Class XI : Maths
 Chapter 11 : Introduction to Three Dimensional Geometry

Questions and Solutions | Exercise 11.2 - NCERT Books

Question 1:

Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$ (ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and ($1,-3,4$) (iv) $(2,-1,3)$ and $(-2,1,3)$

Answer
The distance between points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{P}\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

(i) Distance between points $(2,3,5)$ and $(4,3,1)$

$$
\begin{aligned}
& =\sqrt{(4-2)^{2}+(3-3)^{2}+(1-5)^{2}} \\
& =\sqrt{(2)^{2}+(0)^{2}+(-4)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20} \\
& =2 \sqrt{5}
\end{aligned}
$$

(ii) Distance between points ($-3,7,2$) and (2, 4, -1)
$=\sqrt{(2+3)^{2}+(4-7)^{2}+(-1-2)^{2}}$
$=\sqrt{(5)^{2}+(-3)^{2}+(-3)^{2}}$
$=\sqrt{25+9+9}$
$=\sqrt{43}$
(iii) Distance between points ($-1,3,-4$) and ($1,-3,4$)
$=\sqrt{(1+1)^{2}+(-3-3)^{2}+(4+4)^{2}}$
$=\sqrt{(2)^{2}+(-6)^{3}+(8)^{2}}$
$=\sqrt{4+36+64}=\sqrt{104}=2 \sqrt{26}$
(iv) Distance between points $(2,-1,3)$ and $(-2,1,3)$
$=\sqrt{(-2-2)^{2}+(1+1)^{2}+(3-3)^{2}}$
$=\sqrt{(-4)^{2}+(2)^{2}+(0)^{2}}$
$=\sqrt{16+4}$
$=\sqrt{20}$
$=2 \sqrt{5}$

Question 2:

Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.
Answer
Let points $(-2,3,5),(1,2,3)$, and $(7,0,-1)$ be denoted by P, Q, and R respectively.
Points P, Q, and R are collinear if they lie on a line.

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}} \\
& =\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}} \\
& =\sqrt{9+1+4} \\
& =\sqrt{14} \\
\mathrm{QR} & =\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{(6)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{36+4+16} \\
& =\sqrt{56} \\
& =2 \sqrt{14}
\end{aligned}
$$

$$
\mathrm{PR}=\sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}}
$$

$$
\begin{aligned}
& =\sqrt{(9)^{2}+(-3)^{2}+(-6)^{2}} \\
& =\sqrt{81+9+36} \\
& =\sqrt{126} \\
& =3 \sqrt{14}
\end{aligned}
$$

Here, $\mathrm{PQ}+\mathrm{QR}=\sqrt{14}+2 \sqrt{14}=3 \sqrt{14}=P R$
Hence, points $P(-2,3,5), Q(1,2,3)$, and $R(7,0,-1)$ are collinear.

Question 3:

Verify the following:
(i) $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.

Answer
(i) Let points $(0,7,-10),(1,6,-6)$, and $(4,9,-6)$ be denoted by A, B, and C respectively.

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(1-0)^{2}+(6-7)^{2}+(-6+10)^{2}} \\
&=\sqrt{(1)^{2}+(-1)^{2}+(4)^{2}} \\
&=\sqrt{1+1+16} \\
&=\sqrt{18} \\
&=3 \sqrt{2} \\
& \mathrm{BC}=\sqrt{(4-1)^{2}+(9-6)^{2}+(-6+6)^{2}} \\
&=\sqrt{(3)^{2}+(3)^{2}} \\
&=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \\
& \mathrm{CA}=\sqrt{(0-4)^{2}+(7-9)^{2}+(-10+6)^{2}} \\
&=\sqrt{(-4)^{2}+(-2)^{2}+(-4)^{2}} \\
&=\sqrt{16+4+16}=\sqrt{36}=6 \\
& \text { Here, } \mathrm{AB}=\mathrm{BC} \neq \mathrm{CA}
\end{aligned}
$$

Thus, the given points are the vertices of an isosceles triangle.
(ii) Let $(0,7,10),(-1,6,6)$, and $(-4,9,6)$ be denoted by A, B, and C respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}} \\
& =\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}} \\
& =\sqrt{1+1+16}=\sqrt{18} \\
& =3 \sqrt{2} \\
\mathrm{BC} & =\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}} \\
& =\sqrt{(-3)^{2}+(3)^{2}+(0)^{2}} \\
& =\sqrt{9+9}=\sqrt{18} \\
& =3 \sqrt{2} \\
\mathrm{CA} & =\sqrt{(0+4)^{2}+(7-9)^{2}+(10-6)^{2}} \\
& =\sqrt{(4)^{2}+(-2)^{2}+(4)^{2}} \\
& =\sqrt{16+4+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Now, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}=18+18=36=\mathrm{AC}^{2}$
Therefore, by Pythagoras theorem, $A B C$ is a right triangle.
Hence, the given points are the vertices of a right-angled triangle.
(iii) Let $(-1,2,1),(1,-2,5),(4,-7,8)$, and $(2,-3,4)$ be denoted by A, B, C, and D respectively.

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(1+1)^{2}+(-2-2)^{2}+(5-1)^{2}} \\
&=\sqrt{4+16+16} \\
&=\sqrt{36} \\
&=6 \\
& \mathrm{BC}=\sqrt{(4-1)^{2}+(-7+2)^{2}+(8-5)^{2}} \\
&=\sqrt{9+25+9}=\sqrt{43} \\
& \mathrm{CD}=\sqrt{(2-4)^{2}+(-3+7)^{2}+(4-8)^{2}} \\
&=\sqrt{4+16+16} \\
&=\sqrt{36} \\
&=6 \\
& \mathrm{DA}=\sqrt{(-1-2)^{2}+(2+3)^{2}+(1-4)^{2}} \\
&=\sqrt{9+25+9}=\sqrt{43} \\
& \text { Here, } \mathrm{AB}=\mathrm{CD}=6, \mathrm{BC}=\mathrm{AD}=\sqrt{43}
\end{aligned}
$$

Hence, the opposite sides of quadrilateral $A B C D$, whose vertices are taken in order, are equal.
Therefore, $A B C D$ is a parallelogram.
Hence, the given points are the vertices of a parallelogram.

Question 4:

Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and (3, 2, -1).

Answer
Let $\mathrm{P}(x, y, z)$ be the point that is equidistant from points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(3,2,-1)$.
Accordingly, $\mathrm{PA}=\mathrm{PB}$

$$
\begin{aligned}
& \Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2} \\
& \Rightarrow(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2} \\
& \Rightarrow x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-6 z+9=x^{2}-6 x+9+y^{2}-4 y+4+z^{2}+2 z+1
\end{aligned}
$$

$\Rightarrow-2 x-4 y-6 z+14=-6 x-4 y+2 z+14$
$\Rightarrow-2 x-6 z+6 x-2 z=0$
$\Rightarrow 4 x-8 z=0$
$\Rightarrow x-2 z=0$
Thus, the required equation is $x-2 z=0$.

Question 5:

Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10 .

Answer

Let the coordinates of P be (x, y, z).
The coordinates of points A and B are $(4,0,0)$ and $(-4,0,0)$ respectively.
It is given that $\mathrm{PA}+\mathrm{PB}=10$.
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10$
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}$
On squaring both sides, we obtain

$$
\begin{aligned}
& \Rightarrow(x-4)^{2}+y^{2}+z^{2}=100-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}}+(x+4)^{2}+y^{2}+z^{2} \\
& \Rightarrow x^{2}-8 x+16+y^{2}+z^{2}=100-20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}+x^{2}+8 x+16+y^{2}+z^{2} \\
& \Rightarrow 20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=100+16 x \\
& \Rightarrow 5 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=(25+4 x)
\end{aligned}
$$

On squaring both sides again, we obtain
$25\left(x^{2}+8 x+16+y^{2}+z^{2}\right)=625+16 x^{2}+200 x$
$\Rightarrow 25 x^{2}+200 x+400+25 y^{2}+25 z^{2}=625+16 x^{2}+200 x$
$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2}-225=0$
Thus, the required equation is $9 x^{2}+25 y^{2}+25 z^{2}-225=0$.

