Chapter 7 : INTEGRALS

Questions and Solutions | Exercise 7.5 - NCERT Books

Question 1:

$\frac{x}{(x+1)(x+2)}$
Answer
Let $\frac{x}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\Rightarrow x=A(x+2)+B(x+1)$
Equating the coefficients of x and constant term, we obtain
$A+B=1$
$2 A+B=0$
On solving, we obtain
$A=-1$ and $B=2$

$$
\begin{aligned}
& \therefore \frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)} \\
& \begin{aligned}
\Rightarrow \int \frac{x}{(x+1)(x+2)} d x & =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} d x \\
& =-\log |x+1|+2 \log |x+2|+\mathrm{C} \\
& =\log (x+2)^{2}-\log |x+1|+\mathrm{C} \\
& =\log \frac{(x+2)^{2}}{(x+1)}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 2:
$\frac{1}{x^{2}-9}$
Answer
Let $\frac{1}{(x+3)(x-3)}=\frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1=A(x-3)+B(x+3)$

Equating the coefficients of x and constant term, we obtain
$A+B=0$
$-3 A+3 B=1$
On solving, we obtain

$$
\begin{aligned}
& A=-\frac{1}{6} \text { and } B
\end{aligned}=\frac{1}{6} \begin{aligned}
\therefore \frac{1}{(x+3)(x-3)} & =\frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \\
\Rightarrow \int \frac{1}{\left(x^{2}-9\right)} d x & =\int\left(\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\right) d x \\
& =-\frac{1}{6} \log |x+3|+\frac{1}{6} \log |x-3|+\mathrm{C} \\
& =\frac{1}{6} \log \left|\frac{(x-3)}{(x+3)}\right|+\mathrm{C}
\end{aligned}
$$

Question 3:

$\frac{3 x-1}{(x-1)(x-2)(x-3)}$
Answer
Let $\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$
Substituting $x=1,2$, and 3 respectively in equation (1), we obtain
$A=1, B=-5$, and $C=4$
$\therefore \frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}$
$\Rightarrow \int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}\right\} d x$

$$
=\log |x-1|-5 \log |x-2|+4 \log |x-3|+C
$$

Question 4:
$\frac{x}{(x-1)(x-2)(x-3)}$
Answer
Let $\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$
Substituting $x=1,2$, and 3 respectively in equation (1), we obtain $A=\frac{1}{2}, B=-2$, and $C=\frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
$\Rightarrow \int \frac{x}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\right\} d x$

$$
=\frac{1}{2} \log |x-1|-2 \log |x-2|+\frac{3}{2} \log |x-3|+\mathrm{C}
$$

Question 5:

$\frac{2 x}{x^{2}+3 x+2}$
Answer
Let $\frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
$2 x=A(x+2)+B(x+1)$
Substituting $x=-1$ and -2 in equation (1), we obtain
$A=-2$ and $B=4$

$$
\begin{aligned}
& \therefore \frac{2 x}{(x+1)(x+2)}=\frac{-2}{(x+1)}+\frac{4}{(x+2)} \\
& \begin{aligned}
\Rightarrow \int \frac{2 x}{(x+1)(x+2)} d x & =\int\left\{\frac{4}{(x+2)}-\frac{2}{(x+1)}\right\} d x \\
& =4 \log |x+2|-2 \log |x+1|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 6:

$\frac{1-x^{2}}{x(1-2 x)}$

Answer

It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing $\left(1-x^{2}\right)$ by $x(1-2 x)$, we obtain
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left(\frac{2-x}{x(1-2 x)}\right)$
Let $\frac{2-x}{x(1-2 x)}=\frac{A}{x}+\frac{B}{(1-2 x)}$
$\Rightarrow(2-x)=A(1-2 x)+B x$
Substituting $x=0$ and $\frac{1}{2}$ in equation (1), we obtain
$A=2$ and $B=3$
$\therefore \frac{2-x}{x(1-2 x)}=\frac{2}{x}+\frac{3}{1-2 x}$
Substituting in equation (1), we obtain

$$
\begin{aligned}
& \frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left\{\frac{2}{x}+\frac{3}{(1-2 x)}\right\} \\
& \begin{aligned}
\Rightarrow \int \frac{1-x^{2}}{x(1-2 x)} d x & =\int\left\{\frac{1}{2}+\frac{1}{2}\left(\frac{2}{x}+\frac{3}{1-2 x}\right)\right\} d x \\
& =\frac{x}{2}+\log |x|+\frac{3}{2(-2)} \log |1-2 x|+\mathrm{C} \\
& =\frac{x}{2}+\log |x|-\frac{3}{4} \log |1-2 x|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 7:

$\frac{x}{\left(x^{2}+1\right)(x-1)}$
Answer
Let $\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-1)}$
$x=(A x+B)(x-1)+C\left(x^{2}+1\right)$
$x=A x^{2}-A x+B x-B+C x^{2}+C$
Equating the coefficients of x^{2}, x, and constant term, we obtain
$A+C=0$
$-A+B=1$
$-B+C=0$
On solving these equations, we obtain
$A=-\frac{1}{2}, B=\frac{1}{2}$, and $C=\frac{1}{2}$
From equation (1), we obtain

$$
\begin{aligned}
& \therefore \frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{\left(-\frac{1}{2} x+\frac{1}{2}\right)}{x^{2}+1}+\frac{\frac{1}{2}}{(x-1)} \\
& \begin{aligned}
\Rightarrow \int \frac{x}{\left(x^{2}+1\right)(x-1)} & =-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x \\
& =-\frac{1}{4} \int \frac{2 x}{x^{2}+1} d x+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Consider $\int \frac{2 x}{x^{2}+1} d x$, let $\left(x^{2}+1\right)=t \Rightarrow 2 x d x=d t$
$\Rightarrow \int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}+1\right|$
$\therefore \int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}$

$$
=\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\mathrm{C}
$$

Question 8:

$\frac{x}{(x-1)^{2}(x+2)}$
Answer
Let $\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)}$
$x=A(x-1)(x+2)+B(x+2)+C(x-1)^{2}$
Substituting $x=1$, we obtain
$B=\frac{1}{3}$
Equating the coefficients of x^{2} and constant term, we obtain
$A+C=0$
$-2 A+2 B+C=0$
On solving, we obtain

$$
\begin{aligned}
& A=\frac{2}{9} \text { and } C=\frac{-2}{9} \\
& \begin{aligned}
& \therefore \frac{x}{(x-1)^{2}(x+2)}= \frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}-\frac{2}{9(x+2)} \\
& \begin{aligned}
\Rightarrow \int \frac{x}{(x-1)^{2}(x+2)} d x & =\frac{2}{9} \int \frac{1}{(x-1)} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{(x+2)} d x \\
& =\frac{2}{9} \log |x-1|+\frac{1}{3}\left(\frac{-1}{x-1}\right)-\frac{2}{9} \log |x+2|+\mathrm{C} \\
& =\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+\mathrm{C}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Question 9:

$\frac{3 x+5}{x^{3}-x^{2}-x+1}$
Answer
$\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{(x-1)^{2}(x+1)}$
Let $\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}$
$3 x+5=A(x-1)(x+1)+B(x+1)+C(x-1)^{2}$
$3 x+5=A\left(x^{2}-1\right)+B(x+1)+C\left(x^{2}+1-2 x\right)$
Substituting $x=1$ in equation (1), we obtain
$B=4$
Equating the coefficients of x^{2} and x, we obtain
$A+C=0$
$B-2 C=3$
On solving, we obtain
$A=-\frac{1}{2}$ and $C=\frac{1}{2}$

$$
\begin{aligned}
& \therefore \frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)} \\
& \begin{aligned}
\Rightarrow \int \frac{3 x+5}{(x-1)^{2}(x+1)} d x & =-\frac{1}{2} \int \frac{1}{x-1} d x+4 \int \frac{1}{(x-1)^{2}} d x+\frac{1}{2} \int \frac{1}{(x+1)} d x \\
& =-\frac{1}{2} \log |x-1|+4\left(\frac{-1}{x-1}\right)+\frac{1}{2} \log |x+1|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{(x-1)}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 10:

$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}$
Answer
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x+1)(x-1)(2 x+3)}$
Let $\frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(2 x+3)}$
$\Rightarrow(2 x-3)=A(x-1)(2 x+3)+B(x+1)(2 x+3)+C(x+1)(x-1)$
$\Rightarrow(2 x-3)=A\left(2 x^{2}+x-3\right)+B\left(2 x^{2}+5 x+3\right)+C\left(x^{2}-1\right)$
$\Rightarrow(2 x-3)=(2 A+2 B+C) x^{2}+(A+5 B) x+(-3 A+3 B-C)$
Equating the coefficients of x^{2} and x, we obtain
$B=-\frac{1}{10}, A=\frac{5}{2}$, and $C=-\frac{24}{5}$

$$
\begin{aligned}
& \therefore \frac{2 x-3}{(x+1)(x-1)(2 x+3)}
\end{aligned}=\frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)} .
$$

Question 11:
$\frac{5 x}{(x+1)\left(x^{2}-4\right)}$
Answer
$\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}$
Let $\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$5 x=A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Substituting $x=-1,-2$, and 2 respectively in equation (1), we obtain

$$
\begin{aligned}
& A=\frac{5}{3}, B=-\frac{5}{2}, \text { and } C
\end{aligned}=\frac{5}{6} .
$$

Question 12:
$\frac{x^{3}+x+1}{x^{2}-1}$

Answer
It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing $\left(x^{3}+x+1\right)$ by $x^{2}-1$, we obtain
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{x^{2}-1}$
Let $\frac{2 x+1}{x^{2}-1}=\frac{A}{(x+1)}+\frac{B}{(x-1)}$
$2 x+1=A(x-1)+B(x+1)$
Substituting $x=1$ and -1 in equation (1), we obtain
$A=\frac{1}{2}$ and $B=\frac{3}{2}$
$\therefore \frac{x^{3}+x+1}{x^{2}-1}=x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\Rightarrow \int \frac{x^{3}+x+1}{x^{2}-1} d x=\int x d x+\frac{1}{2} \int \frac{1}{(x+1)} d x+\frac{3}{2} \int \frac{1}{(x-1)} d x$

$$
=\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+\mathrm{C}
$$

Question 13:

$\frac{2}{(1-x)\left(1+x^{2}\right)}$
Answer
Let $\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B x+C}{\left(1+x^{2}\right)}$
$2=A\left(1+x^{2}\right)+(B x+C)(1-x)$
$2=A+A x^{2}+B x-B x^{2}+C-C x$
Equating the coefficient of x^{2}, x, and constant term, we obtain
$A-B=0$
$B-C=0$
$A+C=2$

On solving these equations, we obtain
$A=1, B=1$, and $C=1$
$\therefore \frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{1-x}+\frac{x+1}{1+x^{2}}$
$\Rightarrow \int \frac{2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$

$$
\begin{aligned}
& =-\int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x \\
& =-\log |x-1|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+C
\end{aligned}
$$

Question 14:

$\frac{3 x-1}{(x+2)^{2}}$
Answer
Let $\frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}$
$\Rightarrow 3 x-1=A(x+2)+B$
Equating the coefficient of x and constant term, we obtain
$A=3$
$2 A+B=-1 \Rightarrow B=-7$

$$
\begin{aligned}
& \therefore \frac{3 x-1}{(x+2)^{2}}=\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}} \\
& \begin{aligned}
\Rightarrow \int \frac{3 x-1}{(x+2)^{2}} d x & =3 \int \frac{1}{(x+2)} d x-7 \int \frac{x}{(x+2)^{2}} d x \\
& =3 \log |x+2|-7\left(\frac{-1}{(x+2)}\right)+\mathrm{C} \\
& =3 \log |x+2|+\frac{7}{(x+2)}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 15:

$\frac{1}{x^{4}-1}$
Answer
$\frac{1}{\left(x^{4}-1\right)}=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}$
Let $\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+1\right)}$
$1=A(x-1)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)\left(x^{2}-1\right)$
$1=A\left(x^{3}+x-x^{2}-1\right)+B\left(x^{3}+x+x^{2}+1\right)+C x^{3}+D x^{2}-C x-D$
$1=(A+B+C) x^{3}+(-A+B+D) x^{2}+(A+B-C) x+(-A+B-D)$
Equating the coefficient of x^{3}, x^{2}, x, and constant term, we obtain
$A+B+C=0$
$-A+B+D=0$
$A+B-C=0$
$-A+B-D=1$
On solving these equations, we obtain
$A=-\frac{1}{4}, B=\frac{1}{4}, C=0$, and $D=-\frac{1}{2}$

$$
\begin{aligned}
& \therefore \frac{1}{x^{4}-1}=\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2\left(x^{2}+1\right)} \\
& \begin{aligned}
& \Rightarrow \int \frac{1}{x^{4}-1} d x=-\frac{1}{4} \log |x-1|+\frac{1}{4} \log |x-1|-\frac{1}{2} \tan ^{-1} x+\mathrm{C} \\
& \quad=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 16:

$\frac{1}{x\left(x^{n}+1\right)}$
[Hint: multiply numerator and denominator by x^{n-1} and put $x^{n}=t$]
Answer
$\frac{1}{x\left(x^{n}+1\right)}$
Multiplying numerator and denominator by x^{n-1}, we obtain
$\frac{1}{x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}$
Let $x^{n}=t \Rightarrow x^{n-1} d x=d t$
$\therefore \int \frac{1}{x\left(x^{n}+1\right)} d x=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t+1)} d t$
Let $\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{(t+1)}$
$1=A(1+t)+B t$
Substituting $t=0,-1$ in equation (1), we obtain
$A=1$ and $B=-1$
$\therefore \frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{(1+t)}$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{x\left(x^{n}+1\right)} d x & =\frac{1}{n} \int\left\{\frac{1}{t}-\frac{1}{(t+1)}\right\} d x \\
& =\frac{1}{n}[\log |t|-\log |t+1|]+\mathrm{C} \\
& =-\frac{1}{n}\left[\log \left|x^{n}\right|-\log \left|x^{n}+1\right|\right]+\mathrm{C} \\
& =\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+\mathrm{C}
\end{aligned}
$$

Question 17:
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$ [Hint: Put $\sin x=t$]
Answer
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$
Let $\sin x=t \Rightarrow \cos x d x=d t$
$\therefore \int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int \frac{d t}{(1-t)(2-t)}$
Let $\frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1=A(2-t)+B(1-t)$
Substituting $t=2$ and then $t=1$ in equation (1), we obtain
$A=1$ and $B=-1$
$\therefore \frac{1}{(1-t)(2-t)}=\frac{1}{(1-t)}-\frac{1}{(2-t)}$

$$
\begin{aligned}
\Rightarrow \int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x & =\int\left\{\frac{1}{1-t}-\frac{1}{(2-t)}\right\} d t \\
& =-\log |1-t|+\log |2-t|+\mathrm{C} \\
& =\log \left|\frac{2-t}{1-t}\right|+\mathrm{C} \\
& =\log \left|\frac{2-\sin x}{1-\sin x}\right|+\mathrm{C}
\end{aligned}
$$

Question 18:
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$
Answer
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$
Let $\frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+3\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$
$4 x^{2}+10=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+3\right)$
$4 x^{2}+10=A x^{3}+4 A x+B x^{2}+4 B+C x^{3}+3 C x+D x^{2}+3 D$
$4 x^{2}+10=(A+C) x^{3}+(B+D) x^{2}+(4 A+3 C) x+(4 B+3 D)$
Equating the coefficients of x^{3}, x^{2}, x, and constant term, we obtain
$A+C=0$
$B+D=4$
$4 A+3 C=0$
$4 B+3 D=10$
On solving these equations, we obtain
$A=0, B=-2, C=0$, and $D=6$
$\therefore \frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}$

$$
\begin{aligned}
& \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\left(\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right) \\
& \begin{aligned}
\Rightarrow \int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x & =\int\left\{1+\frac{2}{\left(x^{2}+3\right)}-\frac{6}{\left(x^{2}+4\right)}\right\} d x \\
& =\left\{\left\{1+\frac{2}{x^{2}+(\sqrt{3})^{2}}-\frac{6}{x^{2}+2^{2}}\right\}\right. \\
& =x+2\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right)-6\left(\frac{1}{2} \tan ^{-1} \frac{x}{2}\right)+\mathrm{C} \\
& =x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 19:

$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Answer
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$

Let $x^{2}=t \Rightarrow 2 x d x=d t$
$\therefore \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)}$
Let $\frac{1}{(t+1)(t+3)}=\frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1=A(t+3)+B(t+1)$
Substituting $t=-3$ and $t=-1$ in equation (1), we obtain

$$
\begin{aligned}
& A=\frac{1}{2} \text { and } B=-\frac{1}{2} \\
& \begin{aligned}
& \therefore \frac{1}{(t+1)(t+3)}=\frac{1}{2(t+1)}-\frac{1}{2(t+3)} \\
& \begin{aligned}
\Rightarrow \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x & =\int\left\{\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right\} d t \\
& =\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+\mathrm{C}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Question 20:
$\frac{1}{x\left(x^{4}-1\right)}$
Answer
$\frac{1}{x\left(x^{4}-1\right)}$
Multiplying numerator and denominator by x^{3}, we obtain
$\frac{1}{x\left(x^{4}-1\right)}=\frac{x^{3}}{x^{4}\left(x^{4}-1\right)}$
$\therefore \int \frac{1}{x\left(x^{4}-1\right)} d x=\int \frac{x^{3}}{x^{4}\left(x^{4}-1\right)} d x$

Let $x^{4}=t \Rightarrow 4 x^{3} d x=d t$
$\therefore \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{d t}{t(t-1)}$

Let $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{(t-1)}$
$1=A(t-1)+B t$
Substituting $t=0$ and 1 in (1), we obtain
$A=-1$ and $B=1$
$\Rightarrow \frac{1}{t(t+1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int\left\{\frac{-1}{t}+\frac{1}{t-1}\right\} d t$
$=\frac{1}{4}[-\log |t|+\log |t-1|]+C$
$=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+\mathrm{C}$ $=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+\mathrm{C}$

Question 21:
$\frac{1}{\left(e^{x}-1\right)}$
[Hint: Put $e^{x}=t$]
Answer
$\frac{1}{\left(e^{x}-1\right)}$
Let $e^{x}=t \Rightarrow e^{x} d x=d t$
$\Rightarrow \int \frac{1}{e^{x}-1} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t$

Let $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}$
$1=A(t-1)+B t$
Substituting $t=1$ and $t=0$ in equation (1), we obtain $A=-1$ and $B=1$
$\therefore \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{t(t-1)} d t=\log \left|\frac{t-1}{t}\right|+\mathrm{C}$

$$
=\log \left|\frac{e^{x}-1}{e^{x}}\right|+C
$$

Question 22:

$\int \frac{x d x}{(x-1)(x-2)}$ equals
$\log \left|\frac{(x-1)^{2}}{x-2}\right|+C$
A.
$\log \left|\frac{(x-2)^{2}}{x-1}\right|+\mathrm{C}$
C. $\log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C$
D. $\log |(x-1)(x-2)|+\mathrm{C}$

Answer
Let $\frac{x}{(x-1)(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x=A(x-2)+B(x-1)$
Substituting $x=1$ and 2 in (1), we obtain
$A=-1$ and $B=2$

$$
\begin{aligned}
& \therefore \frac{x}{(x-1)(x-2)}=-\frac{1}{(x-1)}+\frac{2}{(x-2)} \\
& \begin{aligned}
\Rightarrow \int \frac{x}{(x-1)(x-2)} d x & =\int\left\{\frac{-1}{(x-1)}+\frac{2}{(x-2)}\right\} d x \\
& =-\log |x-1|+2 \log |x-2|+\mathrm{C} \\
& =\log \left|\frac{(x-2)^{2}}{x-1}\right|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Hence, the correct Answer is B.

Question 23:

$\int \frac{d x}{x\left(x^{2}+1\right)}$ equals
A. $\log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+\mathrm{C}$
$\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+\mathrm{C}$
B.
C. $-\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+\mathrm{C}$
D. $\frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+\mathrm{C}$

Answer
Let $\frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
$1=A\left(x^{2}+1\right)+(B x+C) x$
Equating the coefficients of x^{2}, x, and constant term, we obtain
$A+B=0$
$C=0$
$A=1$
On solving these equations, we obtain
$A=1, B=-1$, and $C=0$
$\therefore \frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-x}{x^{2}+1}$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{x\left(x^{2}+1\right)} d x & =\int\left\{\frac{1}{x}-\frac{x}{x^{2}+1}\right\} d x \\
& =\log |x|-\frac{1}{2} \log \left|x^{2}+1\right|+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is A.

