### Class XII : Maths Chapter 6 : Application Of Derivatives

Questions and Solutions | Exercise 6.2 - NCERT Books

**Question 1:** 

Show that the function given by f(x) = 3x + 17 is strictly increasing on **R**. Answer

Let  $x_1$  and  $x_2$  be any two numbers in **R**.

Then, we have:

$$x_1 < x_2 \Longrightarrow 3x_1 < 3x_2 \Longrightarrow 3x_1 + 17 < 3x_2 + 17 \Longrightarrow f(x_1) < f(x_2)$$

Hence, f is strictly increasing on R.

#### Alternate method:

f'(x) = 3 > 0, in every interval of **R**. Thus, the function is strictly increasing on **R**.

**Question 2:** 

Show that the function given by  $f(x) = e^{2x}$  is strictly increasing on **R**. Answer

Let  $x_1$  and  $x_2$  be any two numbers in **R**.

Then, we have:

 $x_1 < x_2 \Longrightarrow 2x_1 < 2x_2 \Longrightarrow e^{2x_1} < e^{2x_2} \Longrightarrow f(x_1) < f(x_2)$ 

Hence, *f* is strictly increasing on **R**.

**Question 3:** 

Show that the function given by  $f(x) = \sin x$  is

(a) strictly increasing in 
$$\left(0,\frac{\pi}{2}\right)$$
 (b) strictly decreasing in

 $\left(\frac{\pi}{2},\pi\right)$ 

(c) neither increasing nor decreasing in (0,  $\boldsymbol{\pi})$ 

Answer

The given function is  $f(x) = \sin x$ .

$$\therefore f'(x) = \cos x$$

(a) Since for each  $x \in \left(0, \frac{\pi}{2}\right)$ ,  $\cos x > 0$ , we have f'(x) > 0.  $\left(0,\frac{\pi}{2}\right)$ Hence, *f* is strictly increasing in

(b) Since for each 
$$x \in \left(\frac{\pi}{2}, \pi\right)$$
,  $\cos x < 0$ , we have  $f'(x) < 0$ .

Hence, f is strictly decreasing in  $\binom{2^{-1}}{2}$ .

(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in  $(0, \pi)$ .

**Question 4:** 

Find the intervals in which the function f given by  $f(x) = 2x^2 - 3x$  is

(a) strictly increasing (b) strictly decreasing

Answer

The given function is  $f(x) = 2x^2 - 3x$ .

$$f'(x) = 4x - 3$$

 $\therefore f'(x) = 0 \implies x = \frac{3}{4}$ 

Now, the point  $\frac{3}{4}$  divides the real line into two disjoint intervals i.e.,  $\left(-\infty, \frac{3}{4}\right)$  and  $\left(\frac{3}{4}, \infty\right)$ .

In interval 
$$\left(-\infty, \frac{3}{4}\right), f'(x) = 4x - 3 < 0.$$

 $\left(-\infty,\frac{3}{4}\right)$ 

Hence, the given function (f) is strictly decreasing in interval

In interval 
$$\left(\frac{3}{4},\infty\right)$$
,  $f'(x) = 4x - 3 > 0$ .

Hence, the given function (*f*) is strictly increasing in interval  $\left(\frac{3}{4},\infty\right)$ .

#### **Question 5:**

Find the intervals in which the function *f* given by  $f(x) = 2x^3 - 3x^2 - 36x + 7$  is (a) strictly increasing (b) strictly decreasing Answer

The given function is 
$$f(x) = 2x^3 - 3x^2 - 36x + 7$$
.  
 $f'(x) = 6x^2 - 6x - 36 = 6(x^2 - x - 6) = 6(x + 2)(x - 3)$ 

 $\therefore f'(x) = 0 \Rightarrow x = -2, 3$ 

The points x = -2 and x = 3 divide the real line into three disjoint intervals i.e.,  $(-\infty, -2), (-2, 3), \text{ and } (3, \infty)$ .

In intervals  $(-\infty, -2)$  and  $(3, \infty), f'(x)$  is positive while in interval

$$(-2, 3), f'(x)$$
 is negative.

Hence, the given function (*f*) is strictly increasing in intervals

 $(-\infty, -2)$  and  $(3, \infty)$ , while function (*f*) is strictly decreasing in interval (-2, 3).

#### **Question 6:**

Find the intervals in which the following functions are strictly increasing or decreasing: (a)  $x^2 + 2x - 5$  (b)  $10 - 6x - 2x^2$ (c)  $-2x^3 - 9x^2 - 12x + 1$  (d)  $6 - 9x - x^2$ (e)  $(x + 1)^3 (x - 3)^3$ 

Å

Answer

(a) We have,

$$f(x) = x^2 + 2x - 5$$

$$\therefore f'(x) = 2x + 2$$

#### Now,

$$f'(x) = 0 \Longrightarrow_{X} = -1$$

Point x = -1 divides the real line into two disjoint intervals i.e.,  $(-\infty, -1)$  and  $(-1, \infty)$ . In interval  $(-\infty, -1)$ , f'(x) = 2x + 2 < 0.

 $\therefore f$  is strictly decreasing in interval  $(-\infty, -1)$ .

Thus, *f* is strictly decreasing for x < -1. In interval  $(-1, \infty)$ , f'(x) = 2x + 2 > 0.

 $\therefore$  *f* is strictly increasing in interval  $(-1,\infty)$ .

Thus, *f* is strictly increasing for x > -1. (b) We have,  $f(x) = 10 - 6x - 2x^2$   $\therefore f'(x) = -6 - 4x$ Now,  $f'(x) = 0 \Rightarrow x = -\frac{3}{2}$ 

Å

The point  $x = -\frac{3}{2}$  divides the real line into two disjoint intervals i.e.,  $\left(-\infty, -\frac{3}{2}\right)$  and  $\left(-\frac{3}{2}, \infty\right)$ . In interval  $\left(-\infty, -\frac{3}{2}\right)$  i.e., when  $x < -\frac{3}{2}$ , f'(x) = -6 - 4x < 0.  $\therefore f$  is strictly increasing for  $x < -\frac{3}{2}$ .

In interval 
$$\left(-\frac{3}{2},\infty\right)$$
 i.e., when  $x > -\frac{3}{2}$ ,  $f'(x) = -\frac{6}{4} - 4x < 0$ .

 $\therefore$  *f* is strictly decreasing for  $x > -\frac{3}{2}$ .

(c) We have,  

$$f(x) = -2x^{3} - 9x^{2} - 12x + 1$$

$$\therefore f'(x) = -6x^{2} - 18x - 12 = -6(x^{2} + 3x + 2) = -6(x + 1)(x + 2)$$
Now,  

$$f'(x) = 0 \implies x = -1 \text{ and } x = -2$$

Points x = -1 and x = -2 divide the real line into three disjoint intervals

i.e., 
$$(-\infty, -2), (-2, -1)$$
, and  $(-1, \infty)$ .  
In intervals  $(-\infty, -2)$  and  $(-1, \infty)$  i.e., when  $x < -2$  and  $x > -1$ ,  
 $f'(x) = -6(x+1)(x+2) < 0$ .

Class XII MATH

: *f* is strictly decreasing for x < -2 and x > -1.

Now, in interval (-2, -1) i.e., when -2 < x < -1, f'(x) = -6(x+1)(x+2) > 0.

 $\therefore$  *f* is strictly increasing for -2 < x < -1.

(d) We have,

$$f(x) = 6 - 9x - x^2$$

$$\therefore f'(x) = -9 - 2x$$

Now, f'

$$(x) = 0$$
 gives  $x = -\frac{9}{2}$ 

 $x = -\frac{2}{2}$ The point  $\frac{1}{2}$  divides the real line into two disjoint intervals i.e.,

$$\left(-\infty,-\frac{9}{2}\right)$$
 and  $\left(-\frac{9}{2},\infty\right)$ 

In interval 
$$\left(-\infty, -\frac{9}{2}\right)_{i.e., \text{ for }} x < -\frac{9}{2}, f'(x) = -9 - 2x > 0$$

2

 $\therefore f$  is strictly increasing for

In interval 
$$\left(-\frac{9}{2},\infty\right)$$
 i.e., for  $x > -\frac{9}{2}$ ,  $f'(x) = -9 - 2x < 0$ .

 $\therefore$  *f* is strictly decreasing for  $x > -\frac{9}{2}$ .

(e) We have,  $f(x) = (x + 1)^{3} (x - 3)^{3}$   $f'(x) = 3(x+1)^{2} (x-3)^{3} + 3(x-3)^{2} (x+1)^{3}$   $= 3(x+1)^{2} (x-3)^{2} [x-3+x+1]$   $= 3(x+1)^{2} (x-3)^{2} (2x-2)$   $= 6(x+1)^{2} (x-3)^{2} (x-1)$ 

Now,

$$f'(x) = 0 \implies x = -1, 3, 1$$

The points x = -1, x = 1, and x = 3 divide the real line into four disjoint intervals

i.e.,  $\begin{pmatrix} -\infty, -1 \end{pmatrix}$ , (-1, 1), (1, 3), and  $\begin{pmatrix} 3, \infty \end{pmatrix}$ . In intervals  $\begin{pmatrix} -\infty, -1 \end{pmatrix}$  and (-1, 1),  $f'(x) = 6(x+1)^2(x-3)^2(x-1) < 0$ .

 $\therefore$  *f* is strictly decreasing in intervals  $(-\infty, -1)$  and (-1, 1).

In intervals (1, 3) and  $(3,\infty)$ ,  $f'(x) = 6(x+1)^2(x-3)^2(x-1) > 0$ 

∴ *f* is strictly increasing in intervals (1, 3) and  $(3,\infty)$ .

**Question 7:** 

Show that  $y = \log(1+x) - \frac{2x}{2+x}$ , x > -1, is an increasing function of x throughout its domain.

Answer

We have,

$$y = \log(1+x) - \frac{2x}{2+x}$$
  

$$\therefore \frac{dy}{dx} = \frac{1}{1+x} - \frac{(2+x)(2) - 2x(1)}{(2+x)^2} = \frac{1}{1+x} - \frac{4}{(2+x)^2} = \frac{x^2}{(2+x)^2}$$
  
Now,  $\frac{dy}{dx} = 0$   

$$\Rightarrow \frac{x^2}{(2+x)^2} = 0$$
  

$$\Rightarrow x^2 = 0$$
  

$$[(2+x) \neq 0 \text{ as } x > -1]$$
  

$$\Rightarrow x = 0$$

Since x > -1, point x = 0 divides the domain  $(-1, \infty)$  in two disjoint intervals i.e., -1 < x < 0 and x > 0.

When 
$$-1 < x < 0$$
, we have:

$$x < 0 \Rightarrow x^{2} > 0$$
  

$$x > -1 \Rightarrow (2+x) > 0 \Rightarrow (2+x)^{2} > 0$$
  

$$\therefore y' = \frac{x^{2}}{(2+x)^{2}} > 0$$

Also, when x > 0:

$$x > 0 \Rightarrow x^2 > 0, (2+x)^2 > 0$$
  
∴  $y' = \frac{x^2}{(2+x)^2} > 0$ 

Hence, function f is increasing throughout this domain.

**Question 8:** 

Find the values of x for which  $y = [x(x-2)]^2$  is an increasing function. Answer

We have,

$$y = [x(x-2)]^2 = [x^2 - 2x]^2$$
  
$$\therefore \frac{dy}{dx} = y' = 2(x^2 - 2x)(2x-2) = 4x(x-2)(x-1)$$
  
$$\therefore \frac{dy}{dx} = 0 \implies x = 0, x = 2, x = 1.$$

The points x = 0, x = 1, and x = 2 divide the real line into four disjoint intervals i.e.,  $(-\infty, 0)$ , (0,1) (1,2), and  $(2,\infty)$ .

In intervals  $(-\infty, 0)$  and (1, 2),  $\frac{dy}{dx} < 0$ .

 $\therefore$  y is strictly decreasing in intervals  $(-\infty, 0)$  and (1, 2).

However, in intervals (0, 1) and (2,  $\infty$ ),  $\frac{dy}{dx} > 0$ .

∴ y is strictly increasing in intervals (0, 1) and (2,  $\infty$ ).

y is strictly increasing for 0 < x < 1 and x > 2.

**Question 9:** 

Prove that  $y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$  is an increasing function of  $\theta$  in  $\left[0, \frac{\pi}{2}\right]$ . Answer We have,

Å

 $y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$   $\therefore \frac{dy}{dx} = \frac{(2+\cos\theta)(4\cos\theta) - 4\sin\theta(-\sin\theta)}{(2+\cos\theta)^2} - 1$   $= \frac{8\cos\theta + 4\cos^2\theta + 4\sin^2\theta}{(2+\cos\theta)^2} - 1$   $= \frac{8\cos\theta + 4}{(2+\cos\theta)^2} - 1$ Now,  $\frac{dy}{dx} = 0$ .  $\Rightarrow \frac{8\cos\theta + 4}{(2+\cos\theta)^2} = 1$   $\Rightarrow 8\cos\theta + 4 = 4 + \cos^2\theta + 4\cos\theta$   $\Rightarrow \cos^2\theta - 4\cos\theta = 0$   $\Rightarrow \cos\theta(\cos\theta - 4) = 0$   $\Rightarrow \cos\theta = 0 \text{ or } \cos\theta = 4$ Since  $\cos\theta \neq 4$ ,  $\cos\theta = 0$ .  $\cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$ Now,

$$\frac{dy}{dx} = \frac{8\cos\theta + 4 - \left(4 + \cos^2\theta + 4\cos\theta\right)}{\left(2 + \cos\theta\right)^2} = \frac{4\cos\theta - \cos^2\theta}{\left(2 + \cos\theta\right)^2} = \frac{\cos\theta\left(4 - \cos\theta\right)}{\left(2 + \cos\theta\right)^2}$$

Class XII MATH

www.esaral.com

Å.

In interval 
$$\left(0, \frac{\pi}{2}\right)$$
, we have  $\cos \theta > 0$ . Also,  $4 > \cos \theta \Rightarrow 4 - \cos \theta > 0$ 

$$\therefore \cos\theta (4 - \cos\theta) > 0 \text{ and also } (2 + \cos\theta)^2 > 0$$
$$\Rightarrow \frac{\cos\theta (4 - \cos\theta)}{(2 + \cos\theta)^2} > 0$$
$$\Rightarrow \frac{dy}{dx} > 0$$

Therefore, y is strictly increasing in interval  $\left(0, \frac{\pi}{2}\right)$ 

$$x = 0$$
 and  $x = \frac{\pi}{2}$ .

Also, the given function is continuous at

Hence, y is increasing in interval 
$$\left[0, \frac{\pi}{2}\right]$$

#### **Question 10:**

Prove that the logarithmic function is strictly increasing on  $(0, \infty)$ .

#### Answer

The given function is  $f(x) = \log x$ .

$$\therefore f'(x) = \frac{1}{x}$$

It is clear that for x > 0,  $f'(x) = \frac{1}{x} > 0$ .

Hence,  $f(x) = \log x$  is strictly increasing in interval  $(0, \infty)$ .

#### **Question 11:**

Prove that the function f given by  $f(x) = x^2 - x + 1$  is neither strictly increasing nor strictly decreasing on (-1, 1).

Answer



The given function is  $f(x) = x^2 - x + 1$ .

$$\therefore f'(x) = 2x - 1$$

Now, 
$$f'(x) = 0 \Rightarrow x = \frac{1}{2}$$
.

The point 2 divides the interval (-1, 1) into two disjoint intervals

i.e., 
$$\begin{pmatrix} -1, \frac{1}{2} \end{pmatrix}$$
 and  $\begin{pmatrix} \frac{1}{2}, 1 \end{pmatrix}$ .  
Now, in interval  $\begin{pmatrix} -1, \frac{1}{2} \end{pmatrix}$ ,  $f'(x) = 2x - 1 < 0$ .

Therefore, *f* is strictly decreasing in interval  $\left(-1, \frac{1}{2}\right)$ .

However, in interval  $\left(\frac{1}{2}, 1\right), f'(x) = 2x - 1 > 0.$ 

Therefore, *f* is strictly increasing in interval  $\left(\frac{1}{2}, 1\right)$ . Hence, *f* is neither strictly increasing nor decreasing in interval (-1, 1).

#### **Question 12:**

Which of the following functions are strictly decreasing on  $\left(0, \frac{\pi}{2}\right)$ ? (A) cos x (B) cos 2x (C) cos 3x (D) tan x

Answer

(A) Let 
$$f_1(x) = \cos x$$
  
 $\therefore f_1'(x) = -\sin x$ 

In interval 
$$\left(0, \frac{\pi}{2}\right), f_1'(x) = -\sin x < 0.$$
  
 $\therefore f_1(x) = \cos x$  is strictly decreasing in interval  $\left(0, \frac{\pi}{2}\right)$ 

Class XII MATH

(B) Let 
$$f_2(x) = \cos 2x$$
.  
 $\therefore f_2'(x) = -2\sin 2x$   
Now,  $0 < x < \frac{\pi}{2} \Rightarrow 0 < 2x < \pi \Rightarrow \sin 2x > 0 \Rightarrow -2\sin 2x < 0$   
 $\therefore f_2'(x) = -2\sin 2x < 0 \text{ on}\left(0, \frac{\pi}{2}\right)$   
 $\therefore f_2(x) = \cos 2x \text{ is strictly decreasing in interval}\left(0, \frac{\pi}{2}\right)$ .  
(C) Let  $f_3(x) = \cos 3x$ .  
 $\therefore f_3'(x) = -3\sin 3x$   
Now,  $f_3'(x) = 0$ .  
 $\Rightarrow \sin 3x = 0 \Rightarrow 3x = \pi, as x \in \left(0, \frac{\pi}{2}\right)$   
 $\Rightarrow x = \frac{\pi}{3}$   
The point  $x = \frac{\pi}{3}$  divides the interval  $\left(0, \frac{\pi}{2}\right)$  into two disjoint intervals  
i.e.,  $0\left(0, \frac{\pi}{3}\right)$  and  $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ .  
Now, in interval  $\left(0, \frac{\pi}{3}\right), f_3(x) = -3\sin 3x < 0$   $\left[as \ 0 < x < \frac{\pi}{3} \Rightarrow 0 < 3x < \pi$   
 $\therefore f_3$  is strictly decreasing in interval  $\left(0, \frac{\pi}{3}\right)$ .

However, in interval 
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right), f_3(x) = -3\sin 3x > 0 \left[as \frac{\pi}{3} < x < \frac{\pi}{2} \Rightarrow \pi < 3x < \frac{3\pi}{2}\right]$$

Class XII MATH

www.esaral.com

 $\therefore f_3$  is strictly increasing in interval  $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ .

Hence,  $f_3$  is neither increasing nor decreasing in interval  $\left(0, \frac{\pi}{2}\right)$ .

(D) Let  $f_4(x) = \tan x$ .  $\therefore f'_4(x) = \sec^2 x$ In interval  $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}, f'_4(x) = \sec^2 x > 0$ .  $\therefore f_4$  is strictly increasing in interval  $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}$ .

Therefore, functions cos x and cos 2x are strictly decreasing in  $\left(0, \frac{\pi}{2}\right)$ . Hence, the correct answers are A and B.

**Question 13:** 

On which of the following intervals is the function *f* given by  $f(x) = x^{100} + \sin x - 1$  strictly decreasing?

(A) 
$$(0, 1)_{(B)} \left(\frac{\pi}{2}, \pi\right)$$
  
(C)  $\left(0, \frac{\pi}{2}\right)_{(D)}$  None of these Answer

We have,

www.esaral.com



 $f(x) = x^{100} + \sin x - 1$ 

$$\therefore f'(x) = 100x^{99} + \cos x$$

In interval (0, 1),  $\cos x > 0$  and  $100x^{99} > 0$ .

$$\therefore f'(x) > 0.$$

Thus, function f is strictly increasing in interval (0, 1).

 $\left(\frac{\pi}{2},\pi\right), \cos x < 0 \text{ and } 100 \, x^{99} > 0.$  Also,  $100 \, x^{99} > \cos x$ . In interval  $\therefore f'(x) > 0 \ \operatorname{in}\left(\frac{\pi}{2}, \pi\right).$  $\left(\frac{\pi}{2}, \pi\right)$ 

Thus, function *f* is strictly increasing in interva

In interval 
$$\left(0, \frac{\pi}{2}\right)$$
,  $\cos x > 0$  and  $100x^{99} > 0$ .  
 $\therefore 100x^{99} + \cos x > 0$   
 $\Rightarrow f'(x) > 0$  on  $\left(0, \frac{\pi}{2}\right)$   
 $\left(0, \frac{\pi}{2}\right)$ 

 $\therefore$  *f* is strictly increasing in interval (2).

Hence, function *f* is strictly decreasing in none of the intervals. The correct answer is D.

**Question 14:** 

Find the least value of *a* such that the function *f* given  $f(x) = x^2 + ax + 1$  is strictly increasing on (1, 2).

Answer

We have,

 $f(x) = x^{2} + ax + 1$  $\therefore f'(x) = 2x + a$ 

Now, function f will be increasing in (1, 2), if f'(x) > 0 in (1, 2). f'(x) > 0

 $\Rightarrow 2x + a > 0$ 

 $\Rightarrow 2x > -a$ 

 $\Rightarrow \frac{x > -a}{2}$ 

Therefore, we have to find the least value of a such that

$$x > \frac{-a}{2}$$
, when  $x \in (1, 2)$ .  
 $\Rightarrow x > \frac{-a}{2}$  (when  $1 < x < 2$ )

Thus, the least value of a for f to be increasing on (1, 2) is given by,

$$\frac{-a}{2} = 1$$
$$\frac{-a}{2} = 1 \Longrightarrow a = -2$$

Hence, the required value of a is -2.

Å

**Question 15:** 

Let **I** be any interval disjoint from (-1, 1). Prove that the function *f* given by

$$f(x) = x + \frac{1}{x}$$

x is strictly increasing on **I**.

Answer

We have,

$$f(x) = x + \frac{1}{x}$$

$$\therefore f'(x) = 1 - \frac{1}{x^2}$$

Now,

$$f'(x) = 0 \Rightarrow \frac{1}{x^2} = 1 \Rightarrow x = \pm 1$$

The points x = 1 and x = -1 divide the real line in three disjoint intervals i.e.,

$$(-\infty, -1), (-1, 1), \text{ and } (1, \infty)$$

In interval (-1, 1), it is observed that:

$$-1 < x < 1$$
  

$$\Rightarrow x^{2} < 1$$
  

$$\Rightarrow 1 < \frac{1}{x^{2}}, x \neq 0$$
  

$$\Rightarrow 1 - \frac{1}{x^{2}} < 0, x \neq 0$$
  

$$\therefore f'(x) = 1 - \frac{1}{x^{2}} < 0 \text{ on } (-1, 1) \sim \{0\}$$

 $\therefore$  *f* is strictly decreasing on  $(-1, 1) \sim \{0\}$ 

In intervals  $(-\infty, -1)$  and  $(1, \infty)$ , it is observed that:

# <mark>∛S</mark>aral

x < -1 or 1 < x  $\Rightarrow x^{2} > 1$   $\Rightarrow 1 > \frac{1}{x^{2}}$   $\Rightarrow 1 - \frac{1}{x^{2}} > 0$  $\therefore f'(x) = 1 - \frac{1}{x^{2}} > 0 \text{ on } (-\infty, -1) \text{ and } (1, \infty).$ 

∴ *f* is strictly increasing on  $(-\infty, 1)$  and  $(1, \infty)$ .

Hence, function f is strictly increasing in interval I disjoint from (-1, 1). Hence, the given result is proved.

**Question 16:** 

Prove that the function f given by  $f(x) = \log \sin x$  is strictly increasing on  $\left(0, \frac{\pi}{2}\right)$  and

strictly decreasing on  $\left(\frac{\pi}{2},\pi\right)$ . Answer We have,

 $f(x) = \log \sin x$ 

$$\therefore f'(x) = \frac{1}{\sin x} \cos x = \cot x$$

 $\ln \operatorname{interval} \left(0, \ \frac{\pi}{2}\right), f'(x) = \cot x > 0.$ 

$$\therefore f$$
 is strictly increasing in  $\left(0, \frac{\pi}{2}\right)$ 

Å

In interval 
$$\left(\frac{\pi}{2}, \pi\right), f'(x) = \cot x < 0.$$
  
 $\therefore f$  is strictly decreasing in  $\left(\frac{\pi}{2}, \pi\right)$ .

Question 17:

Prove that the function f given by  $f(x) = \log \cos x$  is strictly decreasing on  $\left(0, \frac{\pi}{2}\right)$  and

strictly increasing on  $\left(\frac{\pi}{2},\pi\right)$ . Answer

We have,

 $f(x) = \log \cos x$ 

$$\therefore f'(x) = \frac{1}{\cos x} (-\sin x) = -\tan x$$

In interval  $\left(0, \frac{\pi}{2}\right)$ ,  $\tan x > 0 \Rightarrow -\tan x < 0$ .  $\therefore f'(x) < 0$  on  $\left(0, \frac{\pi}{2}\right)$ 

 $\therefore f$  is strictly decreasing on  $\left(0, \frac{\pi}{2}\right)$ .

In interval 
$$\left(\frac{\pi}{2}, \pi\right)$$
,  $\tan x < 0 \Rightarrow -\tan x > 0$ .  
 $\therefore f'(x) > 0$  on  $\left(\frac{\pi}{2}, \pi\right)$   
 $\therefore f$  is strictly increasing on  $\left(\frac{\pi}{2}, \pi\right)$ .

**Question 18:** 

Prove that the function given by  $f(x) = x^3 - 3x^2 + 3x - 100$  is increasing in **R**. Answer

We have,

 $f(x) = x^{3} - 3x^{2} + 3x - 100$  $f'(x) = 3x^{2} - 6x + 3$  $= 3(x^{2} - 2x + 1)$  $= 3(x - 1)^{2}$ 

For any  $x \in \mathbf{R}$ ,  $(x - 1)^2 > 0$ .

Thus, f'(x) is always positive in **R**. Hence, the given function (*f*) is increasing in **R**.

**Question 19:** 

The interval in which  $y = x^2 e^{-x}$  is increasing is

(A) 
$$(-\infty,\infty)$$
 (B)  $(-2, 0)$  (C)  $(2,\infty)$  (D)  $(0, 2)$ 

Answer

We have,

 $y = x^2 e^{-x}$ 

$$\therefore \frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x)$$
Now,  $\frac{dy}{dx} = 0$ .  
 $\Rightarrow x = 0$  and  $x = 2$   
The points  $x = 0$  and  $x = 2$  divide the real line into three disjoint intervals  
i.e.,  $(-\infty, 0)$ ,  $(0, 2)$ , and  $(2, \infty)$ .

In intervals  $(-\infty, 0)$  and  $(2, \infty)$ , f'(x) < 0 as  $e^{-1}$  is always positive.

∴*f* is decreasing on  $(-\infty, 0)$  and  $(2, \infty)$ .

In interval (0, 2), f'(x) > 0.

 $\therefore$  f is strictly increasing on (0, 2).

Hence, *f* is strictly increasing in interval (0, 2). The correct answer is D.