Questions and Solutions | Exercise 7.10 - NCERT Books

Question 1:

$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
Answer

$$
\begin{align*}
& I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{\pi}{2}-x\right) d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x \tag{2}
\end{align*}
$$

$\left(\int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} f(a-x) d x\right)$

Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x+\cos ^{2} x\right) d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$

Question 2:
$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
Answer
$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos }}{\sqrt{\cos }+\sqrt{\sin x}} d x$
$\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$

Adding (1) and (2), we obtain
$2 I=\int_{0}^{\pi} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$

Question 3:

$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}$
Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$

$$
\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)
$$

Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$

Question 4:
$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}$
Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right)}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{x}{2}} \frac{\sin ^{5} x+\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$

Question 5:

$$
\int_{-5}^{5}|x+2| d x
$$

Answer

Let $I=\int_{-5}^{5}|x+2| d x$
It can be seen that $(x+2) \leq 0$ on $[-5,-2]$ and $(x+2) \geq 0$ on $[-2,5]$.

$$
\begin{aligned}
\therefore & =\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{5}(x+2) d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{c}^{b} f(x)\right) \\
I & =-\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{5} \\
& =-\left[\frac{(-2)^{2}}{2}+2(-2)-\frac{(-5)^{2}}{2}-2(-5)\right]+\left[\frac{(5)^{2}}{2}+2(5)-\frac{(-2)^{2}}{2}-2(-2)\right] \\
& =-\left[2-4-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10-2+4\right] \\
& =-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4 \\
& =29
\end{aligned}
$$

Question 6:

$$
\int_{2}^{8}|x-5| d x
$$

Answer
Let $I=\int_{2}^{6}|x-5| d x$
It can be seen that $(x-5) \leq 0$ on $[2,5]$ and $(x-5) \geq 0$ on $[5,8]$.

$$
\begin{array}{rlr}
I & =\int_{2}^{5}-(x-5) d x+\int_{2}^{8}(x-5) d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{c}^{b} f(x)\right) \\
& =-\left[\frac{x^{2}}{2}-5 x\right]_{2}^{5}+\left[\frac{x^{2}}{2}-5 x\right]_{5}^{8} \\
& =-\left[\frac{25}{2}-25-2+10\right]+\left[32-40-\frac{25}{2}+25\right] \\
& =9
\end{array}
$$

Question 7:

$\int_{0}^{1} x(1-x)^{n} d x$

Answer

$$
\begin{aligned}
& \text { Let } I=\int_{0}^{1} x(1-x)^{n} d x \\
& \begin{aligned}
\therefore I & =\int_{0}^{(1-x)(1-(1-x))^{n} d x} \\
& =\int_{0}^{1}(1-x)(x)^{n} d x \\
& =\int_{0}^{1}\left(x^{n}-x^{n+1}\right) d x \\
& =\left[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right]_{0}^{1} \quad\left(\int_{0}^{0} f(x) d x=\int_{0}^{n} f(a-x) d x\right) \\
& =\left[\frac{1}{n+1}-\frac{1}{n+2}\right] \\
& =\frac{(n+2)-(n+1)}{(n+1)(n+2)} \\
& =\frac{1}{(n+1)(n+2)}
\end{aligned}
\end{aligned}
$$

Question 8:

$\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
Answer

Let $I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
$\therefore I=\int_{0}^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{1-\tan x}{1+\tan }\right\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \frac{2}{(1+\tan x)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-I$
$\Rightarrow 2 I=[x \log 2]_{0}^{\frac{\pi}{4}}$
$\Rightarrow 2 I=\frac{\pi}{4} \log 2$
$\Rightarrow I=\frac{\pi}{8} \log 2$

Question 9:
$\int_{0}^{2} x \sqrt{2-x} d x$
Answer

Let $I=\int_{0}^{2} x \sqrt{2-x} d x$
$I=\int_{0}^{2}(2-x) \sqrt{x} d x$
$\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$=\int_{0}^{2}\left\{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right\} d x$
$=\left[2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{2}$
$=\left[\frac{4}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}\right]_{0}^{2}$
$=\frac{4}{3}(2)^{\frac{3}{2}}-\frac{2}{5}(2)^{\frac{5}{2}}$
$=\frac{4 \times 2 \sqrt{2}}{3}-\frac{2}{5} \times 4 \sqrt{2}$
$=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}$
$=\frac{40 \sqrt{2}-24 \sqrt{2}}{15}$
$=\frac{16 \sqrt{2}}{15}$

Question 10:
$\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
Answer

Let $I=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log (2 \sin x \cos x)\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log \sin x-\log \cos x-\log 2\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \sin x-\log \cos x-\log 2\} d x$

It is known that, $\left(\int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \cos x-\log \sin x-\log 2\} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}}(-\log 2-\log 2) d x$
$\Rightarrow 2 I=-2 \log 2 \int_{0}^{\frac{\pi}{2}} 1 d x$
$\Rightarrow I=-\log 2\left[\frac{\pi}{2}\right]$
$\Rightarrow I=\frac{\pi}{2}(-\log 2)$
$\Rightarrow I=\frac{\pi}{2}\left[\log \frac{1}{2}\right]$
$\Rightarrow I=\frac{\pi}{2} \log \frac{1}{2}$

Question 11:

$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$
Answer
Let $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$
As $\sin ^{2}(-x)=(\sin (-x))^{2}=(-\sin x)^{2}=\sin ^{2} x$, therefore, $\sin ^{2} x$ is an even function.

It is known that if $f(x)$ is an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$

$$
\begin{aligned}
I & =2 \int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x \\
& =2 \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x \\
& =\int_{0}^{\frac{\pi}{2}}(1-\cos 2 x) d x \\
& =\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Question 12:

$\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
Answer
Let $I=\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin (\pi-x)} d x$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin x} d x$

$$
\begin{equation*}
\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right) \tag{1}
\end{equation*}
$$

Adding (1) and (2), we obtain
$2 I=\int_{0}^{\pi} \frac{\pi}{1+\sin x} d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{(1+\sin x)(1-\sin x)} d x$
$\Rightarrow 2 I=\pi \int_{0}^{1-\sin x} \frac{\cos ^{2} x}{\cos ^{2}}$
$\Rightarrow 2 I=\pi \int_{0}^{\pi}\left\{\sec ^{2} x-\tan x \sec x\right\} d x$
$\Rightarrow 2 I=\pi[\tan x-\sec x]_{0}^{\pi}$
$\Rightarrow 2 I=\pi[2]$
$\Rightarrow I=\pi$

Question 13:

$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$
Answer
Let $I=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$
As $\sin ^{7}(-x)=(\sin (-x))^{7}=(-\sin x)^{7}=-\sin ^{7} x$, therefore, $\sin ^{2} x$ is an odd function.
It is known that, if $f(x)$ is an odd function, then $\int_{-}^{a} f(x) d x=0$
$\therefore I=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x=0$

Question 14:

$\int_{0}^{2 \pi} \cos ^{5} x d x$

Answer

Let $I=\int_{0}^{2 \pi} \cos ^{5} x d x$
$\cos ^{5}(2 \pi-x)=\cos ^{5} x$
It is known that,

$$
\begin{aligned}
& \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x \text {, if } f(2 a-x)=f(x) \\
& =0 \text { if } f(2 a-x)=-f(x) \\
& \therefore I=2 \int_{0}^{\pi} \cos ^{5} x d x \\
& \Rightarrow I=2(0)=0 \\
& {\left[\cos ^{5}(\pi-x)=-\cos ^{5} x\right]}
\end{aligned}
$$

Question 15:

$\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
Answer
Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x$
$\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{0}{1+\sin x \cos x} d x$
$\Rightarrow I=0$

Question 16:

$\int_{0}^{\pi} \log (1+\cos x) d x$

Answer

Let $I=\int_{0}^{\pi} \log (1+\cos x) d x$
$\Rightarrow I=\int_{0}^{\pi} \log (1+\cos (\pi-x)) d x$
$\Rightarrow I=\int_{0}^{x} \log (1-\cos x) d x$
$\left(\int_{0}^{0} f(x) d x=\int_{0}^{0} f(a-x) d x\right)$

Adding (1) and (2), we obtain
$2 I=\int_{0}^{\pi}\{\log (1+\cos x)+\log (1-\cos x)\} d x$
$\Rightarrow 2 I=\int_{0}^{\pi} \log \left(1-\cos ^{2} x\right) d x$
$\Rightarrow 2 I=\int_{0}^{\pi} \log \sin ^{2} x d x$
$\Rightarrow 2 I=2 \int_{0}^{\pi} \log \sin x d x$
$\Rightarrow I=\int_{0}^{\pi} \log \sin x d x$
$\sin (\pi-x)=\sin x$
$\therefore I=2 \int_{0}^{\frac{\pi}{2}} \log \sin x d x$
$\Rightarrow I=2 \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x=2 \int_{0}^{\frac{\pi}{2}} \log \cos x d x$
Adding (4) and (5), we obtain
$2 I=2 \int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x+\log 2-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(\log 2 \sin x \cos x-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x$
Let $2 x=t \square 2 d x=d t$
When $x=0, t=0$ and when $\quad x=\frac{\pi}{2}, \pi=$
$\therefore I=\frac{1 \pi}{2} \int_{0}^{\pi} \log \sin t d t-\frac{-}{2} \log 2$
$\Rightarrow I=\frac{1 \pi}{2} I-\frac{-}{2} \log 2$
$\Rightarrow \frac{I}{2}=-\frac{\pi}{2} \log 2$
$\Rightarrow I=-\pi \log 2$

Question 17:
$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
Answer
Let $I=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
It is known that, $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x$
$\Rightarrow 2 I=\int_{0}^{x} 1 d x$
$\Rightarrow 2 I=[x]_{0}^{a}$
$\Rightarrow 2 I=a$
$\Rightarrow I=\frac{a}{2}$

Question 18:

$\int_{0}^{4}|x-1| d x$
Answer
$I=\int_{0}^{4}|x-1| d x$
It can be seen that, $(x-1) \leq 0$ when $0 \leq x \leq 1$ and $(x-1) \geq 0$ when $1 \leq x \leq 4$

$$
\begin{aligned}
I & =\int_{0}^{1}|x-1| d x+\int_{\mid}^{4}|x-1| d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{a}^{b} f(x)\right) \\
& =\int_{0}^{1}-(x-1) d x+\int_{0}^{1}(x-1) d x \\
& =\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4} \\
& =1-\frac{1}{2}+\frac{(4)^{2}}{2}-4-\frac{1}{2}+1 \\
& =1-\frac{1}{2}+8-4-\frac{1}{2}+1 \\
& =5
\end{aligned}
$$

Question 19:

Show that $\int_{0}^{a} f(x) g(x) d x=2 \int_{0}^{a} f(x) d x$, if f and g are defined as $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$

Answer
Let $I=\int_{0}^{n} f(x) g(x) d x$
$\Rightarrow I=\int_{0}^{a} f(a-x) g(a-x) d x \quad\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{0} f(x) g(a-x) d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{a}\{f(x) g(x)+f(x) g(a-x)\} d x$
$\Rightarrow 2 I=\int_{0}^{a} f(x)\{g(x)+g(a-x)\} d x$
$\Rightarrow 2 I=\int_{0}^{a} f(x) \times 4 d x$
$[g(x)+g(a-x)=4]$
$\Rightarrow I=2 \int_{0}^{1} f(x) d x$

Question 20:

The value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$ is
A. 0
B. 2
C. $п$
D. 1

Answer
Let $I=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$
$\Rightarrow I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{3} d x+\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan ^{5} x d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \cdot d x$
It is known that if $f(x)$ is an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$ and
if $f(x)$ is an odd function, then $\int_{-a}^{a} f(x) d x=0$

$$
\begin{aligned}
I & =0+0+0+2 \int_{0}^{\frac{\pi}{2}} 1 \cdot d x \\
& =2[x]_{0}^{\frac{\pi}{2}} \\
& =\frac{2 \pi}{2} \\
\pi & =
\end{aligned}
$$

Hence, the correct Answer is C.

Question 21:

The value of $\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$ is
A. 2
B. $\frac{3}{4}$
C. 0
D. -2

Answer
Let $I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$
$\begin{array}{ll}\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left[\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right] d x & \left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right) \\ \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x\end{array}$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}}\left\{\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\log \left(\frac{4+3 \cos x}{4+3 \sin x}\right)\right\} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x} \times \frac{4+3 \cos x}{4+3 \sin x}\right) d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log 1 d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 0 d x$
$\Rightarrow I=0$
Hence, the correct Answer is C.

