x} \cos 5 x \cdot 5 \\
& =e^{x}(\sin 5 x+5 \cos 5 x) \\
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left[e^{x}(\sin 5 x+5 \cos 5 x)\right] \\
& =(\sin 5 x+5 \cos 5 x) \cdot \frac{d}{d x}\left(e^{x}\right)+e^{x} \cdot \frac{d}{d x}(\sin 5 x+5 \cos 5 x) \\
& =(\sin 5 x+5 \cos 5 x) e^{x}+e^{x}\left[\cos 5 x \cdot \frac{d}{d x}(5 x)+5(-\sin 5 x) \cdot \frac{d}{d x}(5 x)\right] \\
& =e^{x}(\sin 5 x+5 \cos 5 x)+e^{x}(5 \cos 5 x-25 \sin 5 x) \\
& =e^{x}(10 \cos 5 x-24 \sin 5 x)=2 e^{x}(5 \cos 5 x-12 \sin 5 x)
\end{aligned}
$$

Question 7:

Find the second order derivatives of the function.
$e^{6 x} \cos 3 x$
Answer
Let $y=e^{6 x} \cos 3 x$
Then,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(e^{6 x} \cdot \cos 3 x\right)=\cos 3 x \cdot \frac{d}{d x}\left(e^{6 x}\right)+e^{6 x} \cdot \frac{d}{d x}(\cos 3 x) \\
& =\cos 3 x \cdot e^{6 x} \cdot \frac{d}{d x}(6 x)+e^{6 x} \cdot(-\sin 3 x) \cdot \frac{d}{d x}(3 x) \\
& =6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x \\
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x\right)=6 \cdot \frac{d}{d x}\left(e^{6 x} \cos 3 x\right)-3 \cdot \frac{d}{d x}\left(e^{6 x} \sin 3 x\right) \\
& =6 \cdot\left[6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x\right]-3 \cdot\left[\sin 3 x \cdot \frac{d}{d x}\left(e^{6 x}\right)+e^{6 x} \cdot \frac{d}{d x}(\sin 3 x)\right] \\
& =36 e^{6 x} \cos 3 x-18 e^{6 x} \sin 3 x-3\left[\sin 3 x \cdot e^{6 x} \cdot 6+e^{6 x} \cdot \cos 3 x \cdot 3\right] \\
& =36 e^{6 x} \cos 3 x-18 e^{6 x} \sin 3 x-18 e^{6 x} \sin 3 x-9 e^{6 x} \cos 3 x \\
& =27 e^{6 x} \cos 3 x-36 e^{6 x} \sin 3 x \\
& =9 e^{6 x}(3 \cos 3 x-4 \sin 3 x)
\end{aligned}
$$

Question 8:

Find the second order derivatives of the function.
$\tan ^{-1} x$
Answer
Let $y=\tan ^{-1} x$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)=\frac{d}{d x}\left(1+x^{2}\right)^{-1}=(-1) \cdot\left(1+x^{2}\right)^{-2} \cdot \frac{d}{d x}\left(1+x^{2}\right) \\
& =\frac{-1}{\left(1+x^{2}\right)^{2}} \times 2 x=\frac{-2 x}{\left(1+x^{2}\right)^{2}}
\end{aligned}
\end{aligned}
$$

Question 9:

Find the second order derivatives of the function.
$\log (\log x)$
Answer

$$
\text { Let } y=\log (\log x)
$$

Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}[\log (\log x)]=\frac{1}{\log x} \cdot \frac{d}{d x}(\log x)=\frac{1}{x \log x}=(x \log x)^{-1} \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left[(x \log x)^{-1}\right]=(-1) \cdot(x \log x)^{-2} \cdot \frac{d}{d x}(x \log x) \\
& =\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log x)\right] \\
& =\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot 1+x \cdot \frac{1}{x}\right]=\frac{-(1+\log x)}{(x \log x)^{2}}
\end{aligned}
\end{aligned}
$$

Question 10:

Find the second order derivatives of the function.
$\sin (\log x)$
Answer
Let $y=\sin (\log x)$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}[\sin (\log x)]=\cos (\log x) \cdot \frac{d}{d x}(\log x)=\frac{\cos (\log x)}{x} \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left[\frac{\cos (\log x)}{x}\right] \\
& =\frac{x \cdot \frac{d}{d x}[\cos (\log x)]-\cos (\log x) \cdot \frac{d}{d x}(x)}{x^{2}} \\
& =\frac{x \cdot\left[-\sin (\log x) \cdot \frac{d}{d x}(\log x)\right]-\cos (\log x) \cdot 1}{x^{2}} \\
& =\frac{-x \sin (\log x) \cdot \frac{1}{x}-\cos (\log x)}{x^{2}} \\
& =\frac{-[\sin (\log x)+\cos (\log x)]}{x^{2}}
\end{aligned}
\end{aligned}
$$

Question 11:

If $y=5 \cos x-3 \sin x$, prove that $\frac{d^{2} y}{d x^{2}}+y=0$
Answer
It is given that, $y=5 \cos x-3 \sin x$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}(5 \cos x)-\frac{d}{d x}(3 \sin x)=5 \frac{d}{d x}(\cos x)-3 \frac{d}{d x}(\sin x) \\
&=5(-\sin x)-3 \cos x=-(5 \sin x+3 \cos x) \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}[-(5 \sin x+3 \cos x)] \\
& =-\left[5 \cdot \frac{d}{d x}(\sin x)+3 \cdot \frac{d}{d x}(\cos x)\right] \\
& =-[5 \cos x+3(-\sin x)] \\
& =-[5 \cos x-3 \sin x] \\
& =-y \\
\therefore \frac{d^{2} y}{d x^{2}} & +y=0
\end{aligned}
\end{aligned}
$$

Hence, proved.

Question 12:

If $y=\cos ^{-1} x$, find $\frac{d^{2} y}{d x^{2}}$ in terms of y alone.

Answer

It is given that, $y=\cos ^{-1} x$
Then,

Putting $x=\cos y$ in equation (i), we obtain
$\frac{d^{2} y}{d x^{2}}=\frac{-\cos y}{\sqrt{\left(1-\cos ^{2} y\right)^{3}}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-\cos y}{\sqrt{\left(\sin ^{2} y\right)^{3}}}$

$$
=\frac{-\cos y}{\sin ^{3} y}
$$

$$
=\frac{-\cos y}{\sin y} \times \frac{1}{\sin ^{2} y}
$$

$\Rightarrow \frac{d^{2} y}{d x^{2}}=-\cot y \cdot \operatorname{cosec}^{2} y$

Question 13:

If $y=3 \cos (\log x)+4 \sin (\log x)$, show that $x^{2} y_{2}+x y_{1}+y=0$

Answer

It is given that, $y=3 \cos (\log x)+4 \sin (\log x)$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}=-\left(1-x^{2}\right)^{\frac{-1}{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[-\left(1-x^{2}\right)^{\frac{-1}{2}}\right] \\
& =-\left(-\frac{1}{2}\right) \cdot\left(1-x^{2}\right)^{\frac{-3}{2}} \cdot \frac{d}{d x}\left(1-x^{2}\right) \\
& =\frac{1}{2 \sqrt{\left(1-x^{2}\right)^{3}}} \times(-2 x) \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-x}{\sqrt{\left(1-x^{2}\right)^{3}}} \\
& y=\cos ^{-1} x \Rightarrow x=\cos y
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=3 \cdot \frac{d}{d x}[\cos (\log x)]+4 \cdot \frac{d}{d x}[\sin (\log x)] \\
& =3 \cdot\left[-\sin (\log x) \cdot \frac{d}{d x}(\log x)\right]+4 \cdot\left[\cos (\log x) \cdot \frac{d}{d x}(\log x)\right] \\
& \therefore y_{1}=\frac{-3 \sin (\log x)}{x}+\frac{4 \cos (\log x)}{x}=\frac{4 \cos (\log x)-3 \sin (\log x)}{x} \\
& \therefore y_{2}=\frac{d}{d x}\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right) \\
& =\frac{x\{4 \cos (\log x)-3 \sin (\log x)\}^{\prime}-\{4 \cos (\log x)-3 \sin (\log x)\}(x)^{\prime}}{x^{2}} \\
& =\frac{x\left[4\{\cos (\log x)\}^{\prime}-3\{\sin (\log x)\}^{\prime}\right]-\{4 \cos (\log x)-3 \sin (\log x)\} \cdot 1}{x^{2}} \\
& =\frac{x\left[-4 \sin (\log x) \cdot(\log x)^{\prime}-3 \cos (\log x) \cdot(\log x)^{\prime}\right]-4 \cos (\log x)+3 \sin (\log x)}{x^{2}} \\
& =\frac{x\left[-4 \sin (\log x) \cdot \frac{1}{x}-3 \cos (\log x) \cdot \frac{1}{x}\right]-4 \cos (\log x)+3 \sin (\log x)}{x^{2}} \\
& =\frac{-4 \sin (\log x)-3 \cos (\log x)-4 \cos (\log x)+3 \sin (\log x)}{x^{2}} \\
& =\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}} \\
& \therefore x^{2} y_{2}+x y_{1}+y \\
& =x^{2}\left(\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\right)+x\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right)+3 \cos (\log x)+4 \sin (\log x) \\
& =-\sin (\log x)-7 \cos (\log x)+4 \cos (\log x)-3 \sin (\log x)+3 \cos (\log x)+4 \sin (\log x) \\
& =0
\end{aligned}
$$

Hence, proved.

Question 14:

If $y=A e^{m x}+B e^{n x}$, show that $\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$

Answer
It is given that, $y=A e^{m x}+B e^{n x}$
Then,
$\frac{d y}{d x}=A \cdot \frac{d}{d x}\left(e^{m x}\right)+B \cdot \frac{d}{d x}\left(e^{n x}\right)=A \cdot e^{m x x} \cdot \frac{d}{d x}(m x)+B \cdot e^{n x} \cdot \frac{d}{d x}(n x)=A m e^{m x}+B n e^{n x}$
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(A m e^{m x}+B n e^{n x}\right)=A m \cdot \frac{d}{d x}\left(e^{m x}\right)+B n \cdot \frac{d}{d x}\left(e^{n x}\right)$
$=A m \cdot e^{n x} \cdot \frac{d}{d x}(m x)+B n \cdot e^{n x} \cdot \frac{d}{d x}(n x)=A m^{2} e^{n x}+B n^{2} e^{n x}$
$\therefore \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y$
$=A m^{2} e^{m x}+B n^{2} e^{n x}-(m+n) \cdot\left(A m e^{m x}+B n e^{n x}\right)+m n\left(A e^{m x x}+B e^{n x}\right)$
$=A m^{2} e^{m x}+B n^{2} e^{n x}-A m^{2} e^{m x}-B m n e^{n x}-A m n e^{m x}-B n^{2} e^{n x}+A m n e^{m x}+B m n e^{n x}$
$=0$
Hence, proved.

Question 15:

If $y=500 e^{7 x}+600 e^{-7 x}$, show that $\frac{d^{2} y}{d x^{2}}=49 y$
Answer
It is given that, $y=500 e^{7 x}+600 e^{-7 x}$
Then,

$$
\begin{aligned}
& \frac{d y}{d x}= 500 \cdot \frac{d}{d x}\left(e^{7 x}\right)+600 \cdot \frac{d}{d x}\left(e^{-7 x}\right) \\
&=500 \cdot e^{7 x} \cdot \frac{d}{d x}(7 x)+600 \cdot e^{-7 x} \cdot \frac{d}{d x}(-7 x) \\
&=3500 e^{7 x}-4200 e^{-7 x} \\
& \begin{aligned}
\therefore \frac{d^{2} y}{d x^{2}} & =3500 \cdot \frac{d}{d x}\left(e^{7 x}\right)-4200 \cdot \frac{d}{d x}\left(e^{-7 x}\right) \\
& =3500 \cdot e^{7 x} \cdot \frac{d}{d x}(7 x)-4200 \cdot e^{-7 x} \cdot \frac{d}{d x}(-7 x) \\
& =7 \times 3500 \cdot e^{7 x}+7 \times 4200 \cdot e^{-7 x} \\
& =49 \times 500 e^{7 x}+49 \times 600 e^{-7 x} \\
& =49\left(500 e^{7 x}+600 e^{-7 x}\right) \\
& =49 y
\end{aligned}
\end{aligned}
$$

Hence, proved.

Question 16:

If $e^{y}(x+1)=1$, show that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
Answer
The given relationship is $e^{y}(x+1)=1$
$e^{y}(x+1)=1$
$\Rightarrow e^{y}=\frac{1}{x+1}$
Taking logarithm on both the sides, we obtain
$y=\log \frac{1}{(x+1)}$
Differentiating this relationship with respect to x, we obtain
$\frac{d y}{d x}=(x+1) \frac{d}{d x}\left(\frac{1}{x+1}\right)=(x+1) \cdot \frac{-1}{(x+1)^{2}}=\frac{-1}{x+1}$
$\therefore \frac{d^{2} y}{d x^{2}}=-\frac{d}{d x}\left(\frac{1}{x+1}\right)=-\left(\frac{-1}{(x+1)^{2}}\right)=\frac{1}{(x+1)^{2}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\left(\frac{-1}{x+1}\right)^{2}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
Hence, proved.

Question 17:

If $y=\left(\tan ^{-1} x\right)^{2}$, show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$
Answer
The given relationship is $y=\left(\tan ^{-1} x\right)^{2}$
Then,
$y_{1}=2 \tan ^{-1} x \frac{d}{d x}\left(\tan ^{-1} x\right)$
$\Rightarrow y_{1}=2 \tan ^{-1} x \cdot \frac{1}{1+x^{2}}$
$\Rightarrow\left(1+x^{2}\right) y_{1}=2 \tan ^{-1} x$
Again differentiating with respect to x on both the sides, we obtain
$\left(1+x^{2}\right) y_{2}+2 x y_{1}=2\left(\frac{1}{1+x^{2}}\right)$
$\Rightarrow\left(1+x^{2}\right)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$
Hence, proved.

