Å

Class XII : Maths Chapter 7 : INTEGRALS

Questions and Solutions | Exercise 7.5 - NCERT Books

Question 1:

 $\frac{x}{(x+1)(x+2)}$

Answer

$$\frac{x}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$$
$$\Rightarrow x = A(x+2) + B(x+1)$$

Equating the coefficients of x and constant term, we obtain

$$A + B = 1$$

$$2A + B = 0$$

On solving, we obtain

$$A = -1 \text{ and } B = 2$$

$$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)} + \frac{2}{(x+2)}$$

$$\Rightarrow \int \frac{x}{(x+1)(x+2)} dx = \int \frac{-1}{(x+1)} + \frac{2}{(x+2)} dx$$

$$= -\log|x+1| + 2\log|x+2| + C$$

$$= \log(x+2)^2 - \log|x+1| + C$$

$$= \log\frac{(x+2)^2}{(x+1)} + C$$

Question 2:

$$\frac{1}{r^2 - 9}$$

Answer

$$\frac{1}{(x+3)(x-3)} = \frac{A}{(x+3)} + \frac{B}{(x-3)}$$

1 = A(x-3) + B(x+3)

Class XII MATH

Equating the coefficients of x and constant term, we obtain

Equating the coefficients of x and constant

$$A + B = 0$$

 $-3A + 3B = 1$
On solving, we obtain
 $A = -\frac{1}{6}$ and $B = \frac{1}{6}$
 $\therefore \frac{1}{(x+3)(x-3)} = \frac{-1}{6(x+3)} + \frac{1}{6(x-3)}$
 $\Rightarrow \int \frac{1}{(x^2-9)} dx = \int \left(\frac{-1}{6(x+3)} + \frac{1}{6(x-3)}\right) dx$
 $= -\frac{1}{6} \log|x+3| + \frac{1}{6} \log|x-3| + \frac{1}{6}$

Question 3:

$$\frac{3x-1}{(x-1)(x-2)(x-3)}$$

Answer

$$\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$

$$3x-1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) \qquad \dots (1)$$

C

Substituting x = 1, 2, and 3 respectively in equation (1), we obtain A = 1, B = -5, and C = 4

$$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} - \frac{5}{(x-2)} + \frac{4}{(x-3)}$$

$$\Rightarrow \int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left\{ \frac{1}{(x-1)} - \frac{5}{(x-2)} + \frac{4}{(x-3)} \right\} dx$$

$$= \log|x-1| - 5\log|x-2| + 4\log|x-3| + C$$

Class XII MATH

Å

Question 4:

$$\frac{x}{(x-1)(x-2)(x-3)}$$

Answer

$$\frac{x}{(x-1)(x-2)(x-3)} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$

$$x = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) \qquad \dots (1)$$

Substituting x = 1, 2, and 3 respectively in equation (1), we obtain

$$A = \frac{1}{2}, B = -2, \text{ and } C = \frac{3}{2}$$

$$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} - \frac{2}{(x-2)} + \frac{3}{2(x-3)}$$

$$\Rightarrow \int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left\{ \frac{1}{2(x-1)} - \frac{2}{(x-2)} + \frac{3}{2(x-3)} \right\} dx$$

$$= \frac{1}{2} \log|x-1| - 2\log|x-2| + \frac{3}{2} \log|x-3| + C$$

Question 5:

$$\frac{2x}{x^2+3x+2}$$

Answer

$$\frac{2x}{x^2 + 3x + 2} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$$

2x = A(x+2) + B(x+1) ...(1)

Substituting x = -1 and -2 in equation (1), we obtain A = -2 and B = 4

Å

$$\therefore \frac{2x}{(x+1)(x+2)} = \frac{-2}{(x+1)} + \frac{4}{(x+2)}$$

$$\Rightarrow \int \frac{2x}{(x+1)(x+2)} dx = \int \left\{ \frac{4}{(x+2)} - \frac{2}{(x+1)} \right\} dx$$

$$= 4 \log|x+2| - 2 \log|x+1| + C$$

Question 6:

$$\frac{1-x^2}{x(1-2x)}$$

Answer

It can be seen that the given integrand is not a proper fraction. Therefore, on dividing $(1 - x^2)$ by x(1 - 2x), we obtain

$$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{1}{2} \left(\frac{2-x}{x(1-2x)} \right)$$

$$\frac{2-x}{x(1-2x)} = \frac{A}{x} + \frac{B}{(1-2x)}$$

$$\Rightarrow (2-x) = A(1-2x) + Bx \qquad ...(1)$$
Substituting $x = 0$ and $\frac{1}{2}$ in equation (1), we obtain

$$A = 2$$
 and $B = 3$

$$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x} + \frac{3}{1-2x}$$

Substituting in equation (1), we obtain

$$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{1}{2} \left\{ \frac{2}{x} + \frac{3}{(1-2x)} \right\}$$
$$\Rightarrow \int \frac{1-x^2}{x(1-2x)} dx = \int \left\{ \frac{1}{2} + \frac{1}{2} \left(\frac{2}{x} + \frac{3}{1-2x} \right) \right\} dx$$
$$= \frac{x}{2} + \log|x| + \frac{3}{2(-2)} \log|1-2x| + C$$
$$= \frac{x}{2} + \log|x| - \frac{3}{4} \log|1-2x| + C$$

Question 7:

$$\frac{x}{(x^2+1)(x-1)}$$

Answer

$$\frac{x}{(x^{2}+1)(x-1)} = \frac{Ax+B}{(x^{2}+1)} + \frac{C}{(x-1)}$$
Let $x = (Ax+B)(x-1) + C(x^{2}+1)$
 $x = Ax^{2} - Ax + Bx - B + Cx^{2} + C$
Equating the coefficients of $x^{2} = x$ or

Equating the coefficients of x^2 , x, and constant term, we obtain

$$A + C = 0$$
$$-A + B = 1$$
$$-B + C = 0$$

On solving these equations, we obtain

$$A = -\frac{1}{2}, B = \frac{1}{2}$$
, and $C = \frac{1}{2}$

From equation (1), we obtain

$$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left(-\frac{1}{2}x+\frac{1}{2}\right)}{x^2+1} + \frac{\frac{1}{2}}{(x-1)}$$

$$\Rightarrow \int \frac{x}{(x^2+1)(x-1)} = -\frac{1}{2} \int \frac{x}{x^2+1} dx + \frac{1}{2} \int \frac{1}{x^2+1} dx + \frac{1}{2} \int \frac{1}{x-1} dx$$

$$= -\frac{1}{4} \int \frac{2x}{x^2+1} dx + \frac{1}{2} \tan^{-1} x + \frac{1}{2} \log|x-1| + C$$
Consider $\int \frac{2x}{x^2+1} dx$, let $(x^2+1) = t \Rightarrow 2x \, dx = dt$

$$\Rightarrow \int \frac{2x}{x^2+1} dx = \int \frac{dt}{t} = \log|t| = \log|x^2+1|$$

$$\therefore \int \frac{x}{(x^2+1)(x-1)} = -\frac{1}{4} \log|x^2+1| + \frac{1}{2} \tan^{-1} x + \frac{1}{2} \log|x-1| + C$$

$$= \frac{1}{2} \log|x-1| - \frac{1}{4} \log|x^2+1| + \frac{1}{2} \tan^{-1} x + C$$

Question 8:

$$\frac{x}{\left(x-1\right)^2\left(x+2\right)}$$

Answer

$$\frac{x}{(x-1)^2(x+2)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+2)}$$

$$x = A(x-1)(x+2) + B(x+2) + C(x-1)^2$$

Substituting x = 1, we obtain

$$B = \frac{1}{3}$$

Equating the coefficients of x^2 and constant term, we obtain

$$A + C = 0$$

-2A + 2B + C = 0
On solving, we obtain

Å

$$A = \frac{2}{9} \text{ and } C = \frac{-2}{9}$$

$$\therefore \frac{x}{(x-1)^2 (x+2)} = \frac{2}{9(x-1)} + \frac{1}{3(x-1)^2} - \frac{2}{9(x+2)}$$

$$\Rightarrow \int \frac{x}{(x-1)^2 (x+2)} dx = \frac{2}{9} \int \frac{1}{(x-1)} dx + \frac{1}{3} \int \frac{1}{(x-1)^2} dx - \frac{2}{9} \int \frac{1}{(x+2)} dx$$

$$= \frac{2}{9} \log |x-1| + \frac{1}{3} \left(\frac{-1}{x-1}\right) - \frac{2}{9} \log |x+2| + C$$

$$= \frac{2}{9} \log \left|\frac{x-1}{x+2}\right| - \frac{1}{3(x-1)} + C$$

Question 9:

 $\frac{3x+5}{x^3-x^2-x+1}$

Answer

$$\frac{3x+5}{x^3-x^2-x+1} = \frac{3x+5}{(x-1)^2(x+1)}$$

$$\frac{3x+5}{(x-1)^2(x+1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+1)}$$

$$3x+5 = A(x-1)(x+1) + B(x+1) + C(x-1)^2$$

$$3x+5 = A(x^2-1) + B(x+1) + C(x^2+1-2x) \qquad \dots (1)$$

Substituting x = 1 in equation (1), we obtain

B = 4

Equating the coefficients of x^2 and x, we obtain

$$A + C = 0$$

$$B-2C=3$$

On solving, we obtain

$$A = -\frac{1}{2}$$
 and $C = \frac{1}{2}$

Class XII MATH

$$\therefore \frac{3x+5}{(x-1)^2(x+1)} = \frac{-1}{2(x-1)} + \frac{4}{(x-1)^2} + \frac{1}{2(x+1)}$$

$$\Rightarrow \int \frac{3x+5}{(x-1)^2(x+1)} dx = -\frac{1}{2} \int \frac{1}{x-1} dx + 4 \int \frac{1}{(x-1)^2} dx + \frac{1}{2} \int \frac{1}{(x+1)} dx$$

$$= -\frac{1}{2} \log|x-1| + 4\left(\frac{-1}{x-1}\right) + \frac{1}{2} \log|x+1| + C$$

$$= \frac{1}{2} \log\left|\frac{x+1}{x-1}\right| - \frac{4}{(x-1)} + C$$

Question 10:

$$\frac{2x-3}{\left(x^2-1\right)\left(2x+3\right)}$$

Answer

$$\frac{2x-3}{(x^2-1)(2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$$

$$\frac{2x-3}{(x+1)(x-1)(2x+3)} = \frac{A}{(x+1)} + \frac{B}{(x-1)} + \frac{C}{(2x+3)}$$

$$\Rightarrow (2x-3) = A(x-1)(2x+3) + B(x+1)(2x+3) + C(x+1)(x-1)$$

$$\Rightarrow (2x-3) = A(2x^2+x-3) + B(2x^2+5x+3) + C(x^2-1)$$

$$\Rightarrow (2x-3) = (2A+2B+C)x^2 + (A+5B)x + (-3A+3B-C)$$
Equating the coefficients of x^2 and x we obtain

encients of x

$$B = -\frac{1}{10}, A = \frac{5}{2}, \text{ and } C = -\frac{24}{5}$$

$$\therefore \frac{2x-3}{(x+1)(x-1)(2x+3)} = \frac{5}{2(x+1)} - \frac{1}{10(x-1)} - \frac{24}{5(2x+3)}$$

$$\Rightarrow \int \frac{2x-3}{(x^2-1)(2x+3)} dx = \frac{5}{2} \int \frac{1}{(x+1)} dx - \frac{1}{10} \int \frac{1}{x-1} dx - \frac{24}{5} \int \frac{1}{(2x+3)} dx$$

$$= \frac{5}{2} \log|x+1| - \frac{1}{10} \log|x-1| - \frac{24}{5\times 2} \log|2x+3|$$

$$= \frac{5}{2} \log|x+1| - \frac{1}{10} \log|x-1| - \frac{12}{5} \log|2x+3| + C$$

Question 11:

$$\frac{5x}{(x+1)(x^2-4)}$$

Answer

$$\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$$

$$\frac{5x}{(x+1)(x+2)(x-2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)} + \frac{C}{(x-2)}$$

$$5x = A(x+2)(x-2) + B(x+1)(x-2) + C(x+1)(x+2) \qquad \dots (1)$$

Substituting x = -1, -2, and 2 respectively in equation (1), we obtain

$$A = \frac{5}{3}, B = -\frac{5}{2}, \text{ and } C = \frac{5}{6}$$

$$\therefore \frac{5x}{(x+1)(x+2)(x-2)} = \frac{5}{3(x+1)} - \frac{5}{2(x+2)} + \frac{5}{6(x-2)}$$

$$\Rightarrow \int \frac{5x}{(x+1)(x^2-4)} dx = \frac{5}{3} \int \frac{1}{(x+1)} dx - \frac{5}{2} \int \frac{1}{(x+2)} dx + \frac{5}{6} \int \frac{1}{(x-2)} dx$$

$$= \frac{5}{3} \log|x+1| - \frac{5}{2} \log|x+2| + \frac{5}{6} \log|x-2| + C$$

Question 12:

$$\frac{x^3 + x + 1}{x^2 - 1}$$

Class XII MATH

Å

Answer

It can be seen that the given integrand is not a proper fraction. Therefore, on dividing $(x^3 + x + 1)$ by $x^2 - 1$, we obtain

$$\frac{x^{3} + x + 1}{x^{2} - 1} = x + \frac{2x + 1}{x^{2} - 1}$$

$$\frac{2x + 1}{x^{2} - 1} = \frac{A}{(x + 1)} + \frac{B}{(x - 1)}$$

$$2x + 1 = A(x - 1) + B(x + 1) - \dots(1)$$

Substituting x = 1 and -1 in equation (1), we obtain

$$A = \frac{1}{2} \text{ and } B = \frac{3}{2}$$

$$\therefore \frac{x^3 + x + 1}{x^2 - 1} = x + \frac{1}{2(x+1)} + \frac{3}{2(x-1)}$$

$$\Rightarrow \int \frac{x^3 + x + 1}{x^2 - 1} dx = \int x \, dx + \frac{1}{2} \int \frac{1}{(x+1)} dx + \frac{3}{2} \int \frac{1}{(x-1)} dx$$

$$= \frac{x^2}{2} + \frac{1}{2} \log|x+1| + \frac{3}{2} \log|x-1| + C$$

Question 13:

$$\frac{2}{(1-x)(1+x^2)}$$

Answer

Let
$$\frac{2}{(1-x)(1+x^2)} = \frac{A}{(1-x)} + \frac{Bx+C}{(1+x^2)}$$

 $2 = A(1+x^2) + (Bx+C)(1-x)$
 $2 = A + Ax^2 + Bx - Bx^2 + C - Cx$

Equating the coefficient of x^2 , x, and constant term, we obtain

$$A - B = 0$$
$$B - C = 0$$
$$A + C = 2$$

^

On solving these equations, we obtain

$$A = 1, B = 1, \text{ and } C = 1$$

$$\therefore \frac{2}{(1-x)(1+x^2)} = \frac{1}{1-x} + \frac{x+1}{1+x^2}$$

$$\Rightarrow \int \frac{2}{(1-x)(1+x^2)} dx = \int \frac{1}{1-x} dx + \int \frac{x}{1+x^2} dx + \int \frac{1}{1+x^2} dx$$

$$= -\int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{2x}{1+x^2} dx + \int \frac{1}{1+x^2} dx$$

$$= -\log|x-1| + \frac{1}{2}\log|1+x^2| + \tan^{-1}x + C$$

Question 14:

$$\frac{3x-1}{\left(x+2\right)^2}$$

Answer

Let
$$\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)} + \frac{B}{(x+2)^2}$$

 $\Rightarrow 3x-1 = A(x+2) + B$

Equating the coefficient of x and constant term, we obtain A = 3

 $2A + B = -1 \Rightarrow B = -7$

Å

$$\therefore \frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)} - \frac{7}{(x+2)^2}$$
$$\Rightarrow \int \frac{3x-1}{(x+2)^2} dx = 3 \int \frac{1}{(x+2)} dx - 7 \int \frac{x}{(x+2)^2} dx$$
$$= 3 \log|x+2| - 7 \left(\frac{-1}{(x+2)}\right) + C$$
$$= 3 \log|x+2| + \frac{7}{(x+2)} + C$$

Question 15:

$$\frac{1}{x^4 - 1}$$

Answer

$$\frac{1}{(x^4 - 1)} = \frac{1}{(x^2 - 1)(x^2 + 1)} = \frac{1}{(x + 1)(x - 1)(1 + x^2)}$$

Let $\frac{1}{(x + 1)(x - 1)(1 + x^2)} = \frac{A}{(x + 1)} + \frac{B}{(x - 1)} + \frac{Cx + D}{(x^2 + 1)}$
 $1 = A(x - 1)(x^2 + 1) + B(x + 1)(x^2 + 1) + (Cx + D)(x^2 - 1)$
 $1 = A(x^3 + x - x^2 - 1) + B(x^3 + x + x^2 + 1) + Cx^3 + Dx^2 - Cx - D$
 $1 = (A + B + C)x^3 + (-A + B + D)x^2 + (A + B - C)x + (-A + B - D)$

Equating the coefficient of x^3 , x^2 , x, and constant term, we obtain

A + B + C = 0-A + B + D = 0A + B - C = 0-A + B - D = 1

On solving these equations, we obtain

$$A = -\frac{1}{4}, B = \frac{1}{4}, C = 0, \text{ and } D = -\frac{1}{2}$$

Class XII MATH

Å

$$\therefore \frac{1}{x^4 - 1} = \frac{-1}{4(x + 1)} + \frac{1}{4(x - 1)} - \frac{1}{2(x^2 + 1)}$$
$$\Rightarrow \int \frac{1}{x^4 - 1} dx = -\frac{1}{4} \log|x - 1| + \frac{1}{4} \log|x - 1| - \frac{1}{2} \tan^{-1} x + C$$
$$= \frac{1}{4} \log\left|\frac{x - 1}{x + 1}\right| - \frac{1}{2} \tan^{-1} x + C$$

Question 16:

$$\frac{1}{r(r''+1)}$$

 $\overline{x(x^{n}+1)}$ [Hint: multiply numerator and denominator by x^{n-1} and put $x^{n} = t$] Answer

$$\frac{1}{x(x^n+1)}$$

Multiplying numerator and denominator by x^{n-1} , we obtain

$$\frac{1}{x(x^{n}+1)} = \frac{x^{n-1}}{x^{n-1}x(x^{n}+1)} = \frac{x^{n-1}}{x^{n}(x^{n}+1)}$$
Let $x^{n} = t \implies x^{n-1}dx = dt$

$$\therefore \int \frac{1}{x(x^{n}+1)} dx = \int \frac{x^{n-1}}{x^{n}(x^{n}+1)} dx = \frac{1}{n} \int \frac{1}{t(t+1)} dt$$
Let $\frac{1}{t(t+1)} = \frac{A}{t} + \frac{B}{(t+1)}$

$$1 = A(1+t) + Bt \qquad \dots(1)$$

. .

Substituting t = 0, -1 in equation (1), we obtain A = 1 and B = -1

$$\therefore \frac{1}{t(t+1)} = \frac{1}{t} - \frac{1}{(1+t)}$$

Å

$$\Rightarrow \int \frac{1}{x(x^n+1)} dx = \frac{1}{n} \int \left\{ \frac{1}{t} - \frac{1}{(t+1)} \right\} dx$$
$$= \frac{1}{n} \left[\log|t| - \log|t+1| \right] + C$$
$$= -\frac{1}{n} \left[\log|x^n| - \log|x^n+1| \right] + C$$
$$= \frac{1}{n} \log \left| \frac{x^n}{x^n+1} \right| + C$$

Question 17:

 $\frac{\cos x}{(1-\sin x)(2-\sin x)}$ [Hint: Put sin x = t]

Answer

$$\frac{\cos x}{(1-\sin x)(2-\sin x)}$$
Let $\sin x = t \Rightarrow \cos x \, dx = dt$

$$\therefore \int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx = \int \frac{dt}{(1-t)(2-t)}$$
Let $\frac{1}{(1-t)(2-t)} = \frac{A}{(1-t)} + \frac{B}{(2-t)}$

$$1 = A(2-t) + B(1-t) \qquad \dots (1)$$

Substituting t = 2 and then t = 1 in equation (1), we obtain A = 1 and B = -1

$$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$$

Class XII MATH

$$\Rightarrow \int \frac{\cos x}{(1-\sin x)(2-\sin x)} dx = \int \left\{ \frac{1}{1-t} - \frac{1}{(2-t)} \right\} dt$$
$$= -\log|1-t| + \log|2-t| + C$$
$$= \log\left|\frac{2-t}{1-t}\right| + C$$
$$= \log\left|\frac{2-\sin x}{1-\sin x}\right| + C$$

Question 18:

$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}$$

Answer

$$\frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)} = 1 - \frac{(4x^{2}+10)}{(x^{2}+3)(x^{2}+4)}$$

Let $\frac{4x^{2}+10}{(x^{2}+3)(x^{2}+4)} = \frac{Ax+B}{(x^{2}+3)} + \frac{Cx+D}{(x^{2}+4)}$
 $4x^{2}+10 = (Ax+B)(x^{2}+4) + (Cx+D)(x^{2}+3)$
 $4x^{2}+10 = Ax^{3}+4Ax+Bx^{2}+4B+Cx^{3}+3Cx+Dx^{2}+3D$
 $4x^{2}+10 = (A+C)x^{3}+(B+D)x^{2}+(4A+3C)x+(4B+3D)$

Equating the coefficients of x^3 , x^2 , x, and constant term, we obtain

$$A + C = 0$$

$$B + D = 4$$

$$4A + 3C = 0$$

$$4B + 3D = 10$$

On solving these equations, we obtain

$$A = 0, B = -2, C = 0, \text{ and } D = 6$$

$$\therefore \frac{4x^2 + 10}{(x^2 + 3)(x^2 + 4)} = \frac{-2}{(x^2 + 3)} + \frac{6}{(x^2 + 4)}$$

$$\frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)} = 1 - \left(\frac{-2}{(x^{2}+3)} + \frac{6}{(x^{2}+4)}\right)$$

$$\Rightarrow \int \frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)} dx = \int \left\{1 + \frac{2}{(x^{2}+3)} - \frac{6}{(x^{2}+4)}\right\} dx$$

$$= \int \left\{1 + \frac{2}{x^{2} + (\sqrt{3})^{2}} - \frac{6}{x^{2} + 2^{2}}\right\}$$

$$= x + 2\left(\frac{1}{\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}}\right) - 6\left(\frac{1}{2}\tan^{-1}\frac{x}{2}\right) + C$$

$$= x + \frac{2}{\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}} - 3\tan^{-1}\frac{x}{2} + C$$

Question 19:

$$\frac{2x}{\left(x^2+1\right)\left(x^2+3\right)}$$

Answer

$$\frac{2x}{\left(x^2+1\right)\left(x^2+3\right)}$$

Let $x^2 = t \Rightarrow 2x \, dx = dt$

$$\therefore \int \frac{2x}{(x^2+1)(x^2+3)} dx = \int \frac{dt}{(t+1)(t+3)} \qquad \dots(1)$$

Let $\frac{1}{(t+1)(t+3)} = \frac{A}{(t+1)} + \frac{B}{(t+3)}$
 $1 = A(t+3) + B(t+1) \qquad \dots(1)$

Substituting t = -3 and t = -1 in equation (1), we obtain

$$A = \frac{1}{2} \text{ and } B = -\frac{1}{2}$$

$$\therefore \frac{1}{(t+1)(t+3)} = \frac{1}{2(t+1)} - \frac{1}{2(t+3)}$$

$$\Rightarrow \int \frac{2x}{(x^2+1)(x^2+3)} dx = \int \left\{ \frac{1}{2(t+1)} - \frac{1}{2(t+3)} \right\} dt$$

$$= \frac{1}{2} \log |(t+1)| - \frac{1}{2} \log |t+3| + C$$

$$= \frac{1}{2} \log \left| \frac{t+1}{t+3} \right| + C$$

$$= \frac{1}{2} \log \left| \frac{x^2+1}{x^2+3} \right| + C$$

Question 20:

$$\frac{1}{x(x^4-1)}$$

Answer

$$\frac{1}{x(x^4-1)}$$

Multiplying numerator and denominator by x^3 , we obtain

$$\frac{1}{x(x^4-1)} = \frac{x^3}{x^4(x^4-1)}$$
$$\therefore \int \frac{1}{x(x^4-1)} dx = \int \frac{x^3}{x^4(x^4-1)} dx$$

Let $x^4 = t \Rightarrow 4x^3 dx = dt$

$$\therefore \int \frac{1}{x(x^4-1)} dx = \frac{1}{4} \int \frac{dt}{t(t-1)}$$

Class XII MATH

Let
$$\frac{1}{t(t-1)} = \frac{A}{t} + \frac{B}{(t-1)}$$

 $1 = A(t-1) + Bt$...(1)

Substituting t = 0 and 1 in (1), we obtain

$$A = -1 \text{ and } B = 1$$
$$\Rightarrow \frac{1}{t(t+1)} = \frac{-1}{t} + \frac{1}{t-1}$$

$$\Rightarrow \int \frac{1}{x(x^4 - 1)} dx = \frac{1}{4} \int \left\{ \frac{-1}{t} + \frac{1}{t - 1} \right\} dt$$
$$= \frac{1}{4} \left[-\log|t| + \log|t - 1| \right] + C$$
$$= \frac{1}{4} \log \left| \frac{t - 1}{t} \right| + C$$
$$= \frac{1}{4} \log \left| \frac{x^4 - 1}{x^4} \right| + C$$

Question 21:

$$\frac{1}{\left(e^{x}-1\right)}$$
[Hint: Put $e^{x} = t$]

Answer

$$\frac{1}{(e^x-1)}$$

Let $e^x = t \Rightarrow e^x dx = dt$

$$\Rightarrow \int \frac{1}{e^x - 1} dx = \int \frac{1}{t - 1} \times \frac{dt}{t} = \int \frac{1}{t(t - 1)} dt$$

Let
$$\frac{1}{t(t-1)} = \frac{A}{t} + \frac{B}{t-1}$$

 $1 = A(t-1) + Bt$...(1)

Substituting t = 1 and t = 0 in equation (1), we obtain

$$A = -1$$
 and $B = 1$

$$\therefore \frac{1}{t(t-1)} = \frac{-1}{t} + \frac{1}{t-1}$$
$$\Rightarrow \int \frac{1}{t(t-1)} dt = \log \left| \frac{t-1}{t} \right| + C$$
$$= \log \left| \frac{e^x - 1}{e^x} \right| + C$$

Question 22:

$$\int \frac{x dx}{(x-1)(x-2)} \text{ equals}$$

$$\log \left| \frac{(x-1)^2}{x-2} \right| + C$$
A.
$$\log \left| \frac{(x-2)^2}{x-1} \right| + C$$
B.
$$\log \left| \frac{(x-1)^2}{x-2} \right|^2 + C$$
C.
$$\log \left| \frac{(x-1)(x-2)}{x-2} \right| + C$$
D.
$$\log |(x-1)(x-2)| + C$$

Answer

Let
$$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)} + \frac{B}{(x-2)}$$

 $x = A(x-2) + B(x-1)$...(1)

Substituting x = 1 and 2 in (1), we obtain A = -1 and B = 2

$$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)} + \frac{2}{(x-2)}$$
$$\Rightarrow \int \frac{x}{(x-1)(x-2)} dx = \int \left\{ \frac{-1}{(x-1)} + \frac{2}{(x-2)} \right\} dx$$
$$= -\log|x-1| + 2\log|x-2| + C$$
$$= \log \left| \frac{(x-2)^2}{x-1} \right| + C$$

Hence, the correct Answer is B.

Question 23:

$$\int \frac{dx}{x(x^{2}+1)} \text{ equals}$$
A. $\log |x| - \frac{1}{2} \log (x^{2}+1) + C$
B. $\log |x| + \frac{1}{2} \log (x^{2}+1) + C$
- $\log |x| + \frac{1}{2} \log (x^{2}+1) + C$

С.

D.
$$\frac{1}{2}\log|x| + \log(x^2 + 1) + C$$

Answer

Let
$$\frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

 $1 = A(x^2+1) + (Bx+C)x$

Equating the coefficients of x^2 , x, and constant term, we obtain

$$A + B =$$
$$C = 0$$

0

$$A = 1$$

On solving these equations, we obtain

$$A = 1, B = -1, \text{ and } C = 0$$

$$\therefore \frac{1}{x(x^2+1)} = \frac{1}{x} + \frac{-x}{x^2+1}$$

$$\Rightarrow \int \frac{1}{x(x^2+1)} dx = \int \left\{ \frac{1}{x} - \frac{x}{x^2+1} \right\} dx$$

$$= \log|x| - \frac{1}{2} \log|x^2+1| + C$$

Hence, the correct Answer is A

Hence, the correct Answer is A.