Å

Class XII : Maths Chapter 4 : Determinants

Questions and Solutions | Exercise 4.1 - NCERT Books

Question 1:

Evaluate the determinants in Exercises 1 and 2.

 $\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$

Answer

$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$$

Question 2:

Evaluate the determinants in Exercises 1 and 2.

(i)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$
 (ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

Answer

$$\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} = (\cos\theta)(\cos\theta) - (-\sin\theta)(\sin\theta) = \cos^{2}\theta + \sin^{2}\theta = 1 \\ \begin{vmatrix} x^{2} - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$$

$$= (x^{2} - x + 1)(x + 1) - (x - 1)(x + 1) \\ = x^{3} - x^{2} + x + x^{2} - x + 1 - (x^{2} - 1) \\ = x^{3} + 1 - x^{2} + 1 \\ = x^{3} - x^{2} + 2$$

```
Question 3:
```

 $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}, \text{ then show that } |2A| = 4|A|$ Answer

 $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}.$ The given matrix is

***Saral**

$$\therefore 2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$$

$$\therefore L.H.S. = |2A| = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 2 \times 4 - 4 \times 8 = 8 - 32 = -24$$

Now, $|A| = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 1 \times 2 - 2 \times 4 = 2 - 8 = -6$
$$\therefore R.H.S. = 4|A| = 4 \times (-6) = -24$$

$$\therefore L.H.S. = R.H.S.$$

Question 4:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}, \text{ then show that } |3A| = 27|A|.$$

Answer

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

The given matrix is

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C_1) for easier calculation.

$$|\mathbf{A}| = 1 \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 0 & 4 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = 1(4-0) - 0 + 0 = 4$$

$$\therefore 27 |\mathbf{A}| = 27(4) = 108 \qquad \dots(i)$$

Now, $3\mathbf{A} = 3 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$

$$\therefore |3\mathbf{A}| = 3 \begin{vmatrix} 3 & 6 \\ 0 & 12 \end{vmatrix} - 0 \begin{vmatrix} 0 & 3 \\ 0 & 12 \end{vmatrix} + 0 \begin{vmatrix} 0 & 3 \\ 3 & 6 \end{vmatrix}$$

$$= 3(36-0) = 3(36) = 108 \qquad \dots(ii)$$

From equations (i) and (ii), we have:

$$\left|3A\right| = 27\left|A\right|$$

Hence, the given result is proved.

www.esaral.com

Question 5: Evaluate the determinants

$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix} \begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$$

(ii)
$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix} (iv) \begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$

Answer

$$A = \begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$
(i) Let

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

$$|A| = -0\begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 0\begin{vmatrix} 3 & -2 \\ 3 & 0 \end{vmatrix} - (-1)\begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix} = (-15+3) = -12$$

(ii) Let
$$A = \begin{bmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{bmatrix}.$$
By expanding along the first row, we have:

$$|1 - 2|$$
 $|1 - 2|$ $|1 1|$

$$|A| = 3\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} + 4\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} + 5\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$$
$$= 3(1+6) + 4(1+4) + 5(3-2)$$
$$= 3(7) + 4(5) + 5(1)$$

$$= 21 + 20 + 5 = 46$$

Class XII MATH

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}.$$

(iii) Let
By expanding along the first row, we

have:

$$|A| = 0 \begin{vmatrix} 0 & -3 \\ 3 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & -3 \\ -2 & 0 \end{vmatrix} + 2 \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}$$
$$= 0 - 1(0 - 6) + 2(-3 - 0)$$
$$= -1(-6) + 2(-3)$$
$$= 6 - 6 = 0$$
$$A = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}.$$
(iv) Let

By expanding along the first column, we have:

$$|A| = 2\begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} - 0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 3 \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix}$$
$$= 2(0-5) - 0 + 3(1+4)$$
$$= -10 + 15 = 5$$

Question 6:

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}, \text{ find} |A|.$$

Answer

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}.$$

Let

By expanding along the first row, we have:

Class XII MATH

www.esaral.com

$$|A| = 1 \begin{vmatrix} 1 & -3 \\ 4 & -9 \end{vmatrix} - 1 \begin{vmatrix} 2 & -3 \\ 5 & -9 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$

= 1(-9+12)-1(-18+15)-2(8-5)
= 1(3)-1(-3)-2(3)
= 3+3-6
= 6-6
= 0

Question 7:

Find values of x, if

(i)
$$\begin{vmatrix} 2 & 4 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
 (ii) $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$

Answer

$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$

$$\Rightarrow 2 \times 1 - 5 \times 4 = 2x \times x - 6 \times 4$$

$$\Rightarrow 2 - 20 = 2x^{2} - 24$$

$$\Rightarrow 2x^{2} = 6$$

$$\Rightarrow x^{2} = 3$$

$$\Rightarrow x = \pm \sqrt{3}$$

(ii)
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

$$\Rightarrow 2 \times 5 - 3 \times 4 = x \times 5 - 3 \times 2x$$

$$\Rightarrow 10 - 12 = 5x - 6x$$

$$\Rightarrow -2 = -x$$

$$\Rightarrow x = 2$$

Question 8:

If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$, then x is equal to

(A) 6 (B) ±6 (C) -6 (D) 0 Answer

Answer: B

$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
$$\Rightarrow x^2 - 36 = 36 - 36$$
$$\Rightarrow x^2 - 36 = 0$$
$$\Rightarrow x^2 = 36$$
$$\Rightarrow x = \pm 6$$

Hence, the correct answer is B.

www.esaral.com