MATHEMATICS

1. Find number of common terms in the two given series
$4,9,14,19 \ldots \ldots$ up to 25 terms and
$3,9,15,21 \ldots$ up to 37 terms
(1) 4
(2) 7
(3) 5
(4) 3

Ans. (1)
Sol. $4,9,14,19, \ldots \ldots .124 \rightarrow d_{1}=5$
$3,9,15,21 \ldots \ldots . .219 \rightarrow d_{2}=6$
$1^{\text {st }}$ common term $=9$ and common difference of common terms $=30$
Common terms are 9, 39, 69, 99
4 common terms
2. Let $8=3+\frac{3+p}{4}+\frac{3+2 p}{4^{2}}+\ldots . \infty$, then p is
(1) 9
(2) $\frac{5}{4}$
(3) 3
(4) 1

Ans. (1)
Sol. $8=3+\frac{3+p}{4}+\frac{3+2 p}{4^{2}}+\ldots$ \qquad
multiply both sides by $\frac{1}{4}$, we get
$2=\frac{3}{4}+\frac{3+p}{4^{2}}+$ \qquad
Equation (i) - equation (ii)
$\Rightarrow 6=3+\frac{\mathrm{p}}{4}+\frac{\mathrm{p}}{4^{2}}+\ldots$.
$\Rightarrow 3=\frac{\mathrm{p}}{4\left(1-\frac{1}{4}\right)} \Rightarrow \mathrm{p}=9$
3. For $\frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{16}=1$, find the length of chord whose mid point is $\mathrm{P}\left(1, \frac{2}{5}\right)$
(1) $\frac{\sqrt{1681}}{5}$
(2) $\frac{\sqrt{1481}}{5}$
(3) $\frac{\sqrt{1781}}{5}$
(4) $\frac{\sqrt{1691}}{5}$

Ans. (4)

Sol. \quad By $T=S_{1}$
$\Rightarrow \frac{\mathrm{x}}{25}+\frac{\mathrm{y}}{16}=\frac{1}{25}+\frac{4}{25} \cdot \frac{1}{16}$
$\Rightarrow \frac{\mathrm{x}}{25}+\frac{\mathrm{y}}{40}=\frac{4+1}{100}$
$\Rightarrow \frac{\mathrm{x}}{25}+\frac{\mathrm{y}}{40}=\frac{1}{20}$
$\Rightarrow 8 \mathrm{x}+5 \mathrm{y}=10$
$\Rightarrow \frac{\mathrm{x}^{2}}{25}+\left(\frac{10-8 \mathrm{x}}{5}\right)^{2} \frac{1}{16}=1$
$\Rightarrow \frac{\mathrm{x}^{2}}{25}+\frac{4}{25}\left(\frac{5-4 \mathrm{x}}{16}\right)^{2}=1$
$\Rightarrow \mathrm{x}^{2}+\frac{(5-4 \mathrm{x})^{2}}{4}=25$
$\Rightarrow 4 \mathrm{x}^{2}+(5-4 \mathrm{x})^{2}=100$
$\Rightarrow 20 \mathrm{x}^{2}-8 \mathrm{x}-15=0$
$\mathrm{x}_{1}+\mathrm{x}_{2}=2$
$\mathrm{x}_{1} \mathrm{X}_{2}=\frac{-15}{4}$
length of chord $=\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \sqrt{1+\mathrm{m}^{2}}$
$=\frac{\sqrt{1691}}{5}$
4. If $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f "(2)+f$ "'(3), then find $f^{\prime}(10)$.

Ans. (202)
Sol. $\quad f^{\prime}(x)=3 x^{2}+2 x f^{\prime}(1)+f^{\prime}(2)$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}+2 \mathrm{f}^{\prime}(1)$
f "'(3) $=6$
$f^{\prime}(1)=-5$
f " 2) $=2$
$\Rightarrow \mathrm{f}^{\prime}(10)=300+20(-5)+2$
$=202$
5. Let $\int_{0}^{1} \frac{d x}{\sqrt{x+3}+\sqrt{x+1}}=A+B \sqrt{2}+C \sqrt{3}$ then the value of $2 A+3 B+C$ is
(1) 3
(2) 4
(3) 5
(4) 6

Ans. (1)

Sol. On rationalising
$\int_{0}^{1} \frac{(\sqrt{x+3}-\sqrt{x+1})}{2} d x$
$=\frac{2}{3.2}\left\{(\mathrm{x}+3)^{3 / 2}-(\mathrm{x}+1)^{3 / 2}\right\}_{0}^{1}$
$=\frac{1}{3}\{8-3 \sqrt{3}-(2 \sqrt{2}-1)\}$
$=\frac{1}{3}\{9-3 \sqrt{3}-2 \sqrt{2}\}$
$=\left(3-\sqrt{3}-\frac{2 \sqrt{2}}{3}\right): \mathrm{A}=3, \mathrm{~B}=-\frac{2}{3}, \mathrm{C}=-1$
$\therefore 2 \mathrm{~A}+3 \mathrm{~B}+\mathrm{C}=6-2-1=3$
6. If $|z-i|=|z-1|=|z+i|, z \in C$, then the numbers of z satisfying the equation are
(1) 0
(2) 1
(3) 2
(4) 4

Ans. (2)
Sol. z is equidistant from $1, \mathrm{i}, \&-\mathrm{i}$
only $\mathrm{z}=0$ is possible
\therefore number of z equal to 1
7. If sum of coefficients in $\left(1-3 x+10 x^{2}\right)^{n}$ and $\left(1+x^{2}\right)^{n}$ is A and B respectively then
(1) $A^{3}=B$
(2) $A=B^{3}$
(3) $A=2 B$
(4) $A=B$

Ans. (2)
Sol. $\quad \mathrm{A}=8^{\mathrm{n}}$

$$
\mathrm{B}=2^{\mathrm{n}}
$$

(B) $\therefore \mathrm{A}=\mathrm{B}^{3}$
8. Let $a_{1}, a_{2}, \ldots, a_{10}$ are 10 observations such that $\sum_{i=1}^{10} a_{i}=50$ and $\sum_{i \neq j}^{10} a_{i} \cdot a_{j}=1100$, then their standard deviation will be
(1) $\sqrt{5}$
(2) $\sqrt{30}$
(3) $\sqrt{15}$
(4) $\sqrt{10}$

Ans. (1)
Sol. $\quad\left(a_{1}+a_{2}+\ldots .+a_{10}\right)^{2}=50^{2}$
$\Rightarrow \sum \mathrm{a}_{1}^{2}+2 \sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}=2500$
$\Rightarrow \sum \mathrm{a}_{1}^{2}=300$
$\sigma^{2}=\frac{\sum \mathrm{a}_{\mathrm{i}}^{2}}{10}-\left(\frac{\sum \mathrm{a}_{\mathrm{i}}}{10}\right)^{2}$
$\Rightarrow \sigma^{2}=5 \Rightarrow S . D=\sqrt{5}$
9. If $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ then

Statement-1: $f(-x)$ is inverse of $f(x)$
Statement-2: $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$
(1) Both are true
(2) Both are false
(3) Only statement 1 is true
(4) Only statement 2 is true

Ans. (1)
Sol. $f(x) f(y)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (\mathrm{x}+\mathrm{y}) & -\sin (\mathrm{x}+\mathrm{y}) & 0 \\ \sin (\mathrm{x}+\mathrm{y}) & \cos (\mathrm{x}-\mathrm{y}) & 0 \\ 0 & 0 & 1\end{array}\right]$
$=f(x+y)$
$\therefore \mathrm{f}(\mathrm{x}) \mathrm{f}(-\mathrm{x})=\mathrm{f}(0)$

$$
=\mathrm{I}
$$

10. If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}$ find $a \cdot b^{3}$
(1) 16
(2) 32
(3) -16
(4) 48

Ans. (2)
Sol. $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{4}}-1}{x^{4}\left[\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right]}$
$=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}\left[\sqrt{1+\sqrt{1+x^{4}}+\sqrt{2}}\right]\left[\sqrt{1+x^{4}}+1\right]}$
$=\frac{1}{2 \sqrt{2} \times 2}=\frac{1}{4 \sqrt{2}}$
$b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{(1-\cos x)}(\sqrt{2}+\sqrt{1+\cos x})$
$=2 \times(\sqrt{2}+\sqrt{2})=4 \sqrt{2}$
$\therefore \mathrm{ab}^{3}=(4 \sqrt{2})^{2}=32$
11. If the minimum distance of centre of the circle $x^{2}+y^{2}-4 x-16 y+64=0$ from any point on the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ is d , find d^{2}

Ans. (20)
Sol. Normal to parabola is $\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$
centre $(2,8) \rightarrow 8=2 m-2 m-\mathrm{m}^{3}$
$\Rightarrow \mathrm{m}=-2$
$\therefore \mathrm{p}$ is $\left(\mathrm{m}^{2},-2 \mathrm{~m}\right)=(4,4)$
$\Rightarrow \mathrm{d}^{2}=4+16=20$
12. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3(\hat{i}-\hat{j}+\hat{k}), \vec{a} \times \vec{c}=\vec{b} \& \vec{a} \cdot \vec{c}=3$ find $\vec{a} \cdot(\vec{c} \times \vec{b}-\vec{b}-\vec{c})$
(1) 24
(2) -24
(3) 18
(4) 15

Ans. (1)
Sol. $\quad[\vec{a} \vec{c} \vec{b}]=(\vec{a} \times \vec{c}) \cdot \vec{b}=|\vec{b}|^{2}=27$
\therefore we need $=27-0-3=24$
13. Consider the line $L: 4 x+5 y=20$. Let two other lines are L_{1} and L_{2} which trisect the line L and pass through origin, then tangent of angle between lines L_{1} and L_{2} is
(1) $\frac{20}{41}$
(2) $\frac{30}{41}$
(3) $\frac{40}{41}$
(4) $\frac{10}{41}$

Ans. (2)
Sol. Let line L intersect the lines L_{1} and L_{2} at P and Q
$\mathrm{P}\left(\frac{10}{3}, \frac{4}{3}\right), \mathrm{Q}\left(\frac{5}{3}, \frac{8}{3}\right)$
$\therefore \mathrm{m}_{\mathrm{OA}}=\frac{2}{5}$
$\mathrm{m}_{\mathrm{OQ}}=\frac{8}{5}$
$\tan \theta=\left|\frac{\frac{8}{5}-\frac{2}{5}}{1+\frac{16}{25}}\right|$
$=\left(\frac{6}{5} \times \frac{25}{41}\right)$
$=\frac{30}{41}$
14. If ${ }^{n-1} C_{r}=\left(k^{2}-8\right)^{n} C_{r+1}$, then the range of ' k ' is
(1) $\mathrm{k} \in(2 \sqrt{2}, 3]$
(2) $k \in(2 \sqrt{2}, 3)$
(3) $\mathrm{k} \in[2,3)$
(4) $k \in(2 \sqrt{2}, 8)$

Ans. (1)
Sol. $\quad{ }^{n-1} C_{r}=\left(k^{2}-8\right) \frac{n}{r+1} \cdot{ }^{n-1} C_{r}$
$\Rightarrow \mathrm{k}^{2}-8=\frac{\mathrm{r}+1}{\mathrm{n}}$
here $r \in[0, n-1]$
$\Rightarrow \mathrm{r}+1 \in[1, \mathrm{n}]$
$\Rightarrow \mathrm{k}^{2}-8 \in\left[\frac{1}{\mathrm{n}}, 1\right]$
$\Rightarrow \mathrm{k}^{2} \in\left[8+\frac{1}{\mathrm{n}}, 9\right]$
$\Rightarrow \mathrm{k} \in(2 \sqrt{2}, 3]$
15. If $\alpha x+\beta y+9 \ln |2 x+3 y-8 \lambda|=x+C$ is the solution of $(2 x+3 y-2) d x+(4 x+6 y-7) d y=0$, then $\alpha+\beta+\gamma=$
(1) 18
(2) 19
(3) 20
(4) 21

Ans. (1)
Sol. Let $2 \mathrm{x}+3 \mathrm{y}=\mathrm{t}$
$\Rightarrow 2+3 \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
Now $(\mathrm{t}-2)+(2 \mathrm{t}-7)\left(\frac{\mathrm{dt}}{\mathrm{dx}}-2\right) \times \frac{1}{3}=0$
$\Rightarrow-\frac{(3 \mathrm{t}-6)}{2 \mathrm{t}-7}=\frac{\mathrm{dt}}{\mathrm{dx}}-2$
$\Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{t}-8}{2 \mathrm{t}-7}$
$\Rightarrow \int \frac{2 \mathrm{t}-7}{\mathrm{t}-8} \mathrm{dt}=\int \mathrm{dx}$
$\Rightarrow \int 2+\frac{9}{\mathrm{t}-8} \mathrm{dt}=\int \mathrm{dx}$
$\Rightarrow 2 \mathrm{t}+|9 \ln | \mathrm{t}-8 \mid=\mathrm{x}+\mathrm{C}$
$\Rightarrow 2(2 x+3 y)+9 \ln |2 x+3 y-8|=x+C$
$\alpha=4, \beta=6, \gamma=8$
16. $f: N-\{1\} \rightarrow N$ and $f(n)=$ highest prime factor of ' n ', then f is
(1) one-one, onto
(2) many-one, onto
(3) many-one, into
(4) one-one, into

Ans. (3)
Sol. ' 4 ' is not image of any element \Rightarrow into
$\mathrm{f}(10)=5=\mathrm{f}(15) \Rightarrow$ many-one
17. If $P(X)$ represent the probability of getting a ' 6 ' in the $X^{\text {th }}$ roll of a die for the first time. Also $\mathrm{a}=\mathrm{P}(\mathrm{X}=3)$
$\mathrm{b}=\mathrm{P}(\mathrm{X} \geq 3)$
$c=P\left(\frac{X \geq 6}{x>3}\right)$, then $\frac{b+c}{a}=$?
Ans. (12)
Sol. $\quad P(X=3)=\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}=\mathrm{a}$
$P(X \geq 3)=\left(\frac{5}{6}\right)^{2}=b$
$P\left(\frac{X \geq 6}{X>3}\right)=\left(\frac{5}{6}\right)^{2}=c$
$\therefore \frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}=\frac{2\left(\frac{5}{6}\right)^{2}}{\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}}=12$
18. If the angle between two vectors $\vec{a}=\alpha \hat{i}-4 \hat{j}-\hat{k}$ and $\vec{b}=\alpha \hat{i}+\alpha \hat{j}+4 \hat{k}$ is acute then find positive integral value of α.
(1) 4
(2) 5
(3) 6
(4) 7

Ans. (2)
Sol. $\quad \vec{a} \cdot \vec{b}>0$
$\Rightarrow \alpha^{2}-4 \alpha-4>0$
$\alpha<(2-2 \sqrt{2})$ or $\alpha>(2+2 \sqrt{2})$
19. If $S=\{1,2, \ldots \ldots \ldots \ldots 10\}$ and $M=P(S)$,

If ARB such that $A \cap B \neq \phi$ where $A \in M, B \in M$
Then
(1) R is reflexive and symmetric
(2) Only symmetric
(3) Only reflexive
(4) Symmetric and transitive

Ans. (2)

Sol. $\phi \cap \phi=\phi \quad \Rightarrow(\phi, \phi) \notin \mathrm{R} \quad \Rightarrow$ not reflexive.
If $A \cap B \neq \phi \quad \Rightarrow B \cap A \neq \phi \Rightarrow$ Symmetric
If $\mathrm{A} \cap \mathrm{B} \neq \phi$ and $\mathrm{B} \cap \mathrm{C} \neq \phi \Rightarrow \mathrm{A} \cap \mathrm{C}=\phi$
for example $\mathrm{A}=\{1,2\}$
$B=\{2,3\}$
$\mathrm{C}=\{3,4\}$
20. If four points $(0,0),(1,0),(0,1),(2 \mathrm{k}, 3 \mathrm{k})$ are concyclic, then k is
(1) $\frac{4}{13}$
(2) $\frac{5}{13}$
(3) $\frac{7}{13}$
(4) $\frac{9}{13}$

Ans. (2)
Sol. Equation of circle is
$x(x-1)+y(y-1)=0$
$x^{2}+y^{2}-x-y=0$
B(2k, 3k)
$\Rightarrow 4 \mathrm{k}^{2}+9 \mathrm{k}^{2}-2 \mathrm{k}-3 \mathrm{k}=0$
$\Rightarrow 13 \mathrm{k}^{2}=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=0, \frac{5}{13}$
$\therefore \mathrm{k}=\frac{5}{13}$
21. If $f(x)$ is differentiable function satisfying $f(x)-f(y) \geq \log \frac{x}{y}+x-y$, then find $\sum_{N=1}^{20} f^{\prime}\left(\frac{1}{N^{2}}\right)$

Ans. (2890)

Sol. Let $\mathrm{x}>\mathrm{y}$
$\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y} \geq \frac{\log x-\log y}{x-y}+1$
$\mathrm{f}^{\prime}\left(\mathrm{x}^{-}\right) \geq \frac{1}{\mathrm{x}}+1$
$\Rightarrow \mathrm{f}^{\prime}\left(\mathrm{x}^{-}\right)=\mathrm{f}^{\prime}\left(\mathrm{x}^{+}\right)$as $\mathrm{f}(\mathrm{x})$ is differentiable function
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}+1$
$\mathrm{f}^{\prime}\left(\frac{1}{\mathrm{~N}^{2}}\right)=\mathrm{N}^{2}+1$
$\sum_{\mathrm{N}=1}^{20} \mathrm{f}^{\prime}\left(\frac{1}{\mathrm{~N}^{2}}\right)=\sum\left(\mathrm{N}^{2}+1\right)=\frac{20 \times 21 \times 41}{6}+20=2890$
22. Let $\frac{d x}{d t}+a x=0$ and $\frac{d y}{d t}+$ by $=0$ where $y(0)=1, x(0)=2$, and $x(t)=y(t)$, then t is
(1) $\frac{\ln 3}{a-b}$
(2) $\frac{\ln 2}{b-a}$
(3) $\frac{\ln 2}{a-b}$
(4) $\frac{\ln 3}{b-a}$

Ans. (3)
Sol. $\frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{ax}=0$
$\Rightarrow \ln \mathrm{x}=-\mathrm{at}+\mathrm{c}$
$\mathrm{x}(0)=2 \Rightarrow \mathrm{c}=\ln 2$
$\therefore \mathrm{x}=2 \mathrm{e}^{-\mathrm{at}}$
$\frac{d y}{d t}+b y=0 \Rightarrow y=e^{-b t}$
$\mathrm{x}(\mathrm{t})=\mathrm{g}(\mathrm{t})$
$2 \mathrm{e}^{-\mathrm{at}}=\mathrm{e}^{-\mathrm{bt}}$
$\Rightarrow \mathrm{t}=\frac{\ln 2}{\mathrm{a}-\mathrm{b}}$
23. If $H(a, b)$ is the orthocentre of $\triangle A B C$ where $A(1,2), B(2,3) \& C(3,1)$, then find $\frac{36 I_{1}}{I_{2}}$ if $I_{1}=\int_{a}^{b} x \sin \left(4 x-x^{2}\right) d x$ and $I_{2}=\int_{a}^{b} \sin \left(4 x-x^{2}\right) d x$

Ans. (72)
Sol. $\triangle \mathrm{ABC}$ is isosceles
$\Rightarrow \mathrm{H}$ lies on angle bisector passing through $(3,1)$ which is $\mathrm{x}+\mathrm{y}=4$
$\therefore \mathrm{a}+\mathrm{b}=4$
Now apply $(a+b-x)$ in I_{1}
$2 I_{1}=\int_{a}^{b} 4 \sin \left(4 x-x^{2}\right) d x$
$\Rightarrow 2 \mathrm{I}_{1}=4 \mathrm{I}_{2}$
$\Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=2$
$\therefore \frac{36 \mathrm{I}_{1}}{\mathrm{I}_{2}}=72$
$2^{\frac{\sin (x-3)}{x-[x]}} \quad, \quad x>3$
24. $f(x)=\left\{-\frac{a\left(x^{2}-7 x+12\right)}{b\left|x^{2}-7 x+12\right|} \quad, \quad x<3\right.$. Find number of ordered pairs (a, b) so that $f(x)$ is continuous b $\quad, \quad \mathrm{x}=3$
at $x=3$
Ans. (1)
Sol. $\quad \mathrm{LHL}=$ RHL $=\mathrm{f}(3)$
$-\frac{\mathrm{a}}{\mathrm{b}}=2^{1}=\mathrm{b}$
$\Rightarrow \mathrm{b}=2$ and $\mathrm{a}=-4$
$\Rightarrow(\mathrm{a}, \mathrm{b})=(-4,2)$
25. Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 2 & 0\end{array}\right], B=\left[B_{1} B_{2} B_{3}\right]$ where B_{1}, B_{2}, B_{3} are column matrices such that

$$
\mathrm{AB}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathrm{AB}_{2}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], \mathrm{AB}_{3}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

$\alpha=$ sum of diagonal elements of B
$\beta=|\mathrm{B}|$, then find $\left|\alpha^{3}+\beta^{3}\right|$
Ans. (1.125)
Sol. $\quad A^{-1}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 1 & -2 & 0\end{array}\right]$
$\mathrm{B}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathrm{B}_{2}=\left[\begin{array}{l}0 \\ \frac{1}{2} \\ 2\end{array}\right], \mathrm{B}_{3}=\left[\begin{array}{c}2 \\ -\frac{5}{2} \\ -1\end{array}\right]$
$\operatorname{Tr}(B)=-\frac{1}{2}$
$|B|=-1$
$\therefore \mathrm{a}=-\frac{1}{2}, \mathrm{~b}=-1$
$\left|\alpha^{3}+\beta^{3}\right|=\frac{9}{8}=1.125$
26. If $\cos (2 x)-a \sin x=2 a-7$ has a solution for $a \in[p, q]$ and $r=\tan 9^{\circ}+\tan 63^{\circ}+\tan 81^{\circ}+\tan 27^{\circ}$, then p.q. $\mathrm{r}=$?
(1) $40 \sqrt{5}$
(2) $32 \sqrt{5}$
(3) $30 \sqrt{5}$
(4) $48 \sqrt{5}$

Ans. (4)
Sol. $2\left(\sin ^{2} x-4\right)+a(\sin x+2)=0$
$2(\sin x-2)+a=0$
$\Rightarrow \mathrm{a}=4-2 \sin \mathrm{x}$
$a \in[2,6]$
Also, $r=\left(\tan 9^{\circ}+\frac{1}{\tan 9^{\circ}}\right)+\left(\tan 27^{\circ}+1 \frac{1}{\tan 27^{\circ}}\right)$
$=\frac{2}{\sin 18^{\circ}}+\frac{2}{\sin 54^{\circ}}$
$=\frac{2 \times 4}{\sqrt{5}-1}+\frac{2 \times 4}{\sqrt{5}+1}$
$=\frac{8 \times 2 \sqrt{5}}{4}=4 \sqrt{5}$
$\therefore \mathrm{pqr}=48 \sqrt{5}$

