## Class XI : Maths

## Chapter 12 : Limits and Derivatives

## Questions and Solutions | Exercise 12.2 - NCERT Books

## Question 1:

Find the derivative of $x^{2}-2$ at $x=10$.
Answer
Let $f(x)=x^{2}-2$. Accordingly,

$$
\begin{aligned}
f^{\prime}(10) & =\lim _{h \rightarrow 0} \frac{f(10+h)-f(10)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(10+h)^{2}-2\right]-\left(10^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{10^{2}+2 \cdot 10 \cdot h+h^{2}-2-10^{2}+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{20 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(20+h)=(20+0)=20
\end{aligned}
$$

Thus, the derivative of $x^{2}-2$ at $x=10$ is 20 .

## Question 2:

Find the derivative of $x$ at $x=1$.
Answer
Let $f(x)=x$. Accordingly,

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Thus, the derivative of $x$ at $x=1$ is 1 .

## Question 3:

Find the derivative of $99 x$ at $x=100$.

## Answer

Let $f(x)=99 x$. Accordingly,

$$
\begin{aligned}
f^{\prime}(100) & =\lim _{h \rightarrow 0} \frac{f(100+h)-f(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99(100+h)-99(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99 \times 100+99 h-99 \times 100}{h} \\
& =\lim _{h \rightarrow 0} \frac{99 h}{h} \\
& =\lim _{h \rightarrow 0}(99)=99
\end{aligned}
$$

Thus, the derivative of $99 x$ at $x=100$ is 99 .

## Question 4:

Find the derivative of the following functions from first principle.
(i) $x^{3}-27$ (ii) $(x-1)(x-2)$
(ii) $\frac{1}{x^{2}}$ (iv) $\frac{x+1}{x-1}$

Answer
(i) Let $f(x)=x^{3}-27$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-27\right]-\left(x^{3}-27\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+h^{3}+3 x^{2} h+3 x h^{2}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+3 x^{2} h+3 x h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(h^{2}+3 x^{2}+3 x h\right) \\
& =0+3 x^{2}+0=3 x^{2}
\end{aligned}
$$

(ii) Let $f(x)=(x-1)(x-2)$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-1)(x+h-2)-(x-1)(x-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+h x-2 x+h x+h^{2}-2 h-x-h+2\right)-\left(x^{2}-2 x-x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(h x+h x+h^{2}-2 h-h\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-3) \\
& =(2 x+0-3) \\
& =2 x-3
\end{aligned}
$$

(iii) Let $f(x)=\frac{1}{x^{2}}$. Accordingly, from the first principle,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2}}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-x^{2}-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right]
$$

$$
=\lim _{h \rightarrow 0}\left[\frac{-h-2 x}{x^{2}(x+h)^{2}}\right]
$$

$$
=\frac{0-2 x}{x^{2}(x+0)^{2}}=\frac{-2}{x^{3}}
$$

(iv) Let $f(x)=\frac{x+1}{x-1}$. Accordingly, from the first principle,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left(\frac{x+h+1}{x+h-1}-\frac{x+1}{x-1}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{(x-1)(x+h+1)-(x+1)(x+h-1)}{(x-1)(x+h-1)}\right]$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\left(x^{2}+h x+x-x-h-1\right)-\left(x^{2}+h x-x+x+h-1\right)}{(x-1)(x+h-1)}\right]$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 h}{(x-1)(x+h-1)}\right]$
$=\lim _{h \rightarrow 0}\left[\frac{-2}{(x-1)(x+h-1)}\right]$
$=\frac{-2}{(x-1)(x-1)}=\frac{-2}{(x-1)^{2}}$

## Question 5:

For the function
$f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1$
Prove that $f^{\prime}(1)=100 f^{\prime}(0)$

## Answer

The given function is
$f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left[\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1\right]$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left(\frac{x^{100}}{100}\right)+\frac{d}{d x}\left(\frac{x^{99}}{99}\right)+\ldots+\frac{d}{d x}\left(\frac{x^{2}}{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1)$
On using theorem $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we obtain
$\frac{d}{d x} f(x)=\frac{100 x^{99}}{100}+\frac{99 x^{98}}{99}+\ldots+\frac{2 x}{2}+1+0$

$$
=x^{99}+x^{98}+\ldots+x+1
$$

$\therefore f^{\prime}(x)=x^{99}+x^{98}+\ldots+x+1$
At $x=0$,
$f^{\prime}(0)=1$
At $x=1$,
$f^{\prime}(1)=1^{99}+1^{98}+\ldots+1+1=[1+1+\ldots+1+1]_{100 \mathrm{tems}}=1 \times 100=100$
Thus, $f^{\prime}(1)=100 \times f^{1}(0)$

## Question 6:

Find the derivative of $x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$ for some fixed real number $a$.

## Answer

Let $f(x)=x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$

$$
\begin{aligned}
\therefore f^{\prime}(x) & =\frac{d}{d x}\left(x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}\right) \\
& =\frac{d}{d x}\left(x^{n}\right)+a \frac{d}{d x}\left(x^{n-1}\right)+a^{2} \frac{d}{d x}\left(x^{n-2}\right)+\ldots+a^{n-1} \frac{d}{d x}(x)+a^{n} \frac{d}{d x}(1)
\end{aligned}
$$

On using theorem $\frac{d}{d x} x^{n}=n x^{n-1}$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}+a^{n} \\
& =n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}
\end{aligned}
$$

## Question 7:

For some constants $a$ and $b$, find the derivative of
(i) $(x-a)(x-b)\left(\right.$ ii) $\left(a x^{2}+b\right)^{2}$ (iii) $\frac{x-a}{x-b}$

Answer
(i) Let $f(x)=(x-a)(x-b)$

$$
\Rightarrow f(x)=x^{2}-(a+b) x+a b
$$

$$
\therefore f^{\prime}(x)=\frac{d}{d x}\left(x^{2}-(a+b) x+a b\right)
$$

$$
=\frac{d}{d x}\left(x^{2}\right)-(a+b) \frac{d}{d x}(x)+\frac{d}{d x}(a b)
$$

On using theorem $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we obtain
$f^{\prime}(x)=2 x-(a+b)+0=2 x-a-b$
(ii) Let $f(x)=\left(a x^{2}+b\right)^{2}$
$\Rightarrow f(x)=a^{2} x^{4}+2 a b x^{2}+b^{2}$
$\therefore f^{\prime}(x)=\frac{d}{d x}\left(a^{2} x^{4}+2 a b x^{2}+b^{2}\right)=a^{2} \frac{d}{d x}\left(x^{4}\right)+2 a b \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(b^{2}\right)$
On using theorem $\frac{d}{d x} x^{n}=n x^{n-1}$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =a^{2}\left(4 x^{3}\right)+2 a b(2 x)+b^{2}(0) \\
& =4 a^{2} x^{3}+4 a b x \\
& =4 a x\left(a x^{2}+b\right)
\end{aligned}
$$

(iii) Let $f(x)=\frac{(x-a)}{(x-b)}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{x-a}{x-b}\right)$
By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-b) \frac{d}{d x}(x-a)-(x-a) \frac{d}{d x}(x-b)}{(x-b)^{2}} \\
& =\frac{(x-b)(1)-(x-a)(1)}{(x-b)^{2}} \\
& =\frac{x-b-x+a}{(x-b)^{2}} \\
& =\frac{a-b}{(x-b)^{2}}
\end{aligned}
$$

## Question 8:

Find the derivative of $\frac{x^{n}-a^{n}}{x-a}$ for some constant $a$.
Answer

$$
\begin{aligned}
& \text { Let } f(x)=\frac{x^{n}-a^{n}}{x-a} \\
& \Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{n}-a^{n}}{x-a}\right)
\end{aligned}
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-a) \frac{d}{d x}\left(x^{n}-a^{n}\right)-\left(x^{n}-a^{n}\right) \frac{d}{d x}(x-a)}{(x-a)^{2}} \\
& =\frac{(x-a)\left(n x^{n-1}-0\right)-\left(x^{n}-a^{n}\right)}{(x-a)^{2}} \\
& =\frac{n x^{n}-a n x^{n-1}-x^{n}+a^{n}}{(x-a)^{2}}
\end{aligned}
$$

## Question 9:

Find the derivative of
(i) $2 x-\frac{3}{4}$ (ii) $\left(5 x^{3}+3 x-1\right)(x-1)$
(iii) $x^{-3}(5+3 x)$ (iv) $x^{5}\left(3-6 x^{-9}\right)$
(v) $x^{-4}\left(3-4 x^{-5}\right)(\mathrm{vi}) \frac{2}{x+1}-\frac{x^{2}}{3 x-1}$

Answer
(i) Let $f(x)=2 x-\frac{3}{4}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2 x-\frac{3}{4}\right) \\
& =2 \frac{d}{d x}(x)-\frac{d}{d x}\left(\frac{3}{4}\right) \\
& =2-0 \\
& =2
\end{aligned}
$$

(ii) Let $f(x)=\left(5 x^{3}+3 x-1\right)(x-1)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(5 x^{3}+3 x-1\right) \frac{d}{d x}(x-1)+(x-1) \frac{d}{d x}\left(5 x^{3}+3 x-1\right) \\
& =\left(5 x^{3}+3 x-1\right)(1)+(x-1)\left(5.3 x^{2}+3-0\right) \\
& =\left(5 x^{3}+3 x-1\right)+(x-1)\left(15 x^{2}+3\right) \\
& =5 x^{3}+3 x-1+15 x^{3}+3 x-15 x^{2}-3 \\
& =20 x^{3}-15 x^{2}+6 x-4
\end{aligned}
$$

(iii) Let $f(x)=x^{-3}(5+3 x)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{-3} \frac{d}{d x}(5+3 x)+(5+3 x) \frac{d}{d x}\left(x^{-3}\right) \\
& =x^{-3}(0+3)+(5+3 x)\left(-3 x^{-3-1}\right) \\
& =x^{-3}(3)+(5+3 x)\left(-3 x^{-4}\right) \\
& =3 x^{-3}-15 x^{-4}-9 x^{-3} \\
& =-6 x^{-3}-15 x^{-4} \\
& =-3 x^{-3}\left(2+\frac{5}{x}\right) \\
& =\frac{-3 x^{-3}}{x}(2 x+5) \\
& =\frac{-3}{x^{4}}(5+2 x)
\end{aligned}
$$

(iv) Let $f(x)=x^{5}\left(3-6 x^{-9}\right)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{5} \frac{d}{d x}\left(3-6 x^{-9}\right)+\left(3-6 x^{-9}\right) \frac{d}{d x}\left(x^{5}\right) \\
& =x^{5}\left\{0-6(-9) x^{-9-1}\right\}+\left(3-6 x^{-9}\right)\left(5 x^{4}\right) \\
& =x^{5}\left(54 x^{-10}\right)+15 x^{4}-30 x^{-5} \\
& =54 x^{-5}+15 x^{4}-30 x^{-5} \\
& =24 x^{-5}+15 x^{4} \\
& =15 x^{4}+\frac{24}{x^{5}}
\end{aligned}
$$

(v) Let $f(x)=x^{-4}\left(3-4 x^{-5}\right)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{-4} \frac{d}{d x}\left(3-4 x^{-5}\right)+\left(3-4 x^{-5}\right) \frac{d}{d x}\left(x^{-4}\right) \\
& =x^{-4}\left\{0-4(-5) x^{-5-1}\right\}+\left(3-4 x^{-5}\right)(-4) x^{-4-1} \\
& =x^{-4}\left(20 x^{-6}\right)+\left(3-4 x^{-5}\right)\left(-4 x^{-5}\right) \\
& =20 x^{-10}-12 x^{-5}+16 x^{-10} \\
& =36 x^{-10}-12 x^{-5} \\
& =-\frac{12}{x^{5}}+\frac{36}{x^{10}}
\end{aligned}
$$

(vi) Let $f(x)=\frac{2}{x+1}-\frac{x^{2}}{3 x-1}$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{2}{x+1}\right)-\frac{d}{d x}\left(\frac{x^{2}}{3 x-1}\right)
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left[\frac{(x+1) \frac{d}{d x}(2)-2 \frac{d}{d x}(x+1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(3 x-1)}{(3 x-1)^{2}}\right] \\
& =\left[\frac{(x+1)(0)-2(1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1)(2 x)-\left(x^{2}\right)(3)}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\left[\frac{6 x^{2}-2 x-3 x^{2}}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\left[\frac{3 x^{2}-2 x^{2}}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\frac{x(3 x-2)}{(3 x-1)^{2}}
\end{aligned}
$$

## Question 10:

Find the derivative of $\cos x$ from first principle.

## Answer

Let $f(x)=\cos x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[\frac{\cos x \cos h-\sin x \sin h-\cos x}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right] \\
& =-\cos x\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right) \\
& =-\cos x(0)-\sin x(1) \quad \quad\left[\lim _{h \rightarrow 0} \frac{1-\cos h}{h}=0 \text { and } \lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right]
\end{aligned}
$$

$$
=-\sin x
$$

$\therefore f^{\prime}(x)=-\sin x$

## Question 11:

Find the derivative of the following functions:
(i) $\sin x \cos x$ (ii) $\sec x$ (iii) $5 \sec x+4 \cos x$
(iv) $\operatorname{cosec} x(v) 3 \cot x+5 \operatorname{cosec} x$
(vi) $5 \sin x-6 \cos x+7$ (vii) $2 \tan x-7 \sec x$

Answer
(i) Let $f(x)=\sin x \cos x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos (x+h)-\sin x \cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[2 \sin (x+h) \cos (x+h)-2 \sin x \cos x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[\sin 2(x+h)-\sin 2 x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}\left[2 \cos \frac{2 x+2 h+2 x}{2} \cdot \sin \frac{2 x+2 h-2 x}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \frac{4 x+2 h}{2} \sin \frac{2 h}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\cos (2 x+h) \sin h] \\
& =\lim _{h \rightarrow 0} \cos (2 x+h) \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\cos (2 x+0) \cdot 1 \\
& =\cos 2 x
\end{aligned}
$$

(ii) Let $f(x)=\sec x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{\left[\begin{array}{l}
\sin \left(\frac{2 x+h}{2}\right) \\
\sin \left(\frac{h}{2}\right) \\
\left(\frac{h}{2}\right)
\end{array}\right]}{\cos (x+h)} \\
& =\frac{1}{\cos x} \cdot \lim _{\frac{h}{2} \rightarrow 0}^{\sin \left(\frac{h}{2}\right)} \\
& \left.=\frac{1}{\cos x} \cdot 1 \cdot \frac{h}{2}\right) \frac{\sin x}{\sin \left(\frac{2 x+h}{2}\right)} \cos (x+h) \\
& =\sec x \tan x
\end{aligned}
$$

(iii) Let $f(x)=5 \sec x+4 \cos x$. Accordingly, from the first principle,

$$
\text { (iv) Let } f(x)=\operatorname{cosec} x \text {. Accordingly, from the first principle, }
$$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 \sec (x+h)+4 \cos (x+h)-[5 \sec x+4 \cos x]}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{[\sec (x+h)-\sec x]}{h}+4 \lim _{h \rightarrow 0} \frac{[\cos (x+h)-\cos x]}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[\cos x \cos h-\sin x \sin h-\cos x] \\
& =\frac{5}{\cos x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[-\cos x(1-\cos h)-\sin x \sin h] \\
& =\frac{5}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos (x+h)}\right]+4\left[-\cos x \lim _{h \rightarrow 0} \frac{(1-\cos h)}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h}\right] \\
& =\frac{5}{\cos x} \lim _{h \rightarrow 0}\left[\frac{\sin \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}}{\cos (x+h)}\right]+4[(-\cos x) \cdot(0)-(\sin x) \cdot 1] \\
& =\frac{5}{\cos x} \cdot\left[\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos (x+h)} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right]-4 \sin x \\
& =\frac{5}{\cos x} \cdot \frac{\sin x}{\cos x} \cdot 1-4 \sin x \\
& =5 \sec x \tan x-4 \sin x
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{-\cos \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\sin (x+h) \sin x} \\
& =\lim _{h \rightarrow 0}\left(\frac{-\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h) \sin x}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0}^{\sin \left(\frac{h}{2}\right)} \\
& =\left(\frac{h}{2}\right) \\
& =-\operatorname{cosecx} x \operatorname{sot} x
\end{aligned}
$$

(v) Let $f(x)=3 \cot x+5 \operatorname{cosec} x$. Accordingly, from the first principle,

$$
\begin{align*}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 \cot (x+h)+5 \operatorname{cosec}(x+h)-3 \cot x-5 \operatorname{cosec} x}{h} \\
& =3 \lim _{h \rightarrow 0} \frac{1}{h}[\cot (x+h)-\cot x]+5 \lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \tag{1}
\end{align*}
$$

Now, $\lim _{h \rightarrow 0} \frac{1}{h}[\cot (x+h)-\cot x]$

$$
\begin{align*}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos (x+h) \sin x-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin x \sin (x+h)}\right] \\
& =-\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\sin x \cdot \sin (x+h)}\right) \\
& =-1 \cdot \frac{1}{\sin x \cdot \sin (x+0)}=\frac{-1}{\sin ^{2} x}=-\operatorname{cosec}^{2} x \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& \quad-\cos \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h) \sin x}{\sin } \\
& =\lim _{h \rightarrow 0}\left(\frac{-\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h) \sin x}\right) \lim _{\frac{h}{2} \rightarrow 0}^{\sin \left(\frac{h}{2}\right)} \\
& =\left(\frac{-h}{2}\right)  \tag{3}\\
& =\left(\frac{\cos x}{\sin x \sin x) \cdot 1}\right. \\
& =-\operatorname{cosecx} \cot x
\end{align*}
$$

From (1), (2), and (3), we obtain
$f^{\prime}(x)=-3 \operatorname{cosec}^{2} x-5 \operatorname{cosec} x \cot x$
(vi) Let $f(x)=5 \sin x-6 \cos x+7$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5 \sin (x+h)-6 \cos (x+h)+7-5 \sin x+6 \cos x-7] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5\{\sin (x+h)-\sin x\}-6\{\cos (x+h)-\cos x\}] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h)-\sin x]-6 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+x}{2}\right) \sin \left(\frac{x+h-x}{2}\right)\right]-6 \lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+h}{2}\right) \sin \frac{h}{2}\right]-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right] \\
& =5 \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right) \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right] \\
& =5\left[\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right)\right]\left[\frac{\lim _{h}}{\frac{\sin }{2} \frac{h}{2}} \frac{\frac{h}{2}}{2}\right]-6\left[(-\cos x)\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right)\right] \\
& =5 \cos x \cdot 1-6[(-\cos x) \cdot(0)-\sin x .1] \\
& =5 \cos x+6 \sin x
\end{aligned}
$$

(vii) Let $f(x)=2 \tan x-7 \sec x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2 \tan (x+h)-7 \sec (x+h)-2 \tan x+7 \sec x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2\{\tan (x+h)-\tan x\}-7\{\sec (x+h)-\sec x\}] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}[\tan (x+h)-\tan x]-7 \lim _{h \rightarrow 0} \frac{1}{h}[\sec (x+h)-\sec x] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)\right] \\
& =2 \lim _{h \rightarrow 0}\left[\left(\frac{\sin h}{h}\right) \frac{1}{\cos x \cos (x+h)}\right] \\
& =2\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos x \cos (x+h)}\right)-7\left(\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)\left(\frac{\left.\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right.}{\cos x \cos (x+h)}\right)}{}\right. \\
& =2.1 \frac{1}{\cos x \cos x}-7.1\left(\frac{\sin x}{\cos x \cos x}\right) \\
& =2 \sec { }^{2} x-7 \sec x \tan x
\end{aligned}
$$

